
A Theory of Abstraction for Arrays

Steven M. German

IBM T.J. Watson Research Center

Abstract— We develop a theory for reasoning about temporal
safety properties of systems with arrays. The theory leads to
an automatic algorithm for constructing sound and complete
abstractions. Our approach has advantages over previous ap-
proaches for important classes of digital designs, including
designs with clock gating. We define a function that gives, in a
certain sense, the size of the smallest sound and complete array
abstraction of a system. This function is difficult to compute.
However, we present a static analysis algorithm that efficiently
computes a safe size of a sound and complete abstraction by
overapproximating the minimum size. Our algorithm can often
construct abstractions with small arrays for complex industrial
designs.

I. INTRODUCTION

Because of their large state spaces, arrays create a special

difficulty for formal verification of hardware designs. In this

paper we develop a theory that gives conditions under which a

system with large arrays can be replaced by a system having

smaller arrays, such that safety properies hold in the larger

system iff they hold in the smaller one. The size of the arrays in

the smaller system is determined by an efficient static analysis

algorithm. An advantage of our approach is that it transforms

a sequential system into another sequential system, allowing

any verification method for sequential systems to be used after

running our algorithm.

Previous researchers have developed several methods for

reasoning about hardware systems with arrays, especially in

the context of model checking. One general approach is to

verify systems by considering behavior over a small, bounded

number of time steps. Over a small number of time steps, a

system performs only a small number of array read and write

operations, and accesses only a small number array elements.

Thus, bounded time modeling leads naturally to abstractions

for arrays [1]–[4]. Behavior over a bounded number of time

steps can be used to prove bounded correctness properties [5],

or to prove unbounded properties by induction [6].

Abstracting arrays over bounded time intervals has the

disadvantage that as the length of the time interval increases,

the size of the array abstraction must be increased as well.

For example, when proving properties by induction based on

k-step unwindings, it is necessary to increase the length of the

bounded interval until the property becomes inductive, which

may make it necessary to consider large arrays [7].

A second general approach is to transform a sequential

system with arrays into another sequential system with smaller

arrays. Bjesse [7] developed an approach in which a sequen-

tial model with small arrays is constructed by abstraction

refinement. One difference between our approach and [7] is

that we use a static analysis algorithm instead of abstraction

refinement. In our approach, the static analysis algorithm

produces a single abstract model that is sound and complete

for safety properties. Thus our approach eliminates the need

for iterative abstraction refinement.

Another advantage of our approach is that we can build

sound and complete abstractions for designs where a value

read from an array can take an unbounded length of time

before affecting an output signal. In [7], every abstract model

of an array is characterized by a set of clock-cycle delays.

Specifically, a small model of an array represents the results

of reading the array at a finite set of fixed times prior to the

clock cycle at which the value read from the array propagates

to the system output. However, in many systems, the results of

reading an array are stored for an unbounded amount of time in

hardware registers or other arrays before being used to produce

a system output. Hardware clock-gating [8] is one important

design technique that leads to unbounded delays between the

time an array is read and the time the array’s value affects

a system output. Our approach builds abstract models with

unbounded delays, while the approach in [7] cannot reduce

such models.

The outline of this paper is as follows. In Section II

we define the mathematical framework for our theory. We

define an operational semantics for executing systems that

is appropriate when arrays have been replaced with smaller

abstract arrays. In Section III we prove theorems showing the

existence of sound and complete abstractions of systems with

arrays. In Section IV we present an algorithm for analyzing a

system to determine the size of a sound and complete array

abstraction. In Section V we show how to build an abstracted

version of a system, using the sizes for arrays determined by

our theory. Section VI presents initial results of using our

algorithm on industrial examples. Due to space limitations

most proofs are omitted. A version of the paper with proofs

will be published as a technical report, and will be available

from the author and the IBM Research Division Libraries

before FMCAD 2011.

II. PRELIMINARIES

We begin by defining the syntax and semantics of a term-

level logic with arrays. In our logic, there are two kinds of

variables: signal variables, and array variables. Let Xs be the

set of signal variables and Xa be the set of array variables.

We define signal expressions and array expressions to be the

smallest sets of expressions satisfying the following defini-

tions. A variable (resp., expression) is either a signal variable

(resp., expression) or an array variable (resp., expression).

1) A signal variable is a signal expression.

2) If op is a k-ary operator symbol and e1, . . . , ek are signal

expressions, then op(e1, . . . , ek) is a signal expression.

3) If e1, e2, e3 are signal expressions, then mux (e1, e2, e3)
is a signal expression.

4) An array variable is an array expression.

5) If a is an array expression and e is a signal expression,

then a[e] is a signal expression.

6) If a is an array expression and e1, e2 are signal expres-

sions, then write(a, e1, e2) is an array expression.

For the semantics, we assume the existence of a set V of at

least two signal values. We assume that V is finite, but much

of the theory is true even if V is infinite. Let 0, 1 be distinct

signal values. We assume that for each domain value i ∈ V ,

there is a constant symbol ci such that ci evaluates to i. For
k ≥ 0, a k-ary operator op is a symbol whose interpretation

is a function OP : V k → V .

An array will be abstracted by replacing it with an array

having a smaller domain. We will need to give meaning to

array access expressions a[i], where the value of i is not in the

domain of a. For this purpose, we introduce a bottom value

⊥ 6∈ V . Let V + = V ∪ {⊥}. We will define a semantics

that propagates the bottom value onward, starting from an

array access that is outside the domain of the array. In the

case of mux expressions, an expression will have a value in

V provided the first argument has a value in {0, 1} and the

selected argument of the mux has a value in V .

In the semantics of our logic, a signal variable is a name

that can be assigned signal values, and an array variable is a

name that can be assigned array values. An array value is a

function in V → V +. We explicitly allow array values to be

partial functions whose domains are not equal to the entire set

of signal values V . We will use array values that are partial

functions on V to reason about systems containing an array

without representing all of the array’s elements. An array value

v is said to be pure if ∀x ∈ dom(v) : v(x) ∈ V .

A state assigns values to variables. A state assigns a signal

value to each signal variable, and assigns a pure array value

to each array variable. Note that states only contain the values

in V , not the bottom value. In sequential systems, which will

be defined shortly, we will use states only to represent the

initial values of state variables and the values of input signals.

