
Time-Bounded Analysis of Real-Time Systems

Sagar Chaki

SEI/CMU

chaki@sei.cmu.edu

Arie Gurfinkel

SEI/CMU

arie@cmu.edu

Ofer Strichman

Technion

ofers@ie.technion.ac.il

Abstract—Real-Time Embedded Software (RTES) constitutes
an important sub-class of concurrent safety-critical programs.
We consider the problem of verifying functional correctness of
periodic RTES, a popular variant of RTES that execute periodic
tasks in an order determined by Rate Monotonic Scheduling
(RMS). A computational model of a periodic RTES is a finite
collection of terminating tasks that arrive periodically and must
complete before their next arrival.

We present an approach for time-bounded verification of safety
properties in periodic RTES. Our approach is based on sequen-
tialization. Given an RTES C and a time-bound W , we construct
(and verify) a sequential program S that over-approximates
all executions of C up to time W , while respecting priorities
and bounds on the number of preemptions implied by RMS.
Our algorithm supports partial-order reduction, preemption
locks, and priority locks. We implemented our approach for C
programs, with properties specified via user-provided assertions.
We evaluated our tool on several realistic examples, and were
able to detect a subtle concurrency issue in a robot controller.

I. INTRODUCTION

Real-Time Embedded Software (RTES) is an important

sub-class of concurrent safety-critical programs. They play a

crucial role in controlling systems ranging from airplanes and

cars, to infusion pumps and microwaves. We are increasingly

reliant on these cyber-physical systems to maintain our modern

technology-driven way of life. As such, verifying the correct

operation of RTES is an important and open challenge. Ad-

dressing this challenge is the subject of our paper.

Specifically, we focus on systems that receive as input a

collection of periodic tasks, where each task τi has, among

other things, a terminating task body Ti and a period Pi. The

tasks are prioritized in a Rate-Monotonic [1] fashion, which

means that tasks with shorter periods have higher priorities.

We call such an input pattern a periodic program.

A periodic program C is executed by running its tasks peri-

odically and concurrently with asynchronous priority-sensitive

interleaving. Thus, at each scheduling point, the active task

with the highest priority is selected for execution. A task τi
becomes inactive at the end of its body Ti, and is reactivated

after Pi time has passed since its last activation. A single

execution of a task body is called a job. It is convenient to

view an execution of C as an asynchronous priority-sensitive

interleaving of the jobs statements, where the statements arise

from the infinite job streams corresponding to the periodic

execution of the task bodies.

Periodic programs constitute an important fragment of

RTES that interact with the physical world. In particular, the

task periods are dictated by the physical environment and

the underlying control algorithms. Consider, for example, the

nxt/OSEK-based [2] LEGO MINDSTORM robot controller.

It has three periodic tasks: a balancer, with a 4 millisecond

(ms) period, maintains the balance of the robot; obstacle, with

a 50 ms period, monitors a sonar sensor to detect obstacles;

and bluetooth, with a 100 ms period, monitors a bluetooth

link for remote commands from the user. Another example is

a generic avionic mission system that was described in [3]. It

includes 10 periodic tasks, including weapon release (10 ms),

radar tracking (40 ms), target tracking (40 ms), aircraft flight

data (50 ms), display (50 ms) and steering (80 ms). Other

examples of periodic programs include phase-array radars and

aircraft collision-avoidance systems.

These examples demonstrate the fact that periodic programs

are used for developing a wide range of RTES that interact

with the physical world, and play an important role in the

correct operation of safety-critical systems. Statically predict-

ing behavior – by verifying logical and timing properties of

periodic programs – is a problem of great practical relevance.

Despite a wide body of work, the state-of-the-art in verifi-

cation of real-time and concurrent programs does not address

logical properties of periodic programs (with the exception

of the recent work of Kidd et al. [4], which we discuss in

Sec. VIII). On one hand, techniques for verifying properties

of timed systems [5], [6] are based on Timed Automata [7].

They abstract away significantly the behavior (i.e., control- and

data-flow) of target systems, and, therefore, are unsuitable for

analyzing logical properties. On the other hand, approaches

for concurrent software verification (e.g., [8]) employ a non-

deterministic scheduler model (i.e., tasks do not have priorities

or periods), and thus cannot handle the execution semantics

of periodic programs. Against this backdrop, our main con-

tribution is the development and evaluation of an approach to

verify logical properties of periodic programs.

Specifically, we present an approach for time-bounded ver-

ification of safety properties of periodic programs. The inputs

are: (i) a periodic program C; (ii) a safety property expressed

via an assertion A embedded in C, (iii) an initial condition Init

of C, and (iv) a time boundW . Time-bounded verification can

be seen as an analogue of Bounded Model Checking (BMC)

for RTES, since time is a natural way to bound an execution

of a periodic program for the purpose of verification.

Our solution for the time-bounded verification problem

is based on sequentialization – reducing verification of a

concurrent program to verification of a sequential program. It

is inspired by work on sequentialization for Context-Bounded

Analysis [8], [9], [10], [11], [12] (CBA) and Bounded Model

Checking [13] (BMC). A key distinguishing aspect of our

work is that instead of bounding the number of context

switches (as in CBA), or the number of execution steps (as in

BMC), the input time bound W translates in our model to a

bound on the number of jobs. This is a natural consequence

of the fact that tasks are periodic and, therefore, are activated

a finite number of times within W . Our solution also handles

two types of locks used commonly in periodic programs, and

incorporates two forms of partial-order reduction aimed at

reducing analysis time.

We have implemented our solution in a tool, called REK.

Our tool is able to verify periodic programs implemented in C

where tasks communicate via shared variables and synchronize

via locks. We have used it to verify several variants of a

nxt/OSEK-based [2] LEGO MINDSTORM robot controller.

In some instances, we found subtle concurrency issues in the

controller using our tool. We have also evaluated our tool on

several custom versions of the reader-writer protocol.

