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Abstract—The paper describes an algebraic approach to func-
tional verification of arithmetic circuits specified at bit level. The
circuit is represented as a network of half adders, full adders, and
inverters, and modeled as a system of linear equations. The proof
of functional correctness of the design is obtained by computing
its algebraic signature using standard LP solver and comparing
it with the reference signature provided by the designer. Initial
experimental results and comparison with SMT solvers show that
the method is efficient, scalable and applicable to large arithmetic
designs, such as multipliers.

I. INTRODUCTION

With the increased size and complexity of integrated circuits

(IC) and systems on chip (SoC), design verification becomes a

dominating factor of the overall design flow. Of particular im-

portance (and difficulty) is verification of arithmetic datapaths

and their components, such as multipliers. Unlike gate-level

logic designs, which can be handled using Boolean methods,

arithmetic designs require treatment on higher abstraction lev-

els. Techniques based on decision diagrams or SAT solvers that

work at the bit level are not scalable for complex arithmetic

systems as they require “bit-blasting”, flattening of the entire

design into bit-level netlists. Modern verification methods use

SMT solvers and symbolic algebra techniques, but they suffer

from lack of adequate models that can harness the inherent

bit-level nature of arithmetic circuits.

The work described in this paper aims at overcoming some

of these limitations. It presents a novel approach to functional

verification of bit-level arithmetic circuits using linear algebra

techniques. The proof of correctness is obtained by modeling

the arithmetic circuit as a network of half/full adders and

computing its algebraic signature using a standard LP solver.

The computed signature is then compared to the reference

signature provided by the designer.

II. PREVIOUS WORK

Several approaches have been proposed to check an arith-

metic circuit against its specification at a higher level of

abstraction. Different variants of decision diagrams and canon-

ical graph-based representations have been proposed for this

purpose, including BDDs [1], BMDs [2], TEDs [3] and others.

BDDs have been used extensively in logic synthesis, symbolic

simulation and SAT but their application to verification of

arithmetic circuits is limited due to high memory requirements.

BMDs and TEDs provide more efficient representation of

arithmetic circuits but require word-level information about

the design, which is often not available or is hard to extract

from bit-level netlists.

Computer symbolic algebra methods have been applied to

model arithmetic designs as polynomials over finite rings [4].

Their applicability to verification of arithmetic circuits is also

limited as it relies on a word-level representation of the datap-

aths. An approach to verification of bit-level implementations

using theory of Grobner basis over fields has been proposed by

[5] and adopted by others. A technique based on term rewriting

was proposed [6] for RTL equivalence checking, using a

database of rewrite rules for typical multiplier implementation

schemes. However, the method cannot be automated for non-

standard implementations.

In [7] a gate level network of an addition circuit (a basic

component of the multiplier) is modeled as a network of half

adders, called arithmetic bit-level (ABL) network. ABL com-

ponents are modeled by polynomials over unique ring, and the

normal forms are computed w.r.t. the Grobner basis over rings

Z/2n using modern computer algebra algorithms. In our view

this model is unnecessarily complicated and does not scalable

to practical designs. A simplified version of this technique has

been recently proposed whereby the expensive Grobner base

computation is replaced by direct generation of polynomials

representing individual outputs in terms of the primary inputs

[8]. However, no general method for deriving such (potentially

very large) polynomials and comparing them in a systematic

way against the specification has been proposed. Our paper

addresses this issue using efficient linear algebra techniques.

Another approach to solving arithmetic verification prob-

lems is based on SMT (Satisfiability Modulo Theories). SMT

techniques combine SAT with specialized solvers for some

well-defined theories, such as Boolean logic, linear integer

arithmetic, theory of equality of uninterrupted functions, and

others [9] [10]. While the application of SMT solvers to

property and model checking is unquestionable, their use in

functional verification of custom arithmetic circuits has not

been yet addressed. This paper proposes a new theory that

can enhance capabilities of SMT solvers.

III. ALGEBRAIC MODEL

It can be shown that any (logic or arithmetic) circuit

can be expressed as a network of half-adders (HA), full-

adders (FA) and inverters. Each arithmetic or logic operator

is then modeled with a set of linear equations that relate the

input and output signals. This section describes modeling of



the arithmetic network and its components using algebraic

equations.

