
Approximate Reachability With Combined

Symbolic And Ternary Simulation

Michael Case Jason Baumgartner Hari Mony Robert Kanzelman

IBM Systems and Technology Group

Abstract— Logic synthesis and formal verification both rely on
scalable reachable state characterization for numerous purposes.
One popular technique is over-approximate reachability analysis
using an iterative ternary simulation. This method trades preci-
sion of reachability characterization for a high degree of compu-
tational efficiency. Although effective on many industrial designs,
it breaks down when the design has registers that have complex
initial states or has extremely deep deterministic subcircuits. In
this paper, we improve upon the precision of ternary simulation-
based approximate reachability while retaining its scalability by
representing certain variables as symbols vs. unknowns, and by
selectively saturating subcircuits which would otherwise preclude
convergence. These techniques are particularly beneficial for
enhancing the scalability of industrial sequential equivalence
checking problems, occasionally solving such problems outright
with no need for more costly and precise analysis.

I. INTRODUCTION

Reachability analysis has many applications in contempo-

rary verification and synthesis tools. For example, a design

may be optimized using information about gates which are

redundant in the reachable states; behavioral characteristics

such as oscillators and transients may be identified and

exploited for specific abstraction strategies; and properties may

be solved using reachability information.

Unfortunately, exact reachability analysis is often compu-

tationally impractical, even for moderately sized designs. Ap-

proximate reachability analysis is thus often necessary, trading

the precision of reachable state characterization for computa-

tional efficiency. Even when precise reachability analysis is

ultimately necessary, it is often computationally beneficial to

first apply faster approximate techniques to reduce the design

before exact reachability analysis is performed.

One may perform approximate reachability analysis with

ternary simulation [1] by letting signals take values in

{0, 1, X} as follows. Primary inputs are assigned X , and

registers are assigned their initial values. Ternary simulation

is then used to derive the next state. Computation proceeds in

this way until a repetition of state values has been witnessed,

indicating that an over-approximate reachability analysis has

converged.

Reachability analysis with ternary simulation requires little

runtime, often executing in seconds even on the largest in-

dustrial designs. Its reachability approximation is coarse but

is precise enough to identify common artifacts in industrial

verification and synthesis frameworks: inputs and registers that

are constant due to testbench assumptions, simple internal

equivalences, oscillating clocks, and transient signals. For

this reason, ternary simulation-based reachability analysis is

implemented in many logic synthesis and verification systems.

One key weakness of reachability analysis with ternary

simulation is its inability to precisely characterize designs with

complex initial values. Any registers with non-deterministic

initial values are assigned X in the first iteration of reachability

analysis, and because of the conservative nature of ternary

simulation this X propagates to all fanout logic. For designs

with non-deterministic initialization, this often precludes any

useful reachable state characterization with this analysis.

A secondary weakness of reachability analysis with ternary

simulation is that it may require an infeasible number of sim-

ulation steps to converge; designs containing large counters or

“linear feedback shift register” type logic are often particularly

problematic. This lack of convergence precludes any reachable

state approximation.

In this paper we improve the precision and conclusiveness

of reachability analysis with ternary simulation in two ways:

1) We utilize a symbolic representation and use this to

represent initial states. We define reachability analysis

over both ternary simulation and symbolic simulation.

In practice, this adds little to the total runtime of

approximate reachability and it improves the resolu-

tion substantially, particularly for industrial Sequential

Equivalence Checking (SEC) problems.

2) We introduce a saturation technique to enable conver-

gence without loss of useful reachable state characteri-

zation.

3) We additionally introduce extensions to ternary

simulation-based application domains of redundancy

removal, phase abstraction, and transient elimination

to generalize them accordingly given our symbolic

techniques.

Section II describes the related work in this field. In

Section III we provide preliminaries, including an overview

of reachability approximation using ternary simulation. Sec-

tion IV describes symbolic simulation, and Sections V and VI

incorporate symbolic simulation into approximate reachability.

Section VII introduces our saturation technique which helps

convergence in cases. Finally, experimental results are given

in Section VIII.

II. RELATED WORK

A significant amount of work exists in the field of approx-

imate reachability characterization. Due to space limitations,

we focus only upon those which rely upon ternary simulation

vs. more expensive and precise techniques.