The reason that states do not contain values with ⊥ is that

these values do not represent initial states or input values; the

bottom value is only produced during evaluation of certain

expressions.

The domain of an array expression a in a state σ, D(a, σ),
is a set of index values for the array expression. For an

array variable a, D(a, σ) is defined as dom(σ(a)), the do-

main of the function value assigned to a. Array write op-

erations do not change the domain of an array. The do-

main of write(a1, e1, e2) in state σ is inductively defined

by D(write(a1, e1, e2), σ) = D(a1, σ). We will need the

notion of the root of an array expression. For an array

variable a, root(a) = a. The root of a write expression is

root(write(b, e1, e2)) = root(b).

We define the value of an expression exp with respect

to a state σ, written σ[[exp]], as follows. In the following

definition, e, e1, e2, . . . , are signal expressions and a is an

array expression.

1) σ[[v]] = σ(v), where v is a signal variable.

2) σ[[op(e1, . . . , en)]] =














OP(σ[[e1]], . . . , σ[[en]]), if σ[[ei]] 6= ⊥, for i = 1, . . . , n,
where OP is the interpretation of the operator

symbol op
⊥ if for some i, σ[[ei]] = ⊥

3) σ[[mux (e1, e2, e3)]] =







σ[[e2]] if σ[[e1]] = 0
σ[[e3]] if σ[[e1]] = 1
⊥ if σ[[e1]] 6∈ {0, 1}

4) σ[[a[e]]] =

{

(σ[[a]])(σ[[e]]) if σ[[e]] ∈ D(a, σ)
⊥ if σ[[e]] 6∈ D(a, σ)

5) σ[[a]] = σ(a), where a is an array variable.

6) σ[[write(a, e1, e2)]] =






(σ[[a]]) [σ[[e1]]← σ[[e2]]] if σ[[e1]] ∈ D(a, σ)
σ[[a]] if σ[[e1]] ∈ V −D(a, σ)
bottom(a, σ) if σ[[e1]] = ⊥

Expressions of the form op(e1, . . . , en) can be used to

represent blocks of combinational logic containing many gates.

In the semantics, an op expression has value ⊥ whenever

any of the input signals has value ⊥. The advantage of this

semantics is that it allows us to define a circuit that computes

σ[[op(e1, . . . , en)]], without having to add signals to express

whether the output of each gate in a large block has value ⊥.
We will use such circuits in building our abstract models. The

abstract model can have fewer gates because only the inputs

and output of a large block need to consider ⊥.
In the array write expression write(a, e1, e2), e1 is the

address and e2 is the value written. There are three cases in

the semantics of array writes. The first case updates a single

element of an array when e1 has a value in the domain of the

array. In the second case, e1 has a value in V , but the value

is outside the domain of the array. In this case, the value of

the array is not changed by the write operation. Note that the

operation of writing to an array does not extend the domain of

the array. In the third case, the index e1 has the value ⊥. For
an array expression a and a state σ, we define bottom(a, σ)
to be an array value, the function that maps all elements of

D(a, σ) to ⊥. The intuition is that if we write to an address e1

that has value ⊥, then it cannot be determined which element

of the array is changed, so all elements are marked as having

value ⊥.
Electronic designs sometimes have arrays where writing

is conditional. For example, writing can be controlled by an

enable signal, with value 1 to indicate writing a new value.

Conditional writing can be modelled by write expressions such

as write(a, address,mux (enable, a[address],new value)).
This expression produces an unchanged array value when

enable = 0 and address is a value in the domain of the array,

and writes a new value when enable = 1.

A signal expression e is said to be satisfied by a state σ
if σ[[e]] = 1. We write σ |= e to denote that σ satisfies e. A
signal expression e is said to be satisfiable if there exists a

state that satisfies e, and e is said to be valid if it is satisfied

by all states.

A system M has the form (S, I,N ,O, E). S is a set of

signal and array variables forming the state variables of the

system. I is a set of input signal variables. N defines the next-

state function of the system. N is a function from the variable

names in S to expressions, such that if e is a signal variable,

then N (e) is a signal expression, and if a is an array variable,

then N (a) is an array expression. For an array variable a, we
require that root(N (a)) = a; that is, the next state expression
for an array variable a must be formed by a sequence of writes

to a. O is a set of signal variables that are the outputs of the

system, and E is a function mapping variables in O to signal

expressions. The sets S, I,O must be pairwise disjoint.

We define the executions of a system by giving an op-

erational semantics based on expansions of the next-state

functions for state variables. Given a system M and a state

variable s ∈ S, we define

s0 = s,
sk+1 = N (s)[S/Sk, I/Ik], for k = 0, 1, . . .,

where S/Sk replaces each variable sj in S with the expression

(sj)
k, and I/Ik replaces each input variable u in I with a

fresh signal variable uk. For an output variable v ∈ O, the
output value at step k depends on the state and input variables

at step k,

vk = E(v)[S/Sk, I/Ik], for k = 0, 1, . . .

For an arbitrary expression e over the variables of M, we

define ek = e[S/Sk, I/Ik,O/Ok].
The safety properties of a system are specified by its output

signals. For an output signal v of a system (S, I,N ,O, E), v
is said to be valid with respect to the system iff for all states

σ, σ |= vk, for all k ≥ 0.
Our theory does not prescribe an approach to variable

typing. Instead, we allow the set of initial states of a system

to be a parameter of the theory. It will be useful to make

two considerations about the set of initial states of a system.

First, it is conventional to assume that an array variable has

the same set of indices in any system state. We formalize this

by saying that a type T is a set of states such that for any array

variable a and σ1, σ2 ∈ T , dom(σ1(a)) = dom(σ2(a)). We

will evaluate correctness of systems over sets of initial states

that are types. As mentioned previously, the dimension of an

array does not change dynamically.

Second, because the value ⊥ has a special meaning in

our theory, care is needed when translating a design from a

hardware language into our theory. We need to make sure

that a ⊥ value cannot be generated accidentally because the

original design subscripts an array outside of the declared

domain. One way is to define the design in a language where

array subscripts can be checked statically, and then translate

a checked design into our theory. Another approach is to

translate an array read a[i] in the hardware design into an

expression mux (lower ≤ i ∧ i ≤ upper , a[i],nondet), in our

theory. Here, the value of a[i] is used if i is in the declared

domain, and otherwise a nondeterminsitic input value nondet

is used.