A half-adder (HA) with binary inputs a, b and outputs S
(sum) and C (carry out) is represented as

a+ b = 2C + S (1)

Similarly, a full adder (FA) with inputs a, b, cin and outputs

S and C is represented as

a+ b+ cin = 2C + S (2)

Logic gates can be similarly represented by algebraic equa-

tions by deriving their functions from a half adder. Specifically,

XOR(a, b) is simply a sum output, S, of the half adder

HA(a, b), and the AND(a, b) is the carry-out output, C, of

HA(a, b). Equations for an OR gate, d =OR(a, b), can be

similarly derived from the carry out (AND) output of the HA by

inverting its inputs and outputs, (1−a)+(1−b) = 2(1−d)+S,
resulting in a+ b = 2d−S. Combining this equation with the

equation (1) for HA gives C+S = d. As a result, an OR(a, b)
gate can be modeled with the following equations involving

two half adders:
{

a+ b = 2C + S
C + S = d

(3)

Figure 1 shows the HA model for basic logic gates (AND,

OR, XOR). The correctness of the equations can be veri-

fied with the attached truth table. Finally, the inverter gate

y =INV(x) can be trivially modeled by the following equation:

x+ y = 1.

a b

HA1

C S

C S

HA2

C S

d

a b C S d
0 0 0 0 0

1 0 0 1 1

0 1 0 1 1

1 1 1 0 1

Fig. 1. Modeling of logic gates using HA operators: a+b = 2C+S;C+S =
d, where S =XOR(a, b), C =AND(a, b) and d =OR(a, b).

Using these models, an arithmetic circuit can be represented

by a system of linear equations, with variables x representing

inputs (xI ), outputs (xO) and internal signals (xS). There is

one equation for each HA, FA, XOR gate or AND gate, and a

pair of equations (3) for an OR gate (c.f. Figure 1).

Algebraic equations representing the network are then com-

bined in order to eliminate the internal variables from the

equations and to represent the outputs of the circuit solely in

terms of the primary inputs. The resulting expression is called

Algebraic Signature of the design, denoted Sig(N). Formally,

algebraic signature is obtained by finding a linear combination

of the network equations that results in an expression that

relates the input and output variables.

The algebraic signature is then compared to the Reference

Signature of the network, Ref(N), which provides the ex-

pected relationship between primary inputs and outputs of

the network (the golden model). The reference signature is

basically the difference between the n-bit encoding of the

output word (output signature) and a linear combination of

input signals (input signature).

Reference signature is provided by the designer and can

be obtained directly from the specification of the design. For

example:

7-3 counter: The input signature of the 7-3 counter is simply

the sum of the input bits, x1, . . . , x7. With the output encoded

in three bits, x8, x9, x10 the reference signature is

Ref(N) = (4x8+2x9+x10)−(x1+x2+x3+x4+x5+x6+x7)
(4)

n-bit adder: For an n-bit binary adder, NA, with

inputs {a0, . . . , an−1, b0, . . . , bn−1} and outputs

{S0, . . . , Sn−1, Cn}, the reference signature is given

by:

Ref(NA) = 2nCn +

n−1
∑

i=0

2iSi − (

n−1
∑

i=0

2iai +

n−1
∑

i=0

2ibi) (5)

2× 2-bit unsigned multiplier: Since the multiplier is a non-

linear circuit, we first need to convert its primary inputs

{a0, a1, b0, b1} into new variables (partial product terms), ppI ,
as follows:

A · B = (2a1 + a0).(2b1 + b0)
= 4a1b1 + 2a1b0 + 2a0b1 + a0b0
= 4pp3 + 2pp2 + 2pp1 + pp0

(6)

The variables ppi are primary inputs to the multiplier. As-

suming that the multiplier’s result is encoded in 4 bits,

{z0, z1, z2, z3}, the reference signature is given by:

Ref(NM2) = (8z3+4z2+2z1+z0)−(4pp3+2pp2+2pp1+pp0)
(7)

The reference equation for signed multiplier can be derived

similarly.