The use of reachable state characterization via ternary

simulation and its applications within general model checking

was proposed in [1]. They note that this technique can identify

a useful subset of redundant gates, whose simplification greatly

enhances the scalability of subsequent verification. They also

use this analysis for identifying oscillating subcircuits which

may be leveraged for phase abstraction.

The work of [2] proposed another use of this analysis: to

identify transient signals which settle to a reducible (e.g., con-

stant) behavior after several timesteps. The verification process

may then be decomposed, leveraging bounded techniques to

analyze the first several timesteps before the transients settle,

then time-shifting the design and simplifying the transients for

unbounded verification thereafter. This work is similar in spirit

to the primary application domain considered in this paper: to

enable the reduction of designs with intricate initial values.

However, these are complementary techniques and we have

found them both useful in conjunction.

Symbolic Trajectory Evaluation (STE) [3] is a related

simulation technique. In STE, ternary simulation is combined

with symbolic simulation, by encoding ternary value functions

using a pair of BDDs or other dual-rail based expressions.

Users specify assertions of the form A ⇒ C, where A is

the antecedent that specifies the values with which to drive

the simulation, and C is the consequent that specifies the

expected results of the simulation. The advantage of STE

over scalar simulation is that it can cover large input spaces

efficiently and precisely. The complexity of STE is dependent

on the number of symbolic variables in the the antecedent,

not necessarily the size of the design, so it can scale to large

designs such as complex datapaths and memory arrays. While

using related analysis methods, our approaches are distinct in

numerous ways. First, our application domain is approximate

reachability analysis to facilitate model checking, wherein we

do not have an antecedent to dictate where symbols should be

introduced nor a consequent against which we may attempt to

refine lossy X values. Our analysis is intended to efficiently

facilitate subsequent verification algorithms, and without the

heuristics described in this paper there may be blowups in

runtime or memory if too many symbols are introduced, vs.

too coarse of reachability approximation if inadequate symbols

are introduced.

Our form of symbolic simulation uses the same value

domain as quasi-symbolic simulation [4]. In quasi-symbolic

simulation, value functions are restricted to the set

{0, 1, X,XA,¬XA, XB ,¬XB , . . .}, where {XA, XB , . . .} are

symbolic variables corresponding to netlist inputs. Instead of

supporting arbitrary symbolic functions, quasi-symbolic sim-

ulation employs case-splitting to eliminate symbolic variables

and remove conservatism (i.e., propagation of X to a checked

output). In contrast, our technique does not seek a complete

symbolic simulation of the netlist, and does not employ any

case-splitting. Rather, we introduce symbolic variables selec-

tively to enhance approximate reachability analysis. Also, our

technique may introduce symbolic variables at gates internal to

the netlist in addition to the netlist inputs, which often tightens

the approximation.

Alg. 1 . Approximate reachability with ternary simulation

1: function approxReachability(design)
2: for all (primary inputs I in design) do I = X

3: for all (registers R in design) do R = X

4: ternarySimulate(design)
5: state = vector of register initial state valuations
6: seen = { state }
7: for time = 0; ; ++time do

8: Assign registers their corresponding values in state

9: ternarySimulate(design)
10: state = vector of register next state valuations
11: if (state ⊆ seen) then seen over-approximates the reachable states
12: seen = seen

⋃
{ state }

13: end for

14: end function

III. PRELIMINARIES

We consider gate-level sequential logic designs, and for

convenience we assume the netlist is expressed as an And-

Inverter Graph (AIG). That is, every gate in the design is either

a constant, an AND gate, inverter, or primary input. We also

consider registers which hold the state of the design. Registers

have an associated next state function that defines their value

in the next time step.

In our model, registers also have an explicit initial value

function. For registers with a constant initial value, this

function maps to the corresponding constant gate. For more

complex initial values, this function maps to a a combinational

subcircuit which is used to encode a set of initial states. Such

complex initial values arise in many contexts. For example,

they may be necessary in SEC applications to represent an

arbitrary power-on state. Even for designs with simpler initial

values, a more complex initial state may arise through a

verification-enhancing transformation such as retiming [5] or

temporal decomposition [2]. While the commonly used netlist

format AIGER assumes that every initial value is constant-

0 [6], more complex initial values are supported through

synthesizing a multiplexor at the output of every latch which

may drive the desired initial value at time 0.