In our theory, we can express the notion that a design is

well-typed by introducing an assumption that the set of initial

states has the property that all the expressions generated by

the operational semantics of a system produce values in V .

We say that a state σ is safe with respect to an expression e
iff σ[[e]] ∈ V and for every subexpression e′ of e, σ[[e′]] ∈ V .

For a state to be safe is a stronger condition than just saying

the output has a value in V . We say that a type T is safe for

a system M iff for all state or output variables v of M, for

all states σ ∈ T , and for all k ≥ 0, σ is safe with respect to

vk. We define the notion of correctness for safety properties

by evaluating variables of a system in all states of a safe type.

We say that a variable v is valid in a system M and initial

state set T , written M, T |= v, iff for all states σ ∈ T , for
all k ≥ 0, σ[[vk]] = 1.

III. EXISTENCE OF ARRAY ABSTRACTIONS

In this section we show that under certain conditions, there

are small abstract models for systems with arrays. The abstract

models are sound and complete for safety properties.

Because arrays and multiplexors propagate values only from

the selected input, it is possible for an expression to have a

value in V even if some array accesses have value ⊥. To
capture the notion that some, but not all, expressions must

have values in V in order to compute the value of a larger

expression, we define the set of essential expressions of an

expression e in a state σ, written eexp(e, σ). See Figure 1.

There are four cases for write expressions: Case 1 is when

e3 is not a valid index; Case 2 is when e1 is not a valid

index; Case 3 is when e1, e2 are valid indices with different

values, so that write(b, e1, e2)[e3] = b[e3]; Case 4 is when

write(b, e1, e2)[e3] = e2. Under the assumption that all of

the essential expressions in eexp(e, σ), not including e itself,

evaluate to values in V , then σ[[e]] ∈ V . In reading the

definition of eexp(e, σ), it is important to note that e is

always an essential expression of itself. Also, the definition

of eexp applies a case-splitting rule to array read operations

with nested array writes. Because of the case-splitting rule,

eexp(e, σ) can contain expressions that are not subexpressions

of e.
Lemma 1. Let e be a signal expression and σ be a state.

Then σ[[e]] ∈ V , iff for all essential expressions f of e in σ,
σ[[f]] ∈ V . 2

The set of essential indices of an array variable a with

respect to an expression e and a state σ is the set of values

in V of signal expressions f such that b[f] is an essential

expression, where b is an array expression with root(b) = a.
Formally, we define

eindx(e, σ, a) =
{σ[[f]] | σ[[f]] ∈ D(a, σ) ∧ ∃ b : b[f] ∈ eexp(e, σ),
where b is an array expression and root(b) = a}.

As an example of essential expressions and indices, con-

sider the expression write(a, e, a[4])[5]. In a state σ where

σ[[e]] = 5, the essential expressions are: write(a, e, a[4])[5],
e, and a[4]; the essential indices of the array a are: 4 and

5. Intuitively, the value of the expression is obtained by

evaluating a[4] when the value of e = 5. In a state σ where

σ[[e]] 6= 5, the essential expressions are: write(a, e, a[4])[5],

eexp(e, σ) =
if e is a signal variable ⇒ {e}

if e is op(e1, . . . , en) ⇒ {e} ∪ eexp(e1, σ) ∪ . . . ∪ eexp(en, σ)

if e is mux (e1, e2, e3) ⇒






if σ[[e1]] 6∈ {0, 1} ⇒ {e} ∪ eexp(e1, σ)
if σ[[e1]] = 0 ⇒ {e} ∪ eexp(e1, σ) ∪ eexp(e2, σ)
if σ[[e1]] = 1 ⇒ {e} ∪ eexp(e1, σ) ∪ eexp(e3, σ)

if e is b[e1], where b is an array variable ⇒ {e} ∪ eexp(e1, σ)

if e is write(b, e1, e2)[e3] ⇒














if σ[[e3]] 6∈ D(b, σ) ⇒ {e} ∪ eexp(e3, σ)
if σ[[e3]] ∈ D(b, σ) ∧ σ[[e1]] = ⊥ ⇒ {e} ∪ eexp(e1, σ) ∪ eexp(e3, σ)
if σ[[e3]] ∈ D(b, σ) ∧ σ[[e1]] ∈ V ∧ σ[[e1]] 6= σ[[e3]] ⇒ {e} ∪ eexp(e1, σ) ∪ eexp(e3, σ) ∪ eexp(b[e3], σ)
if σ[[e3]] ∈ D(b, σ) ∧ σ[[e1]] = σ[[e3]] ⇒ {e} ∪ eexp(e1, σ) ∪ eexp(e2, σ) ∪ eexp(e3, σ)

Fig. 1. Definition of essential expressions eexp

e, and a[5]; the essential indices of a are: 5. In this case, the

value of the expression is obtained by evaluating a[5].
For states σ, σ′, we say that σ′ is a substate of σ, written

σ′ ≤ σ iff

1) For all signal variables v, σ′(v) = σ(v), and
2) For all array variables a, dom(σ′(a)) ⊆ dom(σ(a)) ∧
∀i ∈ dom(σ′(a)) : σ′(a)(i) = σ(a)(i).

The following lemma says that if an expression e evaluates

to a value in V in a state σ, then there is a substate σ′ ≤ σ, that
gives e the same value and such that each array variable is only

defined over the essential indices of the variable in σ. That is,
for all array variables a, dom(σ′(a)) = eindx(e, σ, a). This
lemma will allow us to replace arrays by smaller abstractions.

Lemma 2. Let e be a signal expression and σ be a state such

that σ[[e]] ∈ V . Then there exists a state σ′ such that σ′ ≤ σ,
for all array variables a, dom(σ′(a)) = eindx(e, σ, a), and
σ[[e]] = σ′[[e]]. 2

IV. SIZE OF ARRAY ABSTRACTIONS

We define the size of a state σ, written |σ|, to be the function
mapping each array variable a to the size of the domain of a:
for all array variables a, |σ|(a) = |dom(σ(a))|. Similarly, we

define the size of a type T to be |σ|, for any state σ ∈ T .
From Lemma 2, we see that if σ[[e]] = v, for v ∈ V , then

there is a state σ′ such that for each array variable a, the size

of array a is |eindx(e, σ, a)|, and σ′[[e]] = v. Now, suppose
U is any set of states, and we want to evaluate an expression

e over all states in U . It is sufficient to evaluate e over all

states where the size of each array a is the maximum size

needed for any state. This value is given by the function ΣU :
expressions → (Xa → N), where

ΣU (e)(a) = max
σ∈U

|eindx(e, σ, a)|.