We shall now illustrate the idea of computing the algebraic

signature using the following example.

Example 1. Figure 2 represents a 7-3 counter, a circuit

that counts the number of 1s at the inputs {x1, . . . , x7} and

encodes the result in a 3-bit word S2, S1, S0 = {x8, x9, x10}.
The following equations can be derived for this network

using the FA model described above.














x1 + x2 + x3 − 2x11 − x12 = 0
x4 + x5 + x6 − 2x13 − x14 = 0
x12 + x14 + x7 − 2x15 − x10 = 0
x11 + x13 + x15 − 2x8 − x9 = 0

(8)

The algebraic signature of the 7-3 counter is obtained by

multiplying the individual rows of equation 8 by coefficients

α = {-1, -1, -1, -2}, respectively, and adding them to produce

the following expression:

Sig(N) = (4x8+2x9+x10)−(x1+x2+x3+x4+x5+x6+x7)
(9)

As we can see, the computed algebraic signature is identical

to its reference signature (4) proving that the design is correct,

i.e., it performs the expected function.
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Fig. 2. Arithmetic network of a 7-3 counter.

IV. MATHEMATICAL FORMULATION

Let n be the total number of signals in the network, each

represented by a variable, and m be the number of linear

equations in the system. The network can be represented in

matrix form as

Ax = b (10)

where A is an m×n matrix, x is an n-vector representing the

signals, and b is a constant vector of size m. Vector x of signal

variables is further partitioned into the set of input signals xI ,

output signals xO , and internal signals xS so the above system

of equations can be written as: AIxI + AOxO + ASxS = b.
AI , AO, AS are sub-matrices of A restricted to the columns

associated with input, output and internal signals, respectively.

For the 7-bit counter of Fig. 2 we have xI = [x1, · · · , x7]
T ,

xO = [x8, x9, x10]
T , xS = [x11, x12, x13, x14, x15]

T , and b=0.
Matrix A is given as follows:

A =









1 1 1 0 0 0 0 0 0 0 −2 −1 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 −2 −1 0
0 0 0 0 0 0 1 0 0 −1 0 1 0 1 −2
0 0 0 0 0 0 0 −2 −1 0 1 0 1 0 1









(11)

Similarly, the reference signature can be represented in this

system as

Ref(N) = [rO,−rI ]
T · [xO, xI ] (12)

where xO and xI are the sets of variables representing output

and input signals, and rO , rI are integer signature vectors

associated with these variables. For the 7-3 counter example,

with xO = [x8, x9, x10]
T and xI = [x1, · · · , x7]

T , we have

Ref(N) = [4 2 1 ,−1 −1 −1 −1 −1 −1 −1]·[xO, xI ] (13)

Given the reference signature Ref(N), provided by the

user, and its corresponding reference vector [rO,−rI ], the sys-
tem computes the algebraic signature vector r = [rO,−rI , rS ]

of the network. The goal is to determine if the computed al-

gebraic signature Sig(N) = rTx matches the given reference

signature Ref(N) = [rO,−rI ]
T · [xO, xI ]

As explained in Section III, signature Sig(N) = rTx is

obtained as a linear combination α of the rows of Ax. Our
goal is to compute vector α such that

[AO, AI , AS ]
Tα = [rO,−rI , rS ] (14)

This is done by first solving the following linear system for

α using standard LP solver:
{

AT
Oα = rO

AT
I α = −rI

(15)

Here rS is relaxed, i.e., the internal variables are not taken

into account. If this system has no solution, i.e., there is

no linear combination of rows of Ax that will produce an

algebraic signature whose inputs and outputs match those of

the reference signature Ref(N), the circuit is incorrect (w.r.t.
that signature). If the system has a solution, the signature

vector rS associated with internal variables is computed as

follows:

rS = AT
Sα (16)

Ideally we are interested in having the internal variables

eliminated (rS = 0) as a condition for satisfying the reference

signature. Applying this approach to the 7-3 counter circuit,

we obtain αT = [-1 -1 -1 -2], from which the signature vector

can be calculated as r = ATα. The computed r = rO and

rI match those of the reference equation and rs = AT
Sα = 0;

that is, all the internal signals have been eliminated from the

signature.