Ternary simulation is a way to approximate netlist behavior.

Inputs are assigned values in {0, 1, X}, and simple rules

govern how these values propagate through the logic. We use

ternary simulation on AIGs, and in this context and(A,B) is

0 if either A or B are 0. and(A,B) is X if either A or B are

X . Otherwise, when A and B are both 1, and(A,B) is 1. We

define inversion in the normal way, though not(X) = X .

Ternary simulation can be employed to perform approximate

reachability analysis, as shown in Algorithm 1. Primary inputs

and registers are initially assigned X values, and ternary

simulation is used to derive the initial state values. A set of

seen states is maintained, initially equal to just this ternary

initial state. The algorithm then iterates, (1) assigning the

current state values to registers while retaining the X values

on primary inputs, (2) using ternary simulation to derive the

next state values, and (3) using the set of seen states to detect

convergence.

Convergence is detected through checking if the next state

cube is contained in the set of seen states. There are several

(3) Constant

(1) Oscillator

(2) Transient

Time 0:

000000

Time 1:

1X0000

Time 2:

00XX00

Time 3:

10XXX0

Time 4:

00XX00

=

reachability over-approximation

000000 1X0000 00XX00 10XXX0
(1)(2) (3)

Fig. 1. Ternary simulation example for a design with six registers

ways this could be implemented. For example, BDDs [7] can

be used to represent the set of seen state cubes, and the

containment check can be implemented using BDD operations.

In practice, the performance of such approach is prohibitive.

Instead, we simply let the seen states be a list of ternary

states, and instead of state ⊆ seen we test if there exists

an s in the seen list such that state = s. Such a check

can be implemented efficiently using a hash table, and this

approximation to containment usually does not affect the

convergence of Algorithm 1.

An example of reachability analysis with ternary simulation

is shown in Figure 1. Five iterations are performed before it

is determined that the time 4 state is equal to the time 2 state.

This results in the approximate reachable state graph shown

in the bottom half of the figure.

Ternary simulation-based reachability analysis has many

applications. We implement this in a library which is used

to characterize the netlist in various ways:

Oscillators: In Figure 1, register (1) is an oscillator, meaning

that it periodically oscillates between 0 and 1 valuations.

Designs that have oscillators may be simplified using

phase abstraction [1], enabling significant verification

benefits such as yielding a smaller netlist, enabling greater

reduction potential through other transformations, and

reducing diameter.

Transients: In Figure 1, register (2) is transient, meaning that

after the initial time steps its value settles and remains

constant forever after. Verification of designs that have

transients can be simplified [2] through time-shifting their

behavior, enabling reduction of the transient signals.

Redundancies: Gates that act as constants, or pairs of gates

that are equivalent/antivalent in every reachable state,

may be directly merged. In Figure 1, register (3) is con-

stant, and in our implementation we replace this register

with a constant-zero gate. Note that such a reduction

may generally enable other reductions, such as constant

propagation and cone-of-influence reduction.

IV. SYMBOLIC SIMULATION

In this paper we strengthen reachability approximation by

considering symbolic simulation as well as ternary simulation,

similar to quasi-symbolic simulation [4]. In this section we

define our notion of symbols and how they can be handled in

simulation.

Symbols, written in the form XA for some subscript A,

represent concrete values that are not being precisely modeled.

In contrast, the ternary X represents a completely unknown

symbol. If two signals evaluate to X we conservatively con-

clude that the signals may not be equal, but if the signals both

evaluate to XA they are treated as equivalent.

We can expand ternary simulation to include a set of

symbols {XA, XB , . . .} by letting signals take values in

{0, 1, X,XA,¬XA, XB ,¬XB , . . .}. We retain the traditional

ternary simulation evaluation from Section III for conjunction,

with rules listed in order of precedence:

0 Identity: If a ≡ 0 then a · b = 0. Likewise for b ≡ 0.

1 Identity: If a ≡ 1 then a · b = b. Likewise for b ≡ 1.

X Identity: If a ≡ X then a · b = X . Likewise for b ≡ X .