The rest of the paper is structured as follows: in the

next section we formally define a periodic program and its

semantics. In Sec. III, we describe time-bounded and job-

bounded abstractions. In Sec. IV, we describe our encoding

method. In Sec. V, we extend our model with locks, and

in Sec. VI describe partial-order reduction. In Sec. VII, we

describe our case study and experimental results. Finally, we

discuss related work in Sec. VIII, and conclude in Sec. IX.

II. PRELIMINARIES

A task τ is a tuple 〈I, T, P, C,A〉, where I is a task

identifier, T – a bounded procedure (i.e., no unbounded loops

or recursion) called the task body, P – a period, C – the worst

case execution time of T , and A, called the release time, is the

time at which the task is first enabled1. An N -task periodic

program C is a set {τ0, . . . , τN−1} of N tasks. For simplicity,

we assume that the id of task τi is i.

In this paper, we restrict the priorities of the tasks to be

rate-monotonic – tasks with smaller period have higher base

priority. For simplicity, we assume that the index of a task

represents its base priority. Thus, a task with a lower id has a

lower base priority (and higher period).

A periodic program is executed by running each task

periodically, starting at the release time. For k ≥ 0 the k-th job

of τi becomes enabled at time Ak
i = Ai+k×Pi. The execution

is asynchronous and priority-sensitive – at each point the CPU

is given to an enabled task with the highest priority. Priorities

can change dynamically, but must avoid priority inversion –

when a low base priority task preempting a higher base priority

task. This is known, somewhat misleadingly, as a fixed-priority

preemptive scheduling.

Formally, the semantics of an N -task periodic program C =
{τ0, . . . , τN−1} is the asynchronous concurrent program:

‖N−1
i=0 ki := 0 ; while(WAIT(τi, ki)) (Ti ; ki := ki + 1) (1)

1We assume that time is given in some fixed time unit (e.g., milliseconds).

4 8 12 16

τ0

τ1

τ2

Fig. 1. A schedule of three tasks from Example 1.

where ki is a numeric variable and WAIT(τi, ki) returns FALSE

if the current time is greater than Aki

i , and otherwise it disables

τi until the time is Aki

i and then returns TRUE.

An execution of each task body Ti in (1) is called a job.

A job’s arrival is the time when it becomes enabled (i.e.,

WAIT(τi, k) in (1) returns TRUE); start and finish are the times

when its first and last instructions are executed, respectively;

response time is the difference between its finish and arrival

times. The response time of a task is the maximum of response

times of all of its jobs in all possible executions.

Note that WAIT in (1) returns TRUE if a job has finished

before its next period. If this is always the case, i.e., WAIT

never returns FALSE, then the program is called schedulable.

Formally, a periodic program C is schedulable if for each

task τi, the response time RTi is less than the period Pi.

Response times are computed using Rate Monotonic Analysis

(RMA) [14]. For a periodic program C = {τ0, . . . , τN−1}, the
response time RTi of task τi is the smallest solution to the

following equation

RTi = Ci +
∑

i<k<N

⌈
RTi

Pk

⌉ · Ck . (2)

Intuitively, the response time of a task is equal to its worst-case

execution time plus the time taken by all higher-priority tasks

that preempted it. RTi is computed by solving (2) iteratively

starting with RTi = Ci [14]. Note that for the highest-priority

task the response time RTN−1 is its execution time CN−1.

Example 1 Consider the task set:

Task Ci Pi

τ2 1 4

τ1 2 8

τ0 8 16

Solving (2) gives us RT2 = 1, RT1 = 3 and RT0 = 16. A
schedule demonstrating these values is shown in Fig. 1.

In this paper, we are interested in logical properties of periodic

programs. We assume that any program we analyze meets its

basic timing constraints. For that reason, we only deal with

schedulable periodic programs.

III. TIME-BOUNDED PERIODIC PROGRAMS

In this section, we present time-bounded semantics of

periodic programs and define a job-bounded abstraction that

is the formal foundations of our verification technique.

Given a periodic program C = {τ0, . . . , τN−1) and a time-

bound W , the time-bounded program CW executes like C for

timeW and then terminates. We assume thatW is divisible by

the period of each task. Furthermore, we assume that the first

job of each task finishes before its period, i.e., Ai ≤ Pi−RTi.

Under these assumptions, the time bound imposes a natural

limit on the number of jobs Ji of each task:

Ji =
W

Pi

. (3)

Therefore, the semantics of CW is equivalent to the asyn-

chronous concurrent program:

‖N−1
i=0 ki :=0;while(ki < Ji∧WAIT(τi, ki)) (Ti ;ki :=ki+1) .

(4)

This is analogous to the semantics of C in (1) except that each

task τi executes Ji jobs.

Job-bounded Abstraction. Since we are interested in logical

properties, we need to abstract the absolute time in (4) with

relative order of execution. A simple abstraction is to interpret

WAIT as a non-deterministic delay, effectively replacing a

time-bound with a job-bound. We further refine this abstraction

using the following observation about RMA (2). Let τi and τj
be two tasks of a schedulable periodic program C such that

i < j. Then RMA defines the preemption bound of i by j,

written PB
j
i , as follows

PB
j
i = ⌈

RTi

Pj

⌉ . (5)

That is, PB
j
i is an upper bound on the number of times

τj can preempt τi. Thus, in addition to treating WAIT as a

non-deterministic delay, we only allow for a job of task j to

preempt a job of task i if j > i and it does not violate the

preemption bound PB
j
i . In other words, we only schedule at

most PB
j
i jobs of τj while a job of τi is active. We call this

the job-bounded abstraction of CW and denote it by CJ(W).

Theorem 1 (Soundness of Job-bounded Abstraction) For

a periodic program C = {τ0, . . . , τN−1} and a time-bound

W s.t. ∀i · (Ai ≤ Pi−RTi)∧ (W|Pi), every execution of CW
is also an execution of CJ(W).