But what if the computed signature Sig(N) contains inter-
nal signals, i.e., if rS 6= 0? We refer to such an expression

as a residual expression, RE(N) = Sig(N)−Ref(N). Does
the existence of RE(N) mean that the system does not satisfy

the reference signature and the design is incorrect? It can be

shown that this is not necessarily the case and that rS = 0 is

a sufficient but not a necessary condition for the design to be

correct. In fact, a sufficient and necessary condition for circuit

correctness is that RE reduces to zero for all the variable

valuations that are produced by the network. In this case the

network signature matches exactly the reference signature and

the design is correct. This is illustrated with the following

example.

Example 2. Consider a 2×2 signed multiplier network, shown

in Figure 3. The combination of HA3 and HA4 models an OR

gate. Inputs to the network are partial product terms ppi, gen-
erated from the actual inputs of the multiplier, a1, a0, b1, b0,
by a standard partial product generator. Hence, the expected

input signature for the network is:

SigI(N) = (−2a1 + a0)(−2b1 + b0)
= 4a1b1 − 2a1b0 − 2a0b1 + a0b0
= 4pp3 − 2pp2 − 2pp1 + pp0

(17)

Hence the reference signature for this design is: Ref(N) =
−8z3 + 4z2 + 2z1 + z0 − 4pp3 + 2pp2 + 2pp1 − pp0, where
the first four terms are the output signature, obtained directly

from the encoding of the output bits.
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Fig. 3. Signed 2× 2 multiplier network.

The algebraic signature Sig(N) computed by the system is:

Sig(N) =
−8z3 + 4z2 + 2z1 + z0 − 4pp3 + 2pp2 + 2pp1 − pp0
+16x9 − 4x8 + 4x17

(18)

We note that the signature contains a residual expression

RE = −16x9 + 4x8 − 4x17. However, it can be shown that

this expression always evaluates to zero. Namely, x9=0 since

it is the carry-out C output of HA4 modeling the OR gates,

which is always zero (refer to the truth table in Figure 1).

The remaining variables, x8, x17, are two equivalent outputs

S of HA2 and HA3 that share the same inputs. Hence x8=x17,

which reduces RE to zero. Such an analysis of internal

equivalences allows one to determine whether the residual

expression evaluates to zero. If it does, the network performs

the desired function expressed by the reference signature

and the circuit is considered correct. Otherwise the circuit is

incorrect, i.e., it does not perform the function described by

the reference signature.

V. EXPERIMENTAL RESULTS

The arithmetic verification technique described in the paper

has been implemented as a prototype program written in C.

The program uses GLPK package [11] to solve the linear

system needed to compute an algebraic signature of the

network.

A detailed flow of the verification procedure based on

algebraic signature computation is shown in Fig. 4. The input

to the system is the description of the arithmetic network N ,

composed of arbitrary logic gates, HA and FA operators, along

with the reference signature provided by the designer. The

system computes a complete signature of the network and

reports if there is a non-empty residual expression RE(N).
If RE 6= 0, additional constraints need to be extracted from

the network and imposed on RE in an attempt to prove that

it is zero. These constraints come in two flavors: 1) signal

equalities, caused by fanout of internal signals, e.g., x8 = x17

in Example 2; and 2) Boolean constants, such as x9=0 in

Example 2.

Fig. 4. Flowchart of the functional verification system.

Note that by construction (equation 15) the signature vector

of a correctly designed circuit will always match its reference

signature, otherwise the system has no solution and the circuit

is declared incorrect.

We conducted a set of experiments on a number of arith-

metic circuits, including large integer multipliers. First, a bit-

level structural verilog code was generated for each multiplier

using a generic multiplier generator software. (courtesy of the

University of Kaiserslauten). The verilog code was parsed to

transform the multiplier circuit to a network of HA, FA and

basic logic gates from which a system of linear equations was

generated, as described in Section IV. Finally, our program

with link to GLPK was used to compute the algebraic signature

for the network, given the expected reference signature.

