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Abstract—Networks of Hybrid Automata are a clean modelling
framework for complex systems with discrete and continuous
dynamics. Message Sequence Charts (MSCs) are a consolidated
language to describe desired behaviors of a network of interacting
components. Techniques to analyze the feasibility of an MSC over
a given HA network are based on specialized bounded model
checking techniques, and focus on efficiently constructing traces
of the network that witness the MSC behavior. Unfortunately,
these techniques are unable to deal with the “unfeasibility” of
the MSC, i.e. that no trace of the network satisfies the MSC.

In this paper, we tackle the problem of MSC unfeasibility:
first, we propose specialized techniques to prove that an MSC
can not be satisfied by any trace of a given HA network; second,
we show how to explain why an MSC is unfeasible.

The approach is cast in an SMT-based verification framework,
using a local time semantics, where the timescales of the automata
in the network are synchronized upon shared events. In order
to prove unfeasibility, we generalize k-induction to deal with
the structure of the MSC, so that the simple path condition
is localized to each fragment of the MSC. The explanations
are provided as formulas in the variables representing the time
points of the events of the MSCs, and are generated using
unsatisfiable core extraction and interpolation. An experimental
evaluation demonstrates the effectiveness of the approach in
proving unfeasibility, and the adequacy of the automatically
generated explanations.

I. INTRODUCTION

Complex embedded systems (e.g. control systems for rail-

ways, avionics, and space) are made of several interact-

ing components, and feature both discrete and continuous

variables. Networks of communicating hybrid automata [18]

(HAs) are increasingly used as a formal framework to model

and analyze the behavior of such systems: local activities of

each component amount to transitions local to each HA; com-

munications and other events that are shared between/visible

for various components are modelled as synchronizing transi-

tions of the automata in the network; time elapse is modelled

as implicit shared timed transitions.

A fundamental step in the design of these networks is the

validation of the models performed by checking if they accept

some desired interactions among the components. The lan-

guage of Message Sequence Charts (MSCs) and its extensions

are often used to express scenarios of such interactions. MSCs

are especially useful for the end users because of their clarity

and graphical content.

The ability to check whether a network of HAs may exhibit

behaviors that satisfy a given MSC is an important feature

to support user validation. Efficient techniques to analyze the

feasibility of an MSC over a given HA network are based on

specialized bounded model checking techniques, and focus on

efficiently constructing traces of the network that witness the

MSC behavior. Unfortunately, these techniques are unable to

deal with the unfeasibility of the MSC, i.e. the case where no

trace of the network satisfies the MSC.

In this paper, we tackle the problem of MSC unfeasibility,

along two main directions: first, we propose specialized tech-

niques to prove that an MSC cannot be satisfied by any trace

of a given HA network; second, we show how to explain why

an MSC is unfeasible.

In order to prove unfeasibility, we propose a specialized

algorithm, which generalizes k-induction to deal directly with

the structure of the MSC. The search is structured around the

events in the MSC, which are used as intermediate “islands”.

In addition to pre-simplifying the encoding of the fragments of

the MSC between events, we apply the simple path condition

to each fragment, so that the encoding length of each fragment

is no longer increased as soon as we detect that no new states

can be reached. The MSC is deemed unfeasible for the network

when no fragment can be further extended.

In order to explain why an MSC is unfeasible, our approach

can generate various information. One is a subset of the MSC

that is itself unfeasible for the network, which helps to focus

on a subset of the messages, and on the HAs in the network

that are involved. Another one is a set of timing conditions

over the events in the MSC, which are themselves sufficient

to conclude unfeasibility. The explanations are provided as

formulas in linear arithmetic, constraining the assignments

to the variables representing (some of) the time points of

the events of the MSCs. To the best of our knowledge, this

is the first work explaining MSC unfeasibility. We remark

that here we are trying to provide diagnostic information in

case of a false existential property, and thus the traditional

diagnostics used in model checking for universal properties

(e.g. simulation traces) provides no help.