Obviously, job-bounded abstraction is incomplete, i.e.,

CJ(W) may have more executions than CW . The primary

reason being that the preemption bounds are only upper

bounds since they are computed from the worst-case execution

times, and rounded upwards in (5). The incompleteness due

to rounding up is shown by the following example.

Example 2 Let C = {τ0, τ1} such that P0 = 25, RT0 = 22
and P1 = 10, RT1 = 10, and W = 100. Then, PB1

0 = 3
and, therefore, in CJ(W) two consecutive jobs of τ0 can be

preempted three times, each, by jobs of τ1. However, in CW
two consecutive jobs of τ0, taken together, can be preempted

at most five times by jobs of τ1.

In the next section, we give an algorithm for constructing

and verifying the job-bounded abstraction CJ(W) from a

periodic program C.

IV. SEQUENTIALIZATION OF A PERIODIC PROGRAM

We use a two-step approach to verify an N -task periodic

program C = {τ0, . . . , τN−1} under a time boundW . The first

step, sequentialization, outputs a non-deterministic sequential

program with assume statements S , as shown in Alg. 1.

The program S is semantics preserving w.r.t. CJ(W) (see

Theorem 2). The second step is the verification of S with

an off-the-shelf program verifier. In the rest of this section,

we focus on sequentialization.

A. Sequentialization: Intuition

Our key insight is that any execution π of C can be

partitioned into scheduling rounds in the following way: (a) π

begins in round 0, and (b) a round ends and a new one begins

every time a job ends (i.e., the last instruction of some task

body is executed). For example, the bounded execution shown

in Fig. 1 is partitioned into 7 rounds as follows: round 0 is

the time interval [0, 1] – the end of the first job of τ2, round 1

is [1, 3] – the end of the first job of τ1, round 2 is [3, 5] – the

end of the second job of τ2 (note that there is only one job of

τ0 and it ends at time 16), round 3 is [5, 9], etc.
Observe that in each round, the tasks are executed sequen-

tially in the order of their priority starting with the task of the

lowest priority. Furthermore, a bounded execution in which

exactly k jobs start and end has exactly k rounds.

The basic idea of our sequentialization is to reduce a

bounded concurrent execution with k jobs into a sequential

execution with k rounds. Initially, jobs are allocated (or sched-

uled) to rounds. Then, each round is executed independently

(and sequentially) starting from a guessed initial state. Finally,

we check for each 0 ≤ i < (k − 1), that the guessed initial

state at round i+ 1 is the final state of round i.

Our sequentialization is inspired by the work of Lal and

Reps [9], but differs from it in several significant ways. First,

we deal with periodic programs and not non-deterministically

scheduled concurrent programs. Second, since we are not

exploring non-deterministic schedules, we use a more refined

scheduling scheme than the non-deterministic round-robin

used in [9]. Third, we partition each task (or, correspondingly,

a thread in [9]) into jobs and preserve all executions in which

all jobs terminate. In contrast, [9] only preserves executions

with a bounded number of thread-preemptions. Finally, we

take into account that preemption between tasks must respect

priorities and preemption bounds.

B. Sequentialization: Details

The sequential program S starts in MAIN (see Alg. 1). It

first allocates jobs to rounds (line 5), initializes global variables

(lines 6–8), executes all jobs of all tasks sequentially starting

with the first job of the lowest priority task (lines 9–13), and

finally checks correctness of guessed variables and assertions

(lines 14–15).

Job scheduling. A job schedule is a pair of mappings start

and end that map each job of each task to a starting and ending

round, respectively. We say that a job schedule is legal iff it

satisfies the following three properties: (a) jobs are sequential

– for a given task, for any pair i < j, job i starts and finishes

(i.e., precedes) job j, and (b) jobs are well-nested – if a higher

and a lower priority jobs overlap, then the higher priority job

must start and end within the rounds of the lower priority one,

and (c) jobs respect preemption bounds – no more than PB
tj
ti

jobs of task tj are scheduled inside any job of task ti.

SCHEDULEJOBS fills arrays start and end with a non-

deterministic legal job schedule. Line 24 ensures that the jobs

are sequential, while line 25 ensures that they are well-nested,

and line 26 ensures that they respect preemption bounds. To

understand line 26, suppose that PBt2
t1

= 3, j2 = 4 and that

j2 is nested in j1. Then, to satisfy PBt2
t1
, we require that job 1

of t2 has ended before j1 started. Otherwise, because the jobs

are sequential and well-nested, j1 contains jobs 1, 2, 3, and 4
of t2 – that is, it is preempted by more than three t2 jobs.

Global variables. For every global variable g, we create two

arrays g[] and vg[] such that g[i] is the value of g in round

i, and vg[i] is the guess of the initial value of g in round i.

The element g[0] is initialized in line 7 to the user-specified

initial value ig , and each other elements g[r] is assigned the

corresponding initial guess vg[r] in line 8.

In addition, a variable rnd tracks the current round, job

tracks the current job, and endRnd is the scheduled end round

of the current job.

Tasks. For each task t, MAIN uses a modified version T̂t

obtained from the original task body Tt by preceding each

statement st with a call to CS to emulate a preemption, and

replacing every global variable g in st with g[rnd]. This is

based on an assumption, without loss of generality, that each

global variable g is explicitly loaded and stored, i.e., g only

appears in statements of the form g := l or l := g, where l is

a local variable.

Preemption. CS models a preemption (a context switch to

a higher priority task) by increasing non-deterministically the

value of rnd to the round in which this task resumes execution.

However, not every round between the start and end of the

current job is legitimate. Line 21 ensures that the execution

is not resumed in a round used by a higher-priority task. CS

returns TRUE iff a preemption has occurred. This value is used

later in Sec. VI.

Prophecy-Check. Line 14 ensures that the value of each

global variable at the end of a round is equal to its guessed

value at the beginning of the next round.

Assertions. Assertions need special handling. They can only

be checked after the guesses have been validated via Prophecy-

Check. Without loss of generality, we assume a single call to

assert in the body of each task. We use an array localAssert

that maps a task and a job to the value of the assertion in it.