If none of the above rules apply then both signals are

symbolic: a = XA, b = XB . We apply the following symbolic

rules:

Idempotence: If XA ≡ XB then XA ·XB = XA.

If XA ≡ ¬XB then XA ·XB = 0.

Peephole Optimization: If XB ≡ XA ·XZ then

XA ·XB = XB .

Hashing: If XA · XB is in the hash table, return the

previously-stored result.

New Symbol: Create a symbol XC to represent XA ·XB =
XC . Store XC in the hash table.

First idempotence is used to handle cases where a symbolic

value is conjoined with itself. Next, peephole optimization

is used to find cases of nested conjunctions with shared

arguments. A hash table is used to determine if the result

of XA ·XB was previously computed. If all other checks fail

then we create a new symbol XC to represent the result of a

conjunction.

V. INCORPORATING SYMBOLS INTO REACHABILITY

In this section we discuss how to incorporate symbols into

approximate reachability analysis. Symbolic simulation offers

greater resolution than ternary simulation, but symbols must be

applied judiciously. If every signal was handled symbolically

then Algorithm 1 would perform exact reachability analysis –

though likely with an explosion in the number of symbols

represented, leading to unacceptable runtime or memory con-

sumption.

We are motivated by designs that have complex initial

values, and we would like to use symbolic simulation to

represent these initial values. In our model, the initial values

are derived from combinational functions over the primary

inputs. For this reason, we assign the inputs symbolic values

and trust that these symbols will propagate to the initial values,

allowing us to represent these initial values more precisely.

One risk is that the number of symbols can explode.

Specifically, new symbols are introduced for each primary

input and with each application of the New Symbol rule of

Section IV. If the current state of the design contains one

new symbol for each step of approximate reachability, then

Algorithm 1 can never converge. We limit the number of

Alg. 2 . Approximate reachability with ternary and symbolic simulation

1: function approxReachability symbols(design)
2: for all (primary inputs I in design) do I = new symbol
3: for all (registers R in design) do R = X

4: symbolicTernarySimulate(design)
5: state = vector of register initial state valuations
6: seen = { state }
7: for time = 0; ; ++time do

8: Assign registers their corresponding values in state

9: if (time = 0) then

10: symbolicTernarySimulate(design)
11: else

12: for all (primary inputs I in design) do I = X

13: symbolicTernarySimulate noNewSymbols(design)
14: end if

15: state = vector of register next state valuations
16: if (state ⊆ seen) then seen over-approximates the reachable states
17: seen = seen

⋃
{ state }

18: end for

19: end function

symbols by only handling primary inputs symbolically at time

0. In addition, we only allow the New Symbol rule to apply in

time 0. At all other times, we consider XA ·XB = X .

Algorithm 2 illustrates our framework for approximate

reachability using ternary and symbolic reachability. We create

new symbols to represent primary inputs at time-0, and at all

other times we assign primary inputs the value X . Algorithm 2

utilizes two simulation routines, symbolicTernarySimulate and

symbolicTernarySimulate noNewSymbols. The function sym-

bolicTernarySimulate is used only at time-0 and simulates the

design as described in Section IV. We have found it effective in

our desired application domain to not introduce any additional

symbols after time 0, and this is accomplished by using

the function symbolicTernarySimulate noNewSymbols which

implements the methods of Section IV but treats XA ·XB =
X when the value of this conjunction cannot be otherwise

determined through idempotence, peephole optimization, or

hash lookup.

Algorithm 2 introduces new symbols only at time-0. For all

time > 0 no additional symbols are created, but the symbols

created at time-0 can continue to propagate through the logic

at later times.

By restricting the application of symbolic simulation, we de-

rive an approximate reachability algorithm that retains most of

the performance of Algorithm 1 but is significantly more pre-

cise for numerous classes of important verification problems.

This increased precision allows the efficient characterization

of reachability information – constant or equivalence signals,

oscillators, and transients – that otherwise are undetectable.

VI. GENERALIZED SIMPLIFICATION USING SYMBOLS

Algorithm 2 returns an over-approximation to the set of

reachable states. Our implementation uses this information

in several application domains, some of which become more

complex when the reachability information contains symbols.

In particular, the simplification of symbolic constant gates,

oscillating registers, and transients is affected.