With this definition, ΣU (e) : Xa → N is a function that

encapsulates all of the sizes of arrays needed to evaluate the

expression e. The function ΣU (e)(a) always has a defined

value when V is finite, because the value of eindx is a subset

of V . When U is the set of all states over V , we drop the

subscript and write Σ(e)(a). Σ(e)(a) gives an upper bound on

the size of arrays needed to test if an expression is satisfiable

in any state.

Proposition 1. Let σ′, σ be states such that σ′ ≤ σ. Let e be

a signal expression and let i ∈ V . Then the following three

conditions hold:

1) σ[[e]] = i ⇒ (σ′[[e]] = i ∨ σ′[[e]] = ⊥)
2) σ[[e]] = ⊥ ⇒ σ′[[e]] = ⊥
3) σ′[[e]] = i ⇒ σ[[e]] = i 2

Proposition 2. Let e be an expression, σ be a state, and a be

an array variable. Then |eindx(e, σ, a)| ≤ |dom(σ(a))|. This
is true because in the definition of eindx, each element of

eindx(e, σ, a) must be an element of dom(σ(a)). 2

Theorem 1: Small Model Theorem. If a signal expression

e is satisfiable, there is a state σ that satisfies e such that

|σ| = Σ(e).
Proof. Let σ be a state that satisfies e. By Lemma 2 there is a

state σ′ such that σ′ satisfies e, and for all a, |dom(σ′(a))| ≤
Σ(e)(a). From Propositions 1.3 and 2, it follows that σ′ can

be expanded to a state σ′′ such that σ′ ≤ σ′′, |σ′′| = Σ(e),
and σ′′ satisfies e. 2

We define an upper bound for a system M and a set of

states U by a function Σ∗
M,U : Xs → (Xa → N),

Σ∗
M,U (v)(a) = max

k=0,1,...
ΣU (vk)(a),

where v is a signal variable and a is an array variable. The

value of Σ∗
M,U (v)(a) is an upper bound on the number of

index values of the array a needed to evaluate all of the

expansions of the signal variable v over all states in U . Like
ΣU (e)(a), the function Σ∗

M,U (v)(a) has a defined value when

V is finite. When U is the set of all states, we drop the second

subscript and write Σ∗
M(v)(a).

The following theorem says that it is sound and complete

to reason about an output variable v as a safety property of

a system, by evaluating v in all states of size Σ∗
M,T (v). In

the statement of the theorem, T is a set of states for the

unabstracted model. We assume that T is safe, so that all

expressions in the executions of the system can be evaluated.

The theorem says that if we evaluate the truth of a safety

property v over all states σ′, such that σ′ is a substate of

some state in T , and the size of σ′ is Σ∗
M,T (v), then we

can determine the result of evaluating v over all states in the

unabstracted model over the set of states T . The theorem

provides a sound and complete method for reasoning about

safety properties while reducing the size of arrays.

Theorem 2.1. LetM be a system with output variable v and

let T be a safe type forM. Let

T ′ = {σ′ | ∃σ ∈ T : σ′ ≤ σ ∧ |σ′| = Σ∗
M,T (v)}

Then M, T |= v iff ∀k ≥ 0, ∀σ′ ∈ T ′ : σ′[[vk]] = 1 ∨
σ′[[vk]] = ⊥.
Proof. (⇒) M, T |= v means ∀k ≥ 0, ∀σ ∈ T , σ[[vk]] = 1.
If k ≥ 0, σ ∈ T , and σ′ ≤ σ, then by Proposition 1.1,

σ′[[vk]] = 1 or σ′[[vk]] = ⊥.
(⇐) What we need to show is that if there is a counterexample

for some state in T in the unabstracted system, then there is

a counterexample in a state in T ′ in the abstracted system.

Suppose there is a counterexample: let k ≥ 0 and σ ∈ T be

such that i ∈ V , i 6= 1 and σ[[vk]] = i. By Lemma 2, we

know there is a state σ1, such that σ1 ≤ σ, for all array

variables a, dom(σ1(a)) = eindx(vk, σ, a), and σ1[[v
k]] =

i. By definition, Σ∗
M,T (v)(a) takes the maximum value of

|eindx(vk, σ, a)| over all k ≥ 0 and σ ∈ T , so that for all

a, |dom(σ1(a))| ≤ Σ∗
M,T (v)(a). By Proposition 2, for all a,

Σ∗
M,T (v)(a) ≤ |dom(σ(a))|, since σ ∈ T . Therefore, there is

a state σ2, such that σ1 ≤ σ2 ≤ σ and |σ2| = Σ∗
M,T (v). Note

that σ2 ∈ T
′. By Proposition 1.3, σ2[[v

k]] = i. Therefore, σ2

is a counterexample in T ′.

We are now ready to complete the proof. If it is the case

that for all k ≥ 0 and σ′ ∈ T ′, σ′[[vk]] = 1 ∨ σ′[[vk]] = ⊥,
then there cannot be a counterexample to the truth of v over

all states in T . Since T is a safe type, it must be the case that

∀k ≥ 0, ∀σ ∈ T , σ[[vk]] = 1. 2

In practice, it is difficult to evaluate Σ∗
M,T (v)(a), since this

involves finding a maximum value over all states in T and over

all computation steps. However, we show later in the paper

that there are ways to compute an upper bound on Σ∗
M(v)(a).

Computing an upper bound is easier than computing the exact

value, and also it is easier to compute an upper bound over all

states instead of over a set T . Since Σ∗
M(v)(a) is a maximum

over all states, Σ∗
M,T (v)(a) ≤ Σ∗

M(v)(a) for all a. Note that

it is possible for Σ∗
M(v)(a) to be larger than the size of a in T .