The element localAssert[t][j] is initialized to TRUE (line 6), set

to the value of the asserted expression (line 29), and asserted

to be TRUE (line 15) after the Prophecy-Check.

Our sequentialization procedure is semantic preserving as

expressed in the following theorem.

Theorem 2 Let C be a periodic program and W a time-

bound satisfying the conditions in Theorem 1. Then, for every

execution π of CJ(W) that violates an assertion in job j of

task t, there is a corresponding execution π′ of the sequential

program S that violates localAssert[t][j], and vice versa.

V. LOCKS

We support two types of locks: preemption locks and

priority ceiling locks. These locks are common in periodic

programs because they are non-blocking (acquiring a lock

always succeeds) and avoid common pitfalls such as priority

inversion and deadlocks.

A periodic program has a single preemption lock pl. Ac-

quiring pl disables the scheduler, preventing all priority-based

preemptions. Releasing pl re-enables the scheduler. An exam-

ple of such a mechanism is the taskLock / taskUnlock

routines in VxWorks [15].

Priority ceiling locks, or priority locks for short, are

based on dynamically raising the priority of the current job.

Each priority lock lck is associated with a fixed priority

LOCKPRIORITY(lck), which is given to a task if it acquires

lck. It is illegal for a task with current priority p to acquire a

priority lock lck such that LOCKPRIORITY(lck) is less than p.

Releasing a lock restores the priority. Priority locks are used

in the Highest Locker-Priority (HLP) protocol [16], where the

priority of a resource r is as high as the priority of any task

accessing r. This guarantees mutual exclusion (assuming there

is only one CPU) while avoiding blocking, deadlocks, and

priority inversion. Multiple priority locks must be acquired in

increasing order of priority, but can be released in an arbitrary

order. We now show our encoding of these locks.

Preemption locks. The preemption lock pl is modeled by

introducing a Boolean variable lock into T̂t. Specifically,

lock = TRUE iff the current task has acquired pl. The variable

is FALSE initially and is reset to FALSE at the end of a job.

Finally, calls to CS are conditioned by lock = FALSE.

Priority locks. To model priority locks, we need to model

the dynamic priority of each task. Let BASEPRIORITY(t) be a
function that returns the base priority of task t. We introduce

an array priority such that for every round r, priority[r] is
the priority of the task currently executing in round r. The

array is maintained by the function T̂t-WRAPPER (shown in

Alg. 2) that wraps the body T̂t of each task t. The wrapper

function saves the current priority (line 2), ensures that it is

below the base priority of the current task (line 3), raises the

priority to the priority of the current task (line 4), executes

the task body (line 5), and finally resets the priority (line 6).

Note that the task body is only executed if the task has higher

priority than the current dynamic one, and that the priority can

be raised further inside the task body itself.

We model priority locks with two functions GETLOCK and

RELEASELOCK shown in Alg. 2. The set of all locks held by

a task is maintained in a set lockSet that is local to each

task. Information about locks of other tasks is propagated

through priorities. Acquiring a lock (GETLOCK) raises the

dynamic priority to the one of the lock, releasing a lock

(RELEASELOCK) resets the priority to the base priority of the

task or to the priority of the highest lock in the lockSet in

Algorithm 1 A sequential program S for a periodic program C bounded by time W . Notation: T is the set of tasks of C; G is

the set of global variables of C; J(t) is the set of jobs of task t; R =
∑

t∈T,j∈Job(t) |J(t)| is the number of rounds, last(t, j)
is true iff j is the last job of t ∈ T; for ti, tj ∈ T, ti < tj is true iff ti is of lower priority than tj ; ‘∗’ is a non-deterministic

value.

1: var rnd, job, endRnd, start[][], end[][]
2: ∀g ∈ G · var g[], vg[]
3: var localAssert[][]

4: function MAIN()

5: SCHEDULEJOBS()

6: ∀t ∈ T, j ∈ J(t) · localAssert[t][j] := TRUE

7: ∀g ∈ G · g[0] := ig
8: ∀g ∈ G∀r ∈ [1, R) · g[r] := vg[r]
9: for t ∈ T, job ∈ J(t) do

10: rnd := start[t][job]
11: endRnd := end[t][job]
12: T̂t()

13: assume(rnd = endRnd)

14:
∀g ∈ G, r ∈ [0, R− 1) ·
assume(g[r] = vg[r + 1])

15: ∀t ∈ T, j ∈ J(t) · assert(localAssert[t][j])

16: function CS(Task t)

17: if (*) then return FALSE

18: o := rnd

19: rnd := *

20: assume(o < rnd ≤ endRnd)

21:

∀t′ ∈ T, j′ ∈ J(t′) ·
assume(
t < t′ ⇒
(rnd ≤ start[t′][j′] ∨ rnd > end[t′][j′]))

22: return TRUE

23: function SCHEDULEJOBS()

// Jobs are sequential

24:

∀t ∈ T, j ∈ J(t) ·
assume(
0 ≤ start[t][j] ≤ end[t][j] ≤ R ∧
(¬last(t, j)⇒ end[t][j] ≤ start[t][j + 1]))

// Jobs are well-nested

25:

∀t1 ∈ T, t2 ∈ T, j1 ∈ J(t1), j2 ∈ J(t2) ·
assume(
(

t1 < t2 ∧
start[t1][j1] ≤ end[t2][j2] ∧
start[t2][j2] ≤ end[t1][j1]

)

⇒
(start[t1][j1] ≤ start[t2][j2] ≤ end[t2][j2] < end[t1][j1]))

// Jobs respect preemption bounds

26:

∀t1 ∈ T, t2 ∈ T, j1 ∈ J(t1), j2 ∈ J(t2) ·
assume(
(

t1 < t2 ∧ j2 ≥ PBt2
t1
∧

start[t1][j1] ≤ start[t2][j2] ≤ end[t2][j2] < end[t1][j1]
)

⇒
end[t2][j2 − PBt2

t1
] < start[t1][j1])

27: function T̂t()

Same as Tt, but

each statement ‘st’ is replaced with:

28: CS(t) ; st[g ← g[rnd]],
and each ‘assert(e)’ is replaced with:

29: localAssert[t][job] := e

case this set is not empty. Note that this allows for acquiring

multiple locks and releasing them in an arbitrary order. We

check that the priority of the locks is assigned correctly (i.e.,

acquiring a lock must never lower the dynamic priority) by

adding an assertion that checks this in line 8 of GETLOCK.