Symbolic constant gates are those that always evaluate to

the same symbolic value in every reachable state. Such gates

NSInit

latched(X)

Inputs

Time-0 logic

represented by X

A

A

Fig. 2. A subcircuit that represents the symbol XA

may be simplified by replacing them with a subcircuit that

represents the given symbol.

When oscillating registers are identified, we use phase

abstraction to simplify the netlist. Phase abstraction will unfold

the transition relation modulo a detected periodicity, and

simplify the netlist by injecting constant values in place of

the corresponding oscillator. However, when the reachability

information contains symbols, the detected oscillators may

assume symbolic periodic behavior. For example, we have ob-

served period-two oscillators with signature 0, XA, 0, XA,

To simplify such symbolic oscillators, we must replace a

register in the unfolded transition relation with a reference

to a subcircuit that represents the given symbol.

When transients are identified, temporal decomposition is

able to simplify the design by time shifting and replacing each

transient gate with the corresponding redundant value to which

it settled. When using symbols, in cases we find transients

that settle to a symbolic values. Temporal decomposition can

simplify these by replacing each transient with a reference to

a subcircuit that represents the given symbol.

Recall that in Section V we use symbols to represent the

value of inputs, or combinational functions thereof, at time

0. We may obtain a subcircuit that represents such a symbol

by simply latching the time-0 value; we fabricate a register

whose initial value is that corresponding signal, and whose

next-state function holds its current value. This corresponding

logic may be used in the above three application domains to

simplify the netlist, extending our ability to simplify a netlist

using the enhanced reachable-state characterization enabled

through using symbols. This logic depicted in Figure 2 shows

a subcircuit that represents the symbol XA.

Simplifying logic using this procedure is often beneficial

to reduce overall netlist size and verification complexity.

However, this procedure does entail synthesizing registers,

which may be undesirable in cases. Our implementation

uses several heuristics to minimize this impact: (1) when

multiple two subcircuits latched(XA) and latched(XB) are

synthesized, we try to share registers across these two symbol

representations, and (2) we disallow simplifications in cases

where the total number of registers would increase.

VII. ACCELERATING CONVERGENCE WITH SATURATION

Approximate reachability, shown in Algorithm 1, is an

iterative procedure which successively explores sets of states

until it detects a fixedpoint. For deep and complex industrial

designs, the number of iterations required for convergence

may be prohibitive. Although we improve on the precision

 0.1

 1

 10

 100

 0.1 1 10 100

S
y
m

b
o
lic

 T
e
rn

a
ry

 S
im

u
la

ti
o
n
 R

u
n
ti
m

e
 (

s
e
c
)

Ternary Simulation Runtime (sec)

0.1 %

1 %

10 %

100 %

0.1 % 1 % 10 % 100 %

S
y
m

b
o

lic
 T

e
rn

a
ry

 S
im

u
la

ti
o

n
 G

a
te

 R
e

d
u

c
ti
o

n
s
 (

%
)

Ternary Simulation Gate Reductions (%)

Fig. 3. Approximate reachability runtime on the IBM designs. Left: runtime, Right: gate reductions

Alg. 3 . Approximate reachability with X-saturation

1: function approxReachability symbols saturation(design, cycleLimit)
2: setup approximate reachability as in Algorithm 2, lines 2-6
3: for time = 0; ; ++time do

4: Assign registers their corresponding values in state

5: if (time ≥ cycleLimit) then

6: for all r ∈ {registers not oscillating or constant} do r = X

7: end if

8: do one iteration as in Algorithm 2, lines 9-17
9: end for

10: end function

of approximate reachability by using symbols in Algorithm 2,

this convergence problem remains and in cases worsens due

to the extra precision. In this section we detail our solution

to accelerate convergence when a pre-determined resource

threshold is exceeded.

The approximate reachability loop does not converge if new

register valuations are encountered, and we can accelerate

convergence by limiting the register valuations. Specifically,

it is always conservative to further over-approximate the com-

putation by overwriting register valuations with X . We refer

to this process as X-saturation. If all registers are assigned X

then the reachability approximation process will immediately

converge; however, it would contain no useful information.

The difficulty with effective X-saturation is thus in deter-

mining which subset of registers to X-saturate, and when to

perform this saturation, balancing precision vs. runtime.