The technical underpinning of this work is the “local time”

semantics [6] for HAs, which exploits the fact that automata

can be “shallowly synchronized”. The intuition is that each au-

tomaton can proceed based on its individual “local time scale”,

unless they perform a synchronizing transition, in which case

they must realign their absolute time. The framework allows

to reason locally about the simple path conditions for each

process, and also to extract more structured explanations,

possibly not involving all the processes in the network and



the MSC events.

We implemented the approach and carried out an extensive

evaluation, over a wide set of networks and benchmark MSCs.

The new approach is able to effectively refute MSCs, signif-

icantly outperforming the corresponding approaches based on

automata construction, and to provide interesting explanations.

The paper is structured as follows. In Section II, we present

some background on networks of HAs, on SMT, and on k-

induction. In Section III-A, we describe the language we use

to describe the scenarios and the SMT encoding based on their

structure. In Section IV, we discuss MSC-direct induction. In

Section V, we discuss method to find explanations of unfeasi-

bility. In Section VI, we discuss related work. In Section VII,

we experimentally evaluate our approach. In Section VIII, we

draw some conclusions.

II. BACKGROUND

A. Networks of hybrid automata

A Labelled Transition System (LTS) is a tuple 〈Q,A,Q0, R〉
where Q is the set of states, A is the set of actions/events

(also called alphabet), Q0 ⊆ Q is the set of initial states,

R ⊆ Q×A×Q is the set of labeled transitions.

A trace is a sequence of events w = a1, . . . , ak ∈ A∗.

Given A′ ⊆ A, the projection w|A′ of w on A′ is the sub-

trace of w obtained by removing all events in w that are not

in A′. A path π of S over the trace w = a1, . . . , ak ∈ A∗

is a sequence q0
a1→ q1

a2→ . . .
ak→ qk such that q0 ∈ Q0 and,

〈qi−1, ai, qi〉 ∈ R for all i such that 1 ≤ i ≤ k. We say that

π accepts w.

The parallel composition S1||S2 of two LTSs S1 =
〈Q1, A1, Q01, R1〉 and S2 = 〈Q2, A2, Q02, R2〉 is the LTS

〈Q1 ×Q2, A1 ∪A2, Q01 ×Q02, R〉 where:

R :={〈〈q1, q2〉, a, 〈q
′
1, q

′
2〉〉 |〈q1, a, q

′
1〉 ∈ R1, 〈q2, a, q

′
2〉 ∈ R2}

∪{〈〈q1, q2〉, a, 〈q′1, q2〉〉 | 〈q1, a, q
′
1〉 ∈ R1, a 6∈ A2}

∪{〈〈q1, q2〉, a, 〈q1, q
′
2〉〉 | 〈q2, a, q

′
2〉 ∈ R2, a 6∈ A1}.

The parallel composition of two or more LTSs S1|| . . . ||Sn

is also called a network. If an event is shared by two or more

components, we say that the event is a synchronization event;

otherwise, we say that the event is local. We denote with τi
the set of local events of the i-th component.

Given a network N and a state q ∈ Q1 × . . . × Qn, the

reachability problem is the problem of checking if there is a

path q0
a1→ q1

a2→ . . .
ak→ qk of S with qk = q.

Hybrid Automata (HAs) [18] enrich the discrete states and

transitions of LTSs with continuous variables and further

conditions that constrain how these variables continuously

evolve within a discrete state. In particular, a HA is a tuple

〈Q,A,Q0, R,X, µ, ι, ξ, θ〉 where:

• Q is the set of states,

• A is the set of events,

• Q0 ⊆ Q is the set of initial states,

• R ⊆ Q×A×Q is the set of discrete transitions,

• X is the set of continuous variables,

• µ : Q→ P (X, Ẋ) is the flow condition,

• ι : Q→ P (X) is the initial condition,

• ξ : Q→ P (X) is the invariant condition,

• θ : R→ P (X,X ′) is the jump condition,

where X ′ represent the value of variables X after a discrete

transition, Ẋ represent the derivative of variables X during a

continuous evolution, and P represents the set of predicates

over the specified variables.