Correctness. We need to show that CS and SCHEDULEJOBS

in Alg. 1, which are based on the base priorities, are still

correct when priorities can change due to priority locks.

First, we need to show that the schedules permitted by

SCHEDULEJOBS cover the legitimate schedules in the presence

of priority locks. This is indeed the case because priority-

locks cannot lead to priority inversion – a situation in which

a job with a low base priority preempts a job with a high

base priority. We will demonstrate this using jobs j1 and j2
with base priorities 1 and 2, respectively. j1 cannot preempt

j2 even if it raises its own priority to 3, simply because j2
is not running when j1 acquires the lock. It can, therefore,

only delay the start time of j2, not preempt it. Thus, it is not

necessary to explore schedules in which a low-base-priority

job preempts a high-base-priority job.

Next, consider CS. Line 21 in CS guarantees that j1 does

not resume control in a round in which j2 is still active. If j1
raises its priority then j2 cannot preempt it, and therefore this

constraint blocks a computations in which j1 resumes when j2
was initially scheduled to run. Such a computation is illegal,

however, because it corresponds to a preemption of a high-

priority job j1 by a lower-priority job j2, it is accordingly

blocked by the assume statement on line 3 of T̂t-WRAPPER.

Finally, since j1 can raise its priority, it seems that we also

need the opposite constraint (i.e., that j2 does not resume

control in a round in which j1 is still active). However, there

is no need for this constraint because SCHEDULEJOBS does

not allow a schedule in which j1 preempts j2.

VI. PARTIAL-ORDER REDUCTION

Computations of a concurrent system have a natural parti-

tioning: two computations are in the same class iff they reach

the same observable states. Thus, for verification, it suffices

to examine only one representative from each class. This is

known as Partial-Order Reduction (POR) [17], [18].

POR is used widely and effectively in explicit-state Model

Checking (e.g., [19]). Recently, it has been shown to be

Algorithm 2 Priority locks.

1: function T̂t-WRAPPER()

2: sp := priority[rnd]
3: assume(sp ≤ BASEPRIORITY(t)))
4: priority[rnd] := BASEPRIORITY(t)
5: T̂t()
6: priority[rnd] := sp

7: function GETLOCK(Lock lck)

8: assert(LOCKPRIORITY(lck) ≥ priority[rnd])
9: lockSet := lockSet ∪ {lck}
10: priority[rnd] := LOCKPRIORITY(lck)

11: function RELEASELOCK(Task t, Lock lck)

12: lockSet := lockSet \ {lck}
13: if lockSet = ∅ then
14: priority[rnd] := BASEPRIORITY(t)
15: else

16: priority[rnd]:=priority of highest lock in lockSet

effective for symbolic methods as well [20]. In symbolic

verification, POR translates into additional constraints to the

underlying verification engine (in our case, CBMC and SAT).

This does not always makes the solver faster. We report on

our experience with this reduction in Sec. VII.

We propose two approaches for POR: syntactic and se-

mantic. In syntactic POR, we first partition global variables

into two groups – task local (accessed by a single task) and

shared (accessed by multiple tasks). Intuitively, task local

variables are local to a task, but preserved across jobs (e.g.,

static variables in C). Second, we allow preemptions only

before statements that access a shared variable. Note that this

also reduces the number of variables in the sequentialization

since global variables that are not shared do not need to be

guessed across rounds. We do not describe this reduction in

more details since it is well-known and used by many other

sequentialization approaches (e.g. [9]).

The idea behind semantic POR is to allow, for each shared

variable g, a task to be preempted: (i) before a store g := l

only by a computation that loads or stores g, and (ii) before a

load l := g only by a computation that stores g. Intuitively, if

a preempting computation does not affect the access to g then

it is scheduled after the access, while preserving behavior.

The semantic POR is implemented by adding Boolean

global read/write flags Wg and Rg for each shared g to

indicate whether g was stored or loaded, respectively. These

flags are treated as regular shared variables (i.e., guessed at

the beginning of each round and checked at the end of the

program). Each task body is changed as shown in Alg. 3.

Only the case for a store g := l is shown; the load l := g is

similar and is illustrated later with an example.

When a preemption happens before g := l, the read/write

flags of g are reset (line 4) in the round in which the pre-

emption happens. Then, at least one of the flags is assumed to

become true in the round in which the task resumes. Thus, any

computation in which the current task is preempted but g is not

Algorithm 3 A fragment of T̂t from Alg. 1 with POR. Only

the case of a store to shared variable g is shown.

1: function T̂t()

Same as Tt, but

each statement ‘g := l’ is replaced with:

2: oldRnd := rnd

3: if CS(t) then
4: Wg[oldRnd] :=Rg[oldRnd] := FALSE

5: assume(Wg[rnd] ∨Rg[rnd])

6: Wg[rnd] := TRUE

7: g[rnd] := l

accessed, is blocked. Note that since in the sequential program

we can access any round at any time, the resetting of the

read/write flags (line 4) follows the preemption sequentially,

but precedes it in the execution order. Finally, line 6 sets Wg

to true to indicate that g was stored.

Example 3 Under semantic POR, the two assignments

1: x := g ; g := y

in Tt, where x, y are local and g is shared, become the

sequence in T̂t that appears in Fig. 2.