To prove properties over the set of states T , we would not want
to make the size each array variable a equal to Σ∗

M(v)(a).
Instead we make the size of each array variable a equal to the

minimum of Σ∗
M(v)(a) and the size of a in T . Let v be a

fixed variable name, and define a function µ : Xa → N,

µ(a) = min(|T |(a), Σ∗
M(v)(a))

100

>

0

read

!=

200

write

mem’safe

raddr waddr data

mux

mem

Fig. 2. Example 1

Let T ′′ be the set of states that are smaller than states in T
and of size µ,

T ′′ = {σ′ | ∃σ ∈ T : σ′ ≤ σ ∧ |σ′| = µ}

Since the size of arrays in T ′′ are at least as large as in T ′

defined in Theorem 2.1, it follows from Proposition 1 that

Theorem 2.1 holds if we use T ′′ in place of T ′.

Theorem 2.2. LetM be a system with output variable v, let
T be a safe type forM and let T ′′ be as defined above. Then

M, T |= v iff ∀k ≥ 0, ∀σ′ ∈ T ′′ : σ′[[vk]] = 1 ∨ σ′[[vk]] = ⊥.
2

In an implementation of Theorem 2.2, a model would be

constructed with each array variable a having a domain of size

µ(a). As an example, if the original model has an array a with

domain [1..100], and the size of the domain of a is 2 in the

abstract model, then we need to evaluate the abstract model

over all states where the domain of a is any two elements of

[1..100]. As in [7], a value for the address of each row in the

abstract array is chosen nondeterministically at the start of the

run. The read and write operations in the abstract model use

the address chosen for each of the rows, instead indexing into

the array. The implementation then uses model checking to

evaluate for all σ ∈ T ′′, σ[[v0]], σ[[v1]], and so on. If there is a

state σ ∈ T such that for some k, σ[[vk]] evaluates to a value

x ∈ V other than 1, then there is a state σ′ such that σ′ ≤ σ,
|σ′| = µ, and σ′[[vk]] = x.

Example 1. This example appeared in [7]. On each clock

cycle, the design inputs values for the signals raddr, waddr,
and data. The array mem is an array state variable. A network

with a multiplexor produces an output value that depends on

the value of the input data. If data > 200, the multiplexor

outputs the value of data; otherwise it outputs the value 0. On
each clock cycle, the array mem is written at address waddr

and with the value output from the multiplexor. On each clock

cycle, the array mem is read at address raddr. The correctness

property asserts that the value read from the array is never

equal to 100.

Here, we render the example in our formalism. The sys-

tem is M = (S, I,N ,O, E), where the set of state vari-

ables is S = {mem}, the set of input variables is I =
{raddr, waddr, data}, and the set of output variables is O =
{safe}. The next state function N and output function E are

N (mem) = write(mem, waddr, mux (data > 200, data, 0))
E(safe) = mem[raddr] 6= 100.

For this system, the first few expansions of mem and safe are

given by

safe0 = mem0[raddr0] 6= 100
mem1 = write(mem0, waddr0,mux (data0 > 200, data0, 0))
safe1 = write(mem0, waddr0,mux (data0 > 200, data0, 0))

[raddr1] 6= 100
mem2 = write(write(mem0, waddr0,

mux (data0 > 200, data0, 0)),
waddr1,
mux (data1 > 200, data1, 0))

safe2 = mem2[raddr2] 6= 100.

One can easily see by inspection that exactly one array index

expression appears in safek, for any value of k. Thus the

maximum number of indexes into the array mem needed to

evaluate safe is Σ∗
M(safe)(mem) = 1. It follows that it is

sound and complete to verify the output signal safe as a safety

property by evalating safek, for all k, in states where mem is

modelled as a single-element array.

If we change the example so that the result of reading mem is

stored in a register for an unbounded number of cycles before

the value is used to produce the output, then the method of [7]

would not be able to reduce the size of the array. Our method

does reduce the array to one element in this modified example.

2

Example 2. This example is similar to Example 1, please see

Figure 3. Here, the result of reading the memory is routed to a

multiplexor. The multiplexor sends a value to the state variable

read1. On each cycle, the variable read1 either holds its

previous value or stores the output of the array read, depending

on the value of the input signal hold. Because the value read

from the array can be held for an unbounded amount of time

in read1 beforefore reaching the output, the method of [7]

cannot reduce the size of the array. In contrast, our method

can reduce the array to one entry. 2

The following definition of a function ub(e, a) computes

a simple upper bound on Σ(e)(a). For b[e], if b is a write

expression with root a, then e is counted as an array index of

a. For write expressions, the definition says that the expression

e1 must always be evaluated, and there are two cases for b and
e2. If the array is read at index e1, then e2 must be evaluated;

otherwise b must be evaluated. To cover both cases, we take

the maximum value.

ub(var , a) = 0, if var is a signal variable or an array variable

ub(c, a) = 0, if c is a constant

ub(op(e1, . . . , en), a) = ub(e1, a) + . . . + ub(en, a)
ub(mux (e1, e2, e3), a) = ub(e1, a) + max(ub(e2, a),ub(e3, a))

ub(b[e], a) =

{

ub(b, a) + ub(e, a) + 1 if root(b) = a
ub(b, a) + ub(e, a) otherwise

ub(write(b, e1, e2), a) = ub(e1, a) + max(ub(e2, a),ub(b, a))

Theorem 3. For any signal expression e, state σ, and array

variable a, |eindx(e, σ, a)| ≤ ub(e, a). 2

Proof. The theorem can be proved by induction on expres-

sions. 2

In the function ub(e, a), multiple instances of the same

expression are added. A more accurate estimate of Σ(e)(a) can
be obtained by a function that computes the sets of possible

index expressions.

A better estimate of Σ(e)(a) can be obtained by a function

that computes the sets of possible index expressions. For

any non-empty set X whose elements are a finite number

of finite sets, let ‖X‖ be the largest size of an element of

X , maxx∈X |x|. The function φ(a, e) defined below computes

a set of sets of index expressions with the property that

Σ(e)(a) ≤ ‖φ(e, a)‖. Each element of φ(a, e) is a set of index
expressions; the elements of φ(a, e) cover all the possible

values of eindx(e, σ, a).
First, we define X ⊎ Y for sets X,Y .

X ⊎ Y = {x ∪ y | x ∈ X, y ∈ Y }

Then we define φ(e, a), where e is an expression and a is an

array variable, as follows.