Since multipliers are non-linear networks, we concentrated

on the part of the designs which uses partial products as

its inputs. Equation 17 illustrates the generation of partial

product, aibj , for a 2-bit area multiplier. Similar expressions

can be readily obtained for Booth-recoded products. Such

recoded product generator can be easily proved using Boolean

methods.

Table I shows our results for a set of signed integer multi-

pliers up to 256 × 256 bits. The experiment was conducted

on a 2 GHz machine running Linux, with Intel(R) Dual

Core(TM) T3200 processor and 3GB RAM. Since most of the

research in this field has been done in the context of property

checking rather than strictly functional verification, we could

only compare our results to those in [12], for arithmetic proof

(AP) of integer multipliers. The table gives the size of the

multiplier (in the number of bits n of each operand); the

number of linear equations (constr); the CPU time to compute



the signature and the CPU time for arithmetic proof (AP) of

integer multipliers, reported in [12]. The AP results were

computed on a comparable 64-bit 2 GHz Power5 machine,

and reported only for 24, 53 and 64 bit integer multipliers.

The computed signatures were free of residual expressions

after imposing simple Boolean constraints (constants 0) related

to the OR gate configuration discussed earlier.

Size (n) This work AP
mult n× n [12] Z3 Yices

Constr. CPU (sec) sec sec sec

3 21 0.00 - 0.23 0.02

4 44 0.00 - 466.36 0.05

8 216 0.00 - MO TO

16 944 0.02 - MO TO

24 2184 0.04 7 MO TO

30 3450 0.07 MO TO

32 3936 0.09 - MO TO

53 8268 0.77 480 MO TO

64 12096 1.14 840 MO TO

128 48768 17.09 - MO TO

192 110016 45.23 - MO TO

256 195840 151.95 - MO TO

TABLE I
CPU TIME FOR COMPUTING ALGEBRAIC SIGNATURE OF n-BIT
INTEGER SIGNED MULTIPLIERS. (MO = OUT OF MEMORY 3 GB;

TO = TIMEOUT AFTER 1800 SEC)

The runtime complexity of the procedure to compute al-

gebraic signature of the network is less then O(n2) in terms

of the number of gates in a gate-level implementation of the

design, c.f. Figure 5. In principle, given a networkN described
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Fig. 5. Runtime complexity of the computation of algebraic signature.

by a linear system Ax = b, checking if the network satisfies

the reference signature Ref(N) can be cast as a SAT problem.

Specifically, we need to show that (Ax = b)∧ (Ref(N) 6= 0)
is unsatisfiable (unSAT). We performed this test for the

multiplier circuits using two SMT solvers, Yices and Z3, that

support Linear Integer Arithmetic as one of their theories. The

results are shown in the last two columns of Table I. The SMT

solvers were not able to solve this problem for multipliers with

more than 8 bits. Z3 runs out of memory (3 GB) while Yices

is unable to complete the computation in 30 minutes.

VI. CONCLUSIONS AND FUTURE WORK

The purpose of this work was to show a potential of the

proposed algebraic technique to verify functionality of arith-

metic circuits. The method is based on computing algebraic

signature and comparing it with the reference signature that

uniquely defines behavior of the design. If the computed signa-

ture contains non-zero residual expression RE, the signature

computation must be followed by a proof that RE reduces to

zero. This requires extracting constraints that are not properly

captured by the linear model. Alternatively, such constraints

can be imposed on the linear system directly. In this case the

correct design should have no residual expression. In fact this

was the case with the multipliers presented in Section V. We

believe that such constraints are not hard to extract and are

related to only a few types of configurations, such as constant 0

and equivalence of signals derived from a fanout, as discussed

earlier. This issue is currently under investigation.

The described technique is also applicable to property

checking, by representing the property by its algebraic sig-

nature and checking if it is consistent with the signature of

the network. The feasibility of the resulting linear system will

indicate whether such a consistency is maintained or not.

Finally, the method is limited to designs with known

reference signature and such a signature must be a linear

expression. This is certainly the case for portions of the designs

composed of half adder networks (such as Wallace trees) often

encountered in complex arithmetic designs. Application to

other types of circuits needs to be examined.
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