1: oldRnd := rnd

2: if CS(t) then
3: Wg[oldRnd] :=Rg[oldRnd] := FALSE

4: assume(Wg[rnd])

5: Rg[rnd] := TRUE

6: x := g[rnd]
7: oldRnd := rnd

8: if CS(t) then
9: Wg[oldRnd] :=Rg[oldRnd] := FALSE

10: assume(Wg[rnd] ∨Rg[rnd])

11: Wg[rnd] := TRUE

12: g[rnd] := y

Fig. 2. An encoding for Example 3.

Let Spo denote the sequentialization with POR. The follow-

ing theorem shows that it is semantics preserving.

Theorem 3 Let C, W and S be as in Theorem 2 and Spo

the corresponding POR. Then, for every execution π of S that

violates a local assertion localAssert[t][j] of task t and job

j there is a corresponding execution π′ of Spo that violates

localAssert[t][j], and vice versa.

VII. CASE STUDIES

We implemented our approach in a tool called REK. REK

is built on top of CIL [21]. It takes as input C programs

annotated with entry points of each task, their periods, worst

case execution times, and the time bound W . The output is a

sequential C program S that is then verified by CBMC [22].

5 10 15 20 25

Frequency

0

100

200

300
T
im

e
(s
ec
on

d
s)

aso.ok2
aso.bug1

High-Priority Frequency vs Time

Fig. 3. Analysis time versus frequency of the highest-period time in ‘aso’.

To evaluate our approach, we have used REK to verify

several periodic programs. In the rest of this section, we report

on this experience. The tool and the case studies are available

at: http://www.andrew.cmu.edu/user/arieg/Rek.

Robot controller. The NXTway-GS controller, nxt for short,

runs on nxtOSEK [2] – a real-time operating system ported

to the LEGO MINDSTORM platform. nxtOSEK supports

programs written in C with periodic tasks and priority ceiling

locks. It is the target for Embedded Coder Robot NXT – a

Model-Based Design environment for using Simulink models

with LEGO robots.

The basic version of the controller has 3 periodic tasks: a

balancer, with period of 4ms, that keeps the robot upright and

monitors the bluetooth link for user commands, an obstacle,

with period 50ms, that monitors a sonar sensor for obstacles,

and a 100ms background task that prints debug information

on an LCD screen.

We verified several versions of this controller. All of the

properties verified involved the high-frequency balancer task.

The balancer goes through 3 modes of execution: INIT,

CALIBRATE, and CONTROL. In INIT mode all variables

are initialized, and in CALIBRATE a gyroscope is calibrated.

After that, balancer goes to CONTROL mode in which it

iteratively reads the bluetooth link, reads the gyroscope, and

sends commands to the two motors on the robot’s wheels.

The results are shown in the top part of Table I. We have

used W = 100ms, which is the minimum time needed for

all tasks to execute at least once. We did not enable semantic

POR since it was irrelevant in this case (all shared variables

were accessed by all tasks in all paths).

Experiments nxt.ok1 (nxt.bug1) check that the balancer is in

a correct (respectively, incorrect) mode at the end of the time

bound. Experiment nxt.ok2 checks that the balancer is always

in one of its defined modes. Experiment nxt.bug3 checks that

whenever balancer detects an obstacle, the balancer responds

by moving the robot. We found that since the shared variables

are not protected by a lock there is a race condition that causes

the balancer to miss a change in the state of obstacle for one

period. Experiment nxt.ok3 is the version of the controller

where the race condition has been resolved using locks.

For the second part of the robot case study, we modified

the original design to separate handling of each sensor by

a separate task. Our design, called ‘aso’ has 3 tasks: bal-

TABLE I
Experimental results. OL and SL = # lines of code in the original C

program and the generated sequentialization S, respectively; GL = size of
the GOTO program produced by CBMC; Var and Clause = # variables and
clauses in the SAT instance, respectively; S = verification result – ‘Y’ for

SAFE and ‘N’ for UNSAFE; Time = verification time in sec.

Name Program Size SAT Size S Time (s)
OL SL GL Var Clause

nxt.ok1 377 2,265 7,848 136K 426K Y 22.16
nxt.bug1 378 2,265 7,848 136K 426K N 9.95
nxt.ok2 368 2,322 8,572 141K 439K Y 13.92
nxt.bug2 385 2,497 10,921 144K 451K N 17.48
nxt.ok3 385 2,497 10,905 144K 449K Y 18.32

aso.bug1 401 2680 13106 178K 572K N 16.32
aso.bug2 400 2,682 13060 176K 566K N 15.01
aso.ok1 398 2,684 13,026 175K 560K Y 66.43
aso.bug3 426 3,263 19,211 373K 1,187K N 59.66
aso.bug4 424 3,250 18,503 347K 1,099K N 31.51
aso.ok2 421 3,251 18,589 348K 1,101K Y 328.32

RW1 190 3,428 5,860 42K 125K Y 20.74
RW1-PO 190 5,021 7,626 45K 134K Y 14.71

RW2 239 4,814 8,121 52K 152K Y 165.89
RW2-PO 239 7,356 10,388 56K 164K Y 162.20

RW3 285 7,338 21,163 139K 419K Y 436.86
RW3-PO 285 12,002 26,283 153K 467K Y 199.13

RW4 244 7,255 19,745 117K 350K Y 321.25
RW4-PO 244 12,272 24,261 130K 392K Y 59.66

RW5 188 3,198 5,208 41K 119K Y 47.83
RW5-PO 188 4,791 7,138 45K 131K Y 20.35

RW6 257 5,231 7,634 54K 157K Y 165.33
RW6-PO 257 8,235 10,119 59K 173K Y 157.43

ancer, observer, and bluetooth. The first two are the same

as before, and the bluetooth is responsible for the bluetooth

communication. We wanted a design in which the balancer

task is lock-free, which was challenging. During our design,

we unintentionally introduced subtle concurrency errors which

were detected by REK.