φ(v , a) = {∅}, if v is a signal variable or an array variable

φ(c, a) = {∅}, if c is a constant

φ(op(e1, . . . , en), a) = φ(e1, a) ⊎ . . . ⊎ φ(en, a)

φ(mux (e1, e2, e3), a) = (φ(e1, a) ⊎ φ(e2, a)) ∪ (φ(e1, a) ⊎ φ(e3, a))

φ(b[e], a) =

{

φ(b, a) ⊎ φ(e, a) ⊎ {{e}} if root(b) = a
φ(b, a) ⊎ φ(e, a) otherwise

φ(write(b, e1, e2), a) = (φ(e1, a) ⊎ φ(e2, a)) ∪ (φ(e1, a) ⊎ φ(b, a))

Theorem 4. For any signal expression e, state σ, and array

variable a, |eindx(e, σ, a)| ≤ ‖φ(e, a)‖. 2

In order to create sound abstractions for model check-

ing, we want to compute an upper bound on the sequence

φ(v0, a), φ(v1, a), . . ., when an upper bound exists. One way

of computing an upper bound uses a generalization of function

φ(e, a) to a function Φ(e, a, θ, θA), where e is an expression,

a is an array variable, and θ is a function mapping variables to

sets of expressions. The idea is that the algorithm will iterate,

at each step setting θ(v) to a set that is at least as general

as each element of φ(vk, a). The θ functions will provide a

>

0

read1

read

100

!=

200

write

mem’

raddr waddr data

mux

read1’

hold

mux

safe

mem

Fig. 3. Example 2

simple way to detect when a fixed point is reached in the

iteration.

For a signal variable s, θ(s) will have the form

{x1, . . . , xn}, for some n, where the xi are fresh distinct signal

variables. Intuitively, we set θ(s) to a set of fresh variables

larger than the set of essential indices needed to evaluate s.
For array variables, we define θA(b, e) to be a function taking

an array variable b and a signal expression e, and returning

a set of signal variables, {xe,1, . . . , xe,n}, for some n. The
subscript on e simply indicates that xe,i is a fresh distinct

signal variable related to e.

The definitions of φ(v, a) and Φ(v, a, θ, θA) differ in the

case when v is a signal or array variable; in these cases Φ
applies the function θ or θA. The functions θ, θA will be

assigned increasingly large sets as the algorithm iterates. We

define Φ(e, a, θ, θA) and ΦA(b, e, a, θ, θA) by mutual recursion

in the full paper .

Given a systemM = (S, I,N ,O, E), we define a sequence
of approximations to φ(sk, a), for each signal state variable s,
and approximations to φ(bk, a), for each array variable b. In
the following equations, s is a signal variable, b is an array

variable, e is a signal expression, and k is a natural number.

The definitions use N (v), the next-state expression for the

state variable v. See Figure 4.

For k ≥ 0, let sizek(v, a) = ‖approxk(v, a)‖, be the size of
the kth approximation. For an output variable v, we will define
sizek(v, a) using the approximations for the state variables:

sizek(v, a) = ‖Φ(E(v), a, θa,k, θa,k
A)‖,

The idea behind the definition of sizek(s, a) is to make

successive overapproximations to the value of Σ(sk)(a). We

begin by setting the first approximation, size0(s, a), to 0. At
each successive step, we make θk(s) be a set of n distinct

signal variables if the value of sizek(s, a) is n. This gives an
overapproximation because, for example, there is no sharing

of common expressions in θa,k(si), θ
a,k(sj), when si, sj are

different state variables. At each step we use the next-state

expression N (s) to compute the maximal sets of indices

needed for the array variable a in the next expansion of s.

approx0(s, a) = {∅}

approxk+1(s, a) = Φ(N (s), a, θa,k, θa,k
A)

approx0
A(b, e, a) = {∅}

approxk+1

A (b, e, a) = ΦA(N (b), e, a, θa,k, θa,k
A)

θa,0(s) = ∅

θa,k+1(s) = {s1, . . . , sn},
where n = ‖approxk+1(s, a)‖
and s1, . . . , sn are distinct fresh signal variables

θa,0
A (b, e) = ∅

θa,k+1

A (b, e) = {be,1, . . . , be,n},
where n = ‖approxk+1

A (b, 0, a)‖
and be,1, . . . , be,n are distinct fresh signal variables

Fig. 4. Definitions of approx
k and θ

The following theorem says that sizek(v, a) overapproxi-

mates Σ(vk)(a).

Theorem 6. For any array variable a, signal variable v, and
k ≥ 0, Σ(vk)(a) ≤ sizek(v, a). 2

We can now present an algorithm compute size for com-

puting a size for an array variable a that makes a sound and

complete model for checking a property output variable v of

a system. The inputs of compute size are a system M, a

signal variable v of M, an array variable a, and a natural

number OriginalSize. The value of OriginalSize is the size

of the array a in the original model. The algorithm computes

sizek(v, a) for increasing values of k, until either a fixed point

is reached or sizek(v, a) > OriginalSize.

We need to define a set dep(v) of state variables on which

a variable depends. For a state variable v, let dep(v) be the

smallest set of state variables such that 1) v ∈ dep(v), and
2) for all state variables v′, if v′ ∈ dep(v) and v′′ is a state

variable appearing in N (v′), then v′′ ∈ dep(v). For an output

variable v, we define dep(v) to be the union of dep(v′) over

mem
addrc

datac

safe

cout

VSCM Block Diagram

addr

Fig. 5. Example 3

all state variables v′ appearing in E(v).

Algorithm 1. The algorithm compute size consists of the

following steps.

1) k ← 0; MaxSize ← 0;
2) Until ((∀v′ ∈ dep(v) : sizek(v′, a) = sizek+1(v′, a)) ∨

sizek(v, a) > OriginalSize) Do

{MaxSize ← max(sizek(v, a), MaxSize); k ← k+1};
3) If sizek(v, a) > OriginalSize then return OriginalSize;

4) If ∀v′ ∈ dep(v) : sizek(v′, a) = sizek+1(v′, a) then

return MaxSize;

The algorithm always terminates, because for k ≥ 0,
sizek+1(v, a) ≥ sizek(v, a). If the algorithm exits with ∀v′ ∈
dep(v) : sizek(v′, a) = sizek+1(v′, a), then it is easy to see

that the size computation has reached a fixed point at step

k: The value of Φ for each state variable v depends on the

previous values of θ(v′) for the variables v′ appearing inN (v).
If sizek(v′, a) = sizek+1(v′, a) for all v′ in the transitive

fan-in of v, then the size computation for v is at a fixed

point. By Theorem 6, we know that ∀k ≥ 0 : Σ(vk)(a) ≤
sizek(v, a). The variable MaxSize is now set to a value

that is at least as large as any of the approximate values:

∀k ≥ 0 : Σ(vk)(a) ≤ MaxSize. By Theorem 2 , we can

construct a sound and complete abstraction for evaluating v
inM by using compute size to assign the size of each array

variable.