As in Section VI, approximate reachability may be used to

detect oscillating registers and constants which may be used

for phase abstraction and redundancy removal. Furthermore,

we have found that such gates are high-fanout registers that

influence much of the netlist behavior. We are motivated to

always preserve constants and oscillating registers by not

X-saturating them because (1) such saturation would limit

results that are useful for phase abstraction and redundancy

removal, and (2) X values injected on such gates would

quickly propagate through the netlist and dramatically weaken

the resulting reachability approximation.

Algorithm 3 is an extension of Algorithm 2 which includes

X-saturation. It takes one additional argument cycleLimit

which is the number of iterations that are allowed before

registers are X-saturated. After cycleLimit is exceeded, non-

oscillating and non-constant registers are forced to have the

value X . This further approximation causes the algorithm to

converge quickly, with the total number of cycles usually being

only slightly larger than cycleLimit in practice.

Algorithm 3 requires constant and oscillating registers to

be detected. In our implementation, we efficiently identify

oscillators using a sliding window technique which is able

to identify oscillators with period ≤ 128. In addition, we also

detect delayed oscillators which may assume variable behavior

during the design’s initialization phase but thereafter act as

oscillators. Both true- and delayed-oscillators influence large

sub-circuits in the netlist, and to preserve a useful reachability

approximation it is vital to not X-saturate these registers.

VIII. EXPERIMENTAL RESULTS

All techniques described in this paper have been imple-

mented in the IBM internal verification tool SixthSense [8].

In these experiments we utilize two benchmark sets:

IBM SEC: We use a suite of 1122 challenging industrial

SEC problems. These designs come primarily from high

performance microprocessors, and the largest such design

has 5.3M AIG AND gates and 330k registers. In our

framework, pairs of registers are often initialized with the

same non-deterministic random value in order to check

equivalence modulo any initialization sequence.

HWMCC’10 SEC: To enable evaluation against publicly

available benchmarks, we evaluated our techniques

against a subset of benchmarks from the Hardware Model

Checking Competition (HWMCC) [9]. However, none of

these benchmarks directly exhibits the complexities often

faced in industrial SEC benchmarks. We thus emulated

the industrial challenges in these problems as follows:

(1) We simulated each design for 1000 cycles starting

from the initial state, and inferred register equivalences

from the simulation data.

Ternary Simulation Symbolic Ternary Simulation
Benchmark Reg. Equivalences Gates Time Iterations Gates Reduced Time Iterations Gates Reduced

139464p22 sec 1 20768 0.0 6 2 0.0 6 2
139464p23 sec 1 20800 0.0 6 2 0.0 6 2
139464p24 sec 1 20832 0.0 6 2 0.0 6 2
bob1u05cu sec 17 51650 0.0 37 29627 0.0 37 29813
bobmitersynbm sec 1507 47416 0.0 7 0 0.0 8 4385
bobsmmem sec 1068 42351 0.0 7 0 0.0 12 2884
mentorbm1and sec 28 46286 0.1 37 4279 0.1 37 7190
mentorbm1p02 sec 19 51450 0.0 37 8521 0.0 37 10662
mentorbm1p03 sec 19 51447 0.1 37 8525 0.0 37 10664
mentorbm1p04 sec 21 51444 0.1 37 8442 0.1 37 10599
mentorbm1p05 sec 21 51351 0.1 37 8060 0.1 37 10279
mentorbm1p07 sec 28 46478 0.1 37 4921 0.0 37 7724
mentorbm1p08 sec 19 51435 0.1 37 8511 0.1 37 10658
mentorbm1p09 sec 19 51450 0.1 37 8525 0.1 37 10666
mentorbm1p10 sec 19 51447 0.0 37 8525 0.0 37 10664
mentorbm1p12 sec 19 51429 0.1 37 8462 0.1 37 10601
pj2006 sec 1 37411 0.0 6 1826 0.0 6 1826
pj2013 sec 1 37518 0.0 7 2134 0.1 7 2134
pj2015 sec 1 41424 0.0 7 2076 0.0 7 2076
pj2017 sec 1 41580 0.0 7 1315 0.0 7 1315

Average Performance 1.00 1.18

Fig. 4. Detailed comparison of approximate reachability-based design simplifications on the HWMCC’10 SEC benchmarks

(2) For each register equivalence class, we constructed a

new primary input to model the non-deterministic initial

value for that class. For all registers in this class, we

replaced the initial value with the new primary input.