The results of these experiments are shown in the second

part of Table I. We checked consistency of communication

between the tasks. The experiments are: aso.bug1 and aso.bug2

– initial versions with inadequate locking leading to race

conditions. aso.ok1 is a correct design with preemption locks.

aso.bug3 is our first attempt at a lock-free implementation

that was fundamentally flawed and had to be abandoned.

aso.bug4 and aso.ok2 are a buggy and a correct version of

the final design in which obstacle and bluetooth synchronize

via priority locks and balancer is lock-free.

During the case study, we found it very convenient to

increase the period of the highest priority task (thus decreasing

its frequency). In many cases, this dramatically reduced verifi-

cation time, while allowing us to draw meaningful conclusions

from the counterexamples. Of course, this approach is not

sound in general. Fig. 3 shows the relationship between the

analysis time and the frequency of balancer for a correct and

an incorrect version of the controller. In case the design is

buggy, the time increased monotonically with the frequency.

However, for a safe design, the time behaves erratically: e.g.,

increasing the frequency from 20 to 26 made it easier to verify.

Such erratic behavior is common with SAT.

Reader-Writer. Reader-Writer (RW) is a common communi-

cation pattern in concurrent programs. We implemented three

lock-free flavors of a RW protocol (RW1, RW3, and RW5),

and their counterparts with locks (RW2, RW4, and RW6).

We checked consistency of communication between the tasks.

Each protocol was analyzed with 3 to 6 tasks (depending on

the protocol), with W such that every task executes once, and

with an increasing number of shared variables. The results are

shown in Table I. For each protocol, we only report on the

hardest instance solved in under 10 mins. In these examples,

semantic POR yields significant reduction in verification time.

The results with POR are shown in Table I in rows named

“PO”. Note that in all cases, the number of variables and

clauses with POR is larger, yet the verification time is smaller.

VIII. RELATED WORK

There is a large body of work in verification of logical prop-

erties of both sequential and concurrent programs (see [23] for

a recent survey). However, these techniques abstract away time

completely, by assuming a non-deterministic scheduler model.

In contrast, we use a priority-sensitive scheduler model, and

abstract time partially via our job-bounded abstraction.

A number of projects [5], [6] verify timed properties of

systems using discrete-time [24] or real-time [7] semantics.

They abstract away data- and control-flow, and verify models

only. We focus on the verification of implementations of

periodic programs, and do not abstract data- and control-flow.

Recently, Kidd et al. [4] showed a number of decidability

results for reachability in finite-state periodic programs with

recursion and locks. They apply sequentialization as well. The

key idea is to share a single stack between all tasks and model

preemptions by function calls. However, they not report on an

implementation. In contrast, we focus on a practical solution

to a bounded version of this problem.

In the context of concurrent software verification, several

flavors of sequentialization have been proposed and evalu-

ated (e.g., [9], [10], [11], [12]). Our procedure is closest to

the LR [9] style. However, it differs from LR significantly,

as discussed earlier (see Sec. IV-A), and provides a crucial

advantage over LR for periodic programs, as discussed next.

In both cases, ours and LR, the number of variables is

proportional to the number of rounds, R. However, LR al-

lows more computations since it does not enforce priority

constraints. In addition to yielding fewer false warnings, our

approach guarantees better coverage for the same number of

variables, as shown below:

Take two programs: (i) an N -task periodic program C with

a time bound that permits exactly one job per task; (ii) the

analogue of C, called C′, in a non-real-time setting, i.e., N

threads scheduled non-deterministically, each executing one

task of C. Consider the value of R required to cover all

reachable states, in our encoding S vs. the LR encoding of C′.
For LR, R is the number of possible context switches, which

by itself is proportional to the number of statements over

shared variables in C′. This value of R is needed to explore

a pathological path in C where, in each round, a single thread

is executed and the threads are picked in reverse-round-robin

order. In contrast, our approach only needs R = N , a much

smaller value in most practical cases. In fact, the pathological

path above is illegal, since scheduling tasks in reverse-round-

robin order violates priority constraints.

IX. CONCLUSION

Periodic programs, i.e., periodic RTES with rate-monotonic

scheduling, are an important sub-class of embedded real-time

software. In this paper, we address the time-bounded verifica-

tion of safety properties of periodic program implementations.

We present a solution involving two steps – convert the target

periodic program to a non-deterministic sequential program,

and then verify it with an off-the-shelf verification tool. Our

approach is sound, preserves both data- and control-flow, and

abstracts the effect of time via preemption-bounds. Some

of our techniques are applicable to other types of systems.

Specifically, note that we only used the assumption that the

verified system follows RMS in order to compute preemption

bounds. Other periodic RTES can be modeled with our method

by either supplying these bounds as part of the input, or by

removing line 26 in Alg. 1 (this may hinder completeness,

however). In addition, our partial order reduction is not re-

stricted to periodic RTES, and is applicable when analyzing

general multi-threaded programs.

We have implemented our approach in a tool, and used it

to identify subtle concurrency errors in a robot controller. We

believe that our work opens up several avenues for future

work in real-time software verification, notably unbounded

verification of periodic programs and the use of automated

abstraction refinement techniques.

REFERENCES

[1] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment,” Journal of the ACM (JACM),
vol. 20, no. 1, pp. 46–61, January 1973.

[2] “nxtOSEK/JSP Open Source Platform for LEGO MINDSTORMS
NXT,” http://lejos-osek.sf.net.

[3] D. C. Locke, D. R. Vogel, L. Lucas, and J. B. Goodenough,
“Generic Avionics Software Specification,” Software Engineering In-
stitute, Carnegie Mellon University, Pittsburgh, PA, Technical report
CMU/SEI-90-TR-8-ESD-TR-90-209, December 1990.

[4] N. Kidd, S. Jagannathan, and J. Vitek, “One Stack to Run Them All
- Reducing Concurrent Analysis to Sequential Analysis under Priority
Scheduling,” in Proceedings of the 17th International SPIN Workshop

on Model Checking of Software (SPIN ’10), Enschede, The Netherlands,
September 2010, pp. 245–261.