In a more extended presentation, we would show how to

improve the accuracy of the size computation by taking shared

expressions into account in θ, θA.

Example 3. We illustrate Algorithm 1 by showing the analysis

of a VSCM (very simple cache memory) unit. The block

diagram of the VSCM is shown below. The state variables

are mem, addrc, datac, the input variable is addr, and the

output variables are cout, safe. The array mem represents a

large main memory. Arrays addrc and datac are small arrays

that form the cache. The array addrc stores the addresses that

are cached, while datac stores the data for these addresses.

The next state function N and output function E are shown

in Figure 6. A unary operator key maps a full address into a

value key(addr) that is an index into the arrays addrc and

datac. On each clock cycle the cache inputs the signal addr

and outputs the value of mem[addr]. If addrc[k] = 0, for
some k, then the data at location k in the cache is considered

invalid. Initially, addrc[k] = 0 for all k in the domain of

addrc. If addrc[key(addr)] = addr ∧ addr 6= 0, then the

required memory data is provided from the cache by accessing

datac[key(addr)]. Otherwise, the data is fetched from main

memory at mem[addr], and addrc, datac are updated. The

output signal cout is the data output of the cache memory,

and the signal safe asserts that cout = mem[addr] holds.
The table summarizes the operation of Algorithm 1 for each

of the three arrays. The numbers in the table show the values

of sizek(v, a), for each of the state variables. For the array

a = mem, the algorithm reaches a fixed point at k = 2, with
the array datac using one index value and the other arrays

using no indices. For the output signals, cout uses one index

value and safe uses two index values, because the expression

for safe has subexpressions cout and mem[addr]. Therefore
the abstract model for the output signal safe will reduce mem

to two entries. For the array a = datac, the algorithm reaches

a fixed point with one array index. For the array addrc, the

algorithm is unable to reduce the size of the array, and the

original size of the array will be used in the abstract model. At

each iteration, sizek(datac, addrc) increases by one, because

in the next-state expression for datac, the mux expression

has a control expression (e1) that uses one array index of

addrc, and a second input (e2) that uses k indices of datac

on iteration k. The approximation computed by Φ therefore

uses k + 1 array indices at step k + 1.
Note that data is read from the array mem and stored

in datac for an unbounded length of time. Our algorithm

abstracts mem, while the method of [7] cannot.

V. CONSTRUCTION OF THE ABSTRACT MODEL

It is straightforward to build a model of a system that uses

the semantics with the bottom value. We replace each signal

of the original design with a composite signal having two

elements: a value, which represents the value of the signal

in the original design, and a v bit, which is true if the signal

represents a value in V , and false if the signal represents ⊥.
Each state register is replaced with a register of the composite

type. The signal operations of the original circuit are replaced

with versions of the operations that recognize the value ⊥.
The size of each array in the abstract model is determined

by running Algorithm 1. An abstract array of size n is

implemented using two arrays: an array of n addresses, and an

array of n (value, v) pairs. The contents of the address array

are set nondeterministically in the initial state of the system,

and do not change over clock cycles. The array read and

write operations are implemented according to the semantics

of expressions.

If p is an output signal for a safety property p = true,

then we construct a property expression of the form

p.v→ p.value = true. Finally, we use model checking to

verify that each of the new output property expressions is

always true.

VI. INDUSTRIAL EXAMPLES

In this section, we present initial results of using our

abstraction algorithm on industrial hardware designs. The

algorithm has been implemented in IBM’s model checker.

Many of the arrays used in hardware designs have the

property that at each time step, the output signal only depends

on a small, bounded number of elements of the array. When

an array has this property, our algorithm is often able construct

N (mem) = mem

N (addrc) = write(addrc, key(addr), mux (addrc[key(addr)] = addr, addrc[key(addr)], addr)
N (datac) = write(datac, key(addr), mux (addrc[key(addr)] = addr, datac[key(addr)], mem[addr]))

E(cout) = mux (addr 6= 0 ∧ addrc[key(addr)] = addr, datac[key(addr)], mem[addr])
E(safe) = (cout = mem[addr])

Computation of sizek(v, a)
array a = mem array a = datac array a = addrc

v addrc datac mem v addrc datac mem v addrc datac mem

k = 0 0 0 0 k = 0 0 0 0 k = 0 0 0 0

k = 1 0 1 0 k = 1 0 0 0 k = 1 0 1 0

k = 2 0 1 0 k = 2 0 2 0

size2(cout, mem) = 1 size1(cout, datac) = 1 k = 3 0 3 0

size2(safe, mem) = 2 size1(safe, datac) = 1 k = n 0 n 0

Fig. 6. Very Simple Cache Memory Definitions and Analysis

a small abstract model. On the other hand, there are common

uses for arrays that do not have the necessary property. For

instance, when an array is used as a content-addressable

memory (CAM), each read operation accesses all elements

of the array, and the array cannot be abstracted by our current

approach.

The following results should be considered preliminary,

because the implementation is in development. Data was

collected for a set of 401 complex industrial examples. Many

of the arrays in these designs have the property needed for

our abstraction, but many of the arrays are used as CAMs,

and hence are difficult to abstract. Individual designs in the set

contain from one array up to several hundred arrays. Overall,

our algorithm reduced the size of at least one array in 187

designs, or about 47 per cent of designs. The following table

gives the total over all examples of the number of reduced

arrays for each original and reduced size.

Reduced Number of Rows
Original Rows 1 2 3 4 6 8 > 8

2 144
8 1 1
16 14 13 55
32 37 1 25
39 24
48 24
64 46 29 20 18

128 4 158 14 23 1 11
256 3 40 10
1024 3 10 2

The final version of the paper will compare the performance

of other array abstraction algorithms.