We have made the modified HWMCC benchmarks publicly

available [10].

In our experiments we simplify each design by applying

approximate reachability in order to find constant and equiv-

alent signals. This emulates the default flow in SixthSense

where approximate reachability is the first algorithm applied

to a design under verification, due to its speed, scalability, and

capability to significantly simplify the design for subsequent

more-precise analysis. We repeat this flow twice: once using

only ternary simulation, and again using techniques presented

in this paper. All experiments were run on a cluster of 4 GB,

2 GHz POWER5 workstations.

A. IBM SEC Results

Figure 3 examines the performance of reachability analy-

sis with symbolic and ternary simulation on the IBM SEC

benchmarks.

The first plot in Figure 3 shows the runtime of approximate

reachability. Introducing symbolic simulation almost always

slows approximate reachability, though this slowdown is negli-

gible with most runs completing in less than 10 seconds. Given

the large sizes of these industrial benchmarks (up to 5.3M

ANDs), we are satisfied with this minimal runtime overhead.

The second plot in Figure 3 shows reductions enabled using

the corresponding approximate reachability information. We

show the number of gates eliminated during design simplifi-

cation as a percentage to the original number of gates. Most

designs see greater reductions with symbolic simulation. In

addition, many designs were not simplified at all with ternary

simulation but now are simplified with ternary and symbolic

simulation. In some cases, symbolic simulation adds sufficient

resolution to prove the properties outright.

B. HWMCC’10 SEC Results

Figure 4 examines the performance of reachability analysis

with ternary and symbolic simulation on the HWMCC’10 SEC

benchmarks. Recall that these benchmarks were created from

the HWMCC’10 benchmarks by finding suspected equivalent

registers and transforming their corresponding initial states.

Column 2 shows the number of equivalent register pairs that

were found during that process.

In Figure 4 we can see that introducing symbolic simulation

did not affect the runtime of approximate reachability in any

measurable way.

Next examine the number of iterations. This is the number

of time steps processed by approximate reachability before

convergence. We expect this number to increase when symbols

are utilized due to the more precise state representation. How-

ever, using our methods of minimally-introducing symbols,

the additional number of iterations imposed is minimal, and

usually enabling symbolic simulation does not increase the

number of iterations at all.

Figure 4 also shows the number of gates that were reduced

through approximate reachability-based design simplification.

Enabling symbolic simulation allows for more gate reductions,

18% on average. In cases, approximate reachability is unable

to simplify the design without the additional resolution pro-

vided by symbolic simulation.

C. Saturation Results

Figure 5 examines X-saturation. On the combined set of

1200 benchmarks, 21 benchmarks (1.75%) failed to converge

within 512 iterations. All of these benchmarks are IBM

designs (the HWMCC designs converged quickly), and are

labeled ibm1 through ibm21 in the table.

As a baseline, we consider Algorithm 2 which is limited to

1200 seconds and 1M iterations. Eight of our designs hit one

of these limits, and approximate reachability stopped abruptly

with no useful reachability information with which to reduce

Baseline With Saturation Heuristics
Benchmark Gates Time Iterations Gates Reduced Time Iterations Gates Reduced

ibm1 15853 1.1 4120 1052 0.2 519 900
ibm2 2507 5.9 49153 937 0.1 569 348
ibm3 25805 725.0 1000000 - 0.6 631 1563
ibm4 30058 763.1 1000000 - 0.4 521 2102
ibm5 11686 291.6 1000000 - 0.1 521 281
ibm6 13760 68.5 131101 2787 0.2 516 2438
ibm7 35377 180.8 131299 3148 0.7 519 3056
ibm8 30056 0.5 551 2616 0.5 523 2416
ibm9 916576 42.1 1060 66443 21.8 540 63849
ibm10 11802 55.0 196612 10 0.2 522 10
ibm11 2697713 1200 6320 - 105.6 561 1620533
ibm12 626060 154.6 32920 63693 2.5 532 60402
ibm13 11686 295.9 1000000 - 0.2 521 281
ibm14 1698160 35.0 525 1367988 33.7 521 1366566
ibm15 760354 18.8 525 601602 19.0 521 601598
ibm16 30056 0.5 551 2616 0.5 523 2416
ibm17 385244 3.0 523 219 3.4 523 186
ibm18 395964 10.9 523 7375 10.1 523 7372
ibm19 242756 1200 163470 - 4.0 516 0
ibm20 411849 1200 93004 - 6.7 518 17731
ibm21 20229 1200 490270 - 1.2 544 4456