[5] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a Nutshell,”
International Journal on Software Tools for Technology Transfer (STTT),
vol. 1, no. 1-2, pp. 134–152, December 1997.

[6] V. A. Braberman and M. Felder, “Verification of Real-Time Designs:
Combining Scheduling Theory with Automatic Formal Verification,”
in Proceedings of the 7th ACM SIGSOFT Symposium on Foundations

of Software Engineering (FSE ’99), ser. Lecture Notes in Computer
Science, vol. 1687. Toulouse, France, September, 1999. New York,
NY: Springer-Verlag, September 1999, pp. 494–510.

[7] R. Alur and D. L. Dill, “A Theory of Timed Automata,” Theoretical

Computer Science (TCS), vol. 126, no. 2, pp. 183–235, April 1994.

[8] S. Qadeer and D. Wu, “KISS: Keep It Simple and Sequential,” in
Proceedings of the ACM SIGPLAN 2004 Conference on Programming

Language Design and Implementation (PLDI ’04). Washington, DC,
USA, June 9-11, 2004. New York, NY: Association for Computing
Machinery, June 2004, pp. 14–24.

[9] A. Lal and T. W. Reps, “Reducing Concurrent Analysis Under a Context
Bound to Sequential Analysis,” in Proceedings of the 20th International

Conference on Computer Aided Verification (CAV ’08), ser. Lecture
Notes in Computer Science, A. Gupta and S. Malik, Eds., vol. 5123.
Princeton, NJ, USA, July 7-14, 2008. New York, NY: Springer-Verlag,
July 2008, pp. 37–51.

[10] S. L. Torre, P. Madhusudan, and G. Parlato, “Reducing Context-Bounded
Concurrent Reachability to Sequential Reachability,” in Proceedings of

the 21st International Conference on Computer Aided Verification (CAV

’09), ser. Lecture Notes in Computer Science, A. Bouajjani and O. Maler,
Eds., vol. 5643. Grenoble, France, June 26 - July 2, 2009. New York,
NY: Springer-Verlag, July 2009, pp. 477–492.

[11] N. Ghafari, A. J. Hu, and Z. Rakamaric, “Context-Bounded Translations
for Concurrent Software: An Empirical Evaluation,” in Proceedings of

the 17th International SPIN Workshop on Model Checking of Software

(SPIN ’10), Enschede, The Netherlands, September 2010, pp. 227–244.
[12] M. Emmi, S. Qadeer, and Z. Rakamaric, “Delay-Bounded Scheduling,”

in Popl11, T. Ball and M. Sagiv, Eds. Austin, TX, USA, January 26-28,
2011. New York, NY: Association for Computing Machinery, January
2011, pp. 411–422.

[13] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zue, Bounded
Model Checking, ser. Advances in computers. Academic Press, 2003,
vol. 58.

[14] N. Audsley, A. Burns, K. Tindell, and A. Wellings, “Applying New
Scheduling Theory to Static Priority Preemptive Scheduling,” Software

Engineering Journal (SEJ), vol. 8, no. 5, pp. 284–292, May 1993.
[15] “VxWorks Programmer’s Guide.”
[16] R. Mall, Real-Time Systems: Theory and Practice. Prentice Hall, 2009.
[17] P. Godefroid, Partial-Order Methods for the Verification of Concurrent

Systems - An Approach to the State-Explosion Problem, ser. Lecture
Notes in Computer Science. Springer-Verlag, 1996, vol. 1032.

[18] D. Peled, “All from One, One for All: on Model Checking Using
Representatives,” in Proceedings of the 5th International Conference on

Computer Aided Verification (CAV ’93), ser. Lecture Notes in Computer
Science, C. Courcoubetis, Ed., vol. 697. Elounda, Greece, June 28 -
July 1, 1993. New York, NY: Springer-Verlag, June 1993, pp. 409–423.

[19] D. Bosnacki and G. J. Holzmann, “Improving Spin’s Partial-Order
Reduction for Breadth-First Search,” in Proceedings of the 12th Interna-

tional SPIN Workshop on Model Checking of Software (SPIN ’05), ser.
Lecture Notes in Computer Science, P. Godefroid, Ed., vol. 3639. San
Francisco, CA, August 22–24, 2005. New York, NY: Springer-Verlag,
August 2005, pp. 91–105.

[20] V. Kahlon, C. Wang, and A. Gupta, “Monotonic Partial Order Reduction:
An Optimal Symbolic Partial Order Reduction Technique,” in Proceed-

ings of the 21st International Conference on Computer Aided Verification

(CAV ’09), ser. Lecture Notes in Computer Science, A. Bouajjani and
O. Maler, Eds., vol. 5643. Grenoble, France, June 26 - July 2, 2009.
New York, NY: Springer-Verlag, July 2009, pp. 398–413.

[21] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, “CIL: In-
termediate Language and Tools for Analysis and Transformation of
C Programs,” in Proceedings of the 11th International Conference

on Compiler Construction (CC ’02), ser. Lecture Notes in Computer
Science, R. N. Horspool, Ed., vol. 2304. Grenoble, France, April 8–
12, 2002. New York, NY: Springer-Verlag, April 2002, pp. 213–228.

[22] E. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking ANSI-C
Programs,” in Proceedings of the 10th International Conference on Tools

and Algorithms for the Construction and Analysis of Systems (TACAS

’04), ser. Lecture Notes in Computer Science, K. Jensen and A. Podelski,
Eds., vol. 2988. Barcelona, Spain, March 29–April 2, 2004. New York,
NY: Springer-Verlag, March–April 2004, pp. 168–176.

[23] V. D’Silva, D. Kroening, and G. Weissenbacher, “A Survey of Auto-
mated Techniques for Formal Software Verification,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 27, no. 7, pp. 1165–1178, July 2008.

[24] F. Laroussinie, N. Markey, and P. Schnoebelen, “Efficient Timed Model
Checking for Discrete-Time Systems,” Theoretical Computer Science

(TCS), vol. 353, no. 1-3, pp. 249–271, March 2006.