One kind of verification problem where our techniques are

valuable is proving sequential equivalence of two designs

where an array has been reconfigured. In designing complex

hardware systems, it is often necessary to reconfigure an

array into two or more smaller arrays, due to physical circuit

constraints. In simple cases, the reconfiguration consists of

dividing an array into two arrays with the same number of

index values (rows) as the original array, but narrower data

values (fewer columns). For this kind of reconfiguration, it

is often possible to prove the designs to be equivalent by

automatically discovering a correspondence between the data

columns of the original and reconfigured arrays [9].

When reconfiguration involves changing the number of rows

in an array, it is harder to prove equivalence, because the two

designs have differences in the addressing, data alignment and

staging logic.

One real example that highlights the advantage of our

techniques over previous approaches is an equivalence check

where the original design has an array of 1024 rows by 16

columns, and the reconfigured design has two arrays, each

with 128 rows by 64 columns. In this case, the logic near

the arrays was substantially redesigned. Because the design

uses clock gating, the method of [7] cannot reduce the size

of the arrays. Our approach generates an abstract model and

verifies equivalence, using four modeled rows from the large

array of the original design and one row from each of the

smaller arrays in the reconfigured design. The abstract model

uses a total of 401 registers, including the three arrays and

surrounding control logic. Without using our algorithm, we

have found no way to verify this example other than to bit-

blast the model into 32912 registers.

VII. RELATED WORK

The work most closely related to our approach is by Bjesse

[7]. Both our approach and [7] transform a register transfer

level design into an abstract register transfer level design

having smaller arrays, and allow any register transfer level

verification method to be used on the abstract design. Both

approaches use nondeterminism to choose which addresses are

modeled in the abstract design. In our approach, the abstract

model uses a semantics with a bottom value. The semantics

limits evaluation of the correctness property to cases in which

the nondeterministically chosen addresses are sufficient to

determine the truth of the property. In [7], the correctness

property at time t is made conditional on a formula saying

that array read operations accessed only modeled addresses

at a list of previous time steps. Our approach is effective for

reasoning about systems in which a value read from an array

can affect the correctness property after an unbounded time

delay. In [7], it is inherent in the construction of the abstract

models, that reasoning is effective only in cases where there is

a bound on the number of time steps after reading a value from

an array that the value can affect the correctness property.

Several works [1]–[3] develop approaches for reasoning

about systems with arrays by modeling the initial value and

data forwarding properties of arrays operations over a bounded

number of time steps. BAT [4] is another tool that builds

abstractions for arrays over bounded time intervals. BAT uses

several term-level techniques to reduce the size of abstract

models of arrays before constructing a propositional model.

These techniques include term-level uniqueness reductions and

memory rewriting.

Model checkers in industry use a diversity of algorithms

to analyze hardware designs. Baumgartner et al [9] describe

enhancements to a number of algorithms in an industrial model

checker, to provide more efficient processing by abstracting or

simplifying arrays.

McMillan [10] developed a method of compositional model

checking in which arrays can be abstracted to a small number

of elements by temporal case splitting and symmetry reduc-

tion. In [10], the user proves complex designs by manually

specifying a set of lemmas; the lemmas are checked auto-

matically. In contrast, our method is directed towards fully

automatic verification.

VIII. DISCUSSION

We have introduced a logic of expressions for reasoning

about arrays and developed some of its mathematical prop-

erties. The semantics of the logic permits reasoning about

the value of an expression, when evaluated over states having

arrays of different sizes. In Section III, we show that the truth

of an expression can be evaluated over a state that may have

smaller array sizes than the original model. The existence of

adequate model sizes for expressions leads immediately to

the existence of adequate model sizes for safety properties

of systems. However, to compute the adequate model size

directly from the results of Section III could be as difficult

as verifying the original design. For this reason, we propose

a method of safely overapproximating the minimum adequate

size in Section IV. Our algorithm represents approximate sets

of array indices using two-level sets of expressions. When

using iteration on two-level sets, special care is needed to

detect fixed points. Our algorithm constructs a most-general

element from each two-level set at each step in the iteration

as a way of detecting when a fixed point has been reached.

Although our main focus is on sequential systems, our

results could also be useful for checking the satisfiability of

formulas in the theory of arrays. Theorem 4 gives a way to

overapproximate the number of array indices needed to check

satisfiability. Our approximation could lead to improvements

to model-based approaches to checking validity.

There exist many possible ways of overapproximating the

minimum size of arrays defined in our theory. It should

be possible to improve the approximation by using stronger

methods to identify common subexpressions for array indices.

A further improvement would be to identify expressions that

are syntactically distinct but logically equivalent.

Acknowledgments The author gives special thanks to Jason

Baumgartner for many helpful discussions, and for implement-

ing the algorithm. Jessie Xu made helpful comments on the

paper.

REFERENCES

[1] M. Velev, R. E. Bryant, and A. Jain, “Efficient modeling of memory
arrays in symbolic simulation,” in Proceedings of Computer Aided

Verification 1977, ser. LNCS, vol. 1254. Springer, pp. 388–399.
[2] M. K. Ganai, A. Gupta, and P. Ashar, “Efficient modeling of embedded

memories in bounded model checking,” in Proc. of Computer Aided

Verification, 2004, ser. LNCS, vol. 3114. Springer, pp. 272–274.
[3] ——, “Verification of embedded memory systems using efficient mem-

ory modeling,” in Proceedings of DATE Europe ’05. IEEE Computer
Society, 2005, pp. 1096–1101.

[4] P. Manolios, S. K. Srinivasan, and D. Vroon, “Automatic memory
reductions for rtl model verification,” in Proceedings of ICCAD ’06.
ACM, pp. 786–793.

[5] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model
checking without bdds,” in TACAS, 1999, pp. 193–207.

[6] M. Sheeran, S. Singh, and G. Stålmarck, “Checking safety properties
using induction and a sat-solver,” in Formal Methods in Computer-Aided

Design 2000, pp. 108–125.
[7] P. Bjesse, “Word-level sequential memory abstraction for model check-

ing,” in Formal Methods in Computer-Aided Design ’08, pp. 16:1–16:9.
[8] M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi, Low Power

Methodology Manual. Springer, 2007.
[9] J. Baumgartner, M. Case, and H. Mony, “Coping with Moore’s law (and

more): Supporting arrays in state-of-the-art model checkers,” in Formal

Methods in Computer-Aided Design 2010, pp. 61–69.
[10] K. L. McMillan, “Verification of infinite state systems by compositional

model checking,” in CHARME, 1999, pp. 219–234.