Average Performance 1.00 1.00 0.33 0.94
Cummulative Performance 1.00 1.00 0.03 1.77

Fig. 5. X-Saturation on the IBM benchmarks

the size of the design. The remaining 13 designs converged

and the resulting reachability approximation was effective at

reducing the design size, though the runtimes were very long.

The final columns in Figure 5 show Algorithm 3 with

cycleLimit set to 512. That is, a subset of the registers are X-

saturated starting at iteration 512. In most cases, this allows

the algorithm to converge with just a few extra iterations. On

the 13 designs that previously converged with a high number

of iterations the runtime is reduced by 67%. X-saturation does

compromise the resolution of the reachability approximation

slightly, though on this subset of designs we preserve 94% of

the reductions, on average.

It is most interesting to examine X-saturation on the 8 de-

signs that previously hit either the 1200 second limit or the 1M

iteration limit. With X-saturation, approximate reachability

converges on all of these designs, and the algorithm is very

fast. In all cases, the reachability approximation is suitable

for design reductions, and our best example is ibm11 where

approximate reachability is able to reduce the design size by

60%. Without X-saturation we cannot realize such reductions.

Cummulatively we are able to reduce the runtime by

97% while increasing the reductions by 77%, considering

the designs that previously had no reductions because of

computational resource limits.

IX. CONCLUSION

In this paper we enhance techniques for approximate reach-

ability analysis using ternary simulation in two ways:

• We use ternary simulation enhanced with symbols to

allow greater precision in modeling registers that have

complex initial values. The more precise reachability

approximation enables considerably greater reduction op-

portunity, especially on industrial SEC models.

• We introduce X-saturation as a way to force approximate

reachability into convergence on complex industrial de-

signs. In cases of slow convergence, this helps to dramati-

cally reduce the runtime. In cases of no convergence, this

helps to provide a useful reachable state approximation

where previously we had none.

We additionally introduce extensions to ternary simulation-

based application domains of redundancy removal, phase ab-

straction, and transient elimination to generalize them accord-

ingly given our symbolic techniques. All of these techniques

are implemented in IBM internal verification tool SixthSense,

and we have found them to be indispensable on large and

complex industrial SEC problems.

REFERENCES

[1] P. Bjesse and J. Kukula, “Automatic generalized phase abstraction for
formal verification,” in ICCAD, Nov. 2005.

[2] M. Case, H. Mony, J. Baumgartner, and R. Kanzelman, “Enhanced
verification through temporal decomposition,” in FMCAD, Nov. 2009.

[3] C. johan H. Seger and R. E. Bryant, “Formal verification by symbolic
evaluation of partially-ordered trajectories,” in Formal Methods in Sys-

tem Design, 1993.
[4] C. Wilson and D. L. Dill, “Reliable verification using symbolic simula-

tion with scalar values,” in DAC, 2000.
[5] C. Leiserson and J. Saxe, “Retiming synchronous circuitry,” Algorith-

mica, vol. 6, 1991.
[6] A. Biere, “The AIGER And-Inverter Graph (AIG) format, version

20070427.” http://fmv.jku.at/aiger/FORMAT-20070427.pdf.
[7] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-

tion,” IEEE Transactions on Computers, vol. C-35, August 1986.
[8] H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman, and A. Kuehlmann,

“Scalable automated verification via expert-system guided transforma-
tions,” in FMCAD, Nov. 2004.

[9] A. Biere and K. L. Claessen, “Hardware Model Checking Competition
(HWMCC) 2010 benchmarks.” http://fmv.jku.at/hwmcc10.

[10] M. L. Case, “Sequential equivalence checking variants of the
Hardware Model Checking Competition 2010 benchmarks.”
http://case-home.com/publications/hwmcc10 sec.tgz.