A Linear HA (LHA) is an HA where all the conditions

are Boolean combinations of linear inequalities and the flow

conditions contain variables in Ẋ only. We assume also

that the invariant conditions of a LHA are conjunctions of

inequalities.

A network H of HAs is the parallel composition of two

or more HAs. We consider the local-time semantics, which is

equivalent to the standard global-time semantics of [18], but

instead of synchronizing the components on a shared timed

event, it enriches all shared events with time-stamps, intro-

duces local timed events, and synchronizes the components on

shared events forcing the time-stamps to be equal [6], [10].

In the following, we consider a network H = H1|| . . . ||Hn

of HAs with Hi = 〈Qi, Ai, Q0i, Ri,Xi, µi, ιi, ξi, θi〉 such that,

for all 1 ≤ i < j ≤ n, Xi ∩Xj = ∅ (i.e. the set of continuous

variables of the hybrid automata are disjoint).

The local-time semantics (or time-stamps semantics) of H
is the network of LTSs NLOCTIME(H) = S1|| . . . ||Sn with Si =
〈Q′

i, A
′
i, Q

′
0i, R

′
i〉 where:

• Q′
i = {〈q, x, t〉 | q ∈ Qi, x ∈ R

|Xi|, t ∈ R≥0},

• A′
i = {〈a, t〉 | a ∈ Ai, t ∈ R≥0} ∪ {TIMEi},

• Q′
0i = {〈q, x, 0〉 | q ∈ Q0i, x ∈ ιi(q)},

• R′
i = {〈〈q, x, t〉, 〈a, t〉, 〈q′, x′, t〉〉 | 〈q, a, q′〉 ∈

Ri, 〈x, x
′〉 ∈ θi(q, a, q

′), x ∈ ξi(q), x
′ ∈ ξi(q

′)} ∪
{〈〈q, x, t〉, TIMEi, 〈q, x

′, t′〉〉 | there exists f satisfying

µi(q) s.t. f(t) = x, f(t′) = x′, f(ǫ) ∈ ξi(q), ǫ ∈
[t, t′], t ≤ t′}.

The definition of the local-time semantics is such that the

set of actions of each LTS contains a local timed event TIMEi

and couples containing a discrete action and a time-stamp (i.e.

the amount of time elapsed in the automaton). Thus, each

automaton performs the time transition locally, changing its

local time-stamp. When two automata synchronize on 〈a, t〉
they agree on the action a and on the time-stamp t. Instead,

in the global-time semantics, all the automata are forced to

synchronize on the time transition 〈TIME, δ〉, agreeing on the

time elapsed during the transition (δ variable).

B. SMT encoding of hybrid automata

As described in [18], LHAs can be analyzed with symbolic

techniques. Let us consider a network H = H1|| . . . ||Hn

of LHAs whose semantics is given by the network of LTSs

S1|| . . . ||Sn where Si = 〈Qi, Ai, Qi0, Ri〉. The states Qi can

be represented by a set Vi of symbolic variables. The events of

Ai can be represented by a set of symbolic variables Wi. Sets

of states are represented with formulas over Vi, while sets of

transitions are represented with formulas over Vi, Wi, and V ′
i ,

which are the next values of Vi. In particular, it is possible to

define a formula Ii(Vi) that represents the initial states and a

formula Ti that represents the transitions of Hi.



The details of the encoding we use can be found in [8].

Here, we just notice that we use a scalar input variable ε to

represent the events of Hi adding two distinguished values,

namely T and S, to represent a timed transition and stuttering,

respectively. When stuttering, the system does not change any

variable. Moreover, when using the local-time semantics, the

variable ti represents the local time of Hi and is also used as

time-stamp of the events (thus, to ensure that shared events

happen at the same time).

As standard in Bounded Model Checking, given an integer

k, we can build a formula whose models correspond to all

paths of length k of the represented LTS S. The formula

introduces k+1 copies of every variable in the encoding of the

automata. Given a formula φ, we denote with φi the result of

substituting the current and next variables of φ with their i-th
and (i+ 1)-th copy, respectively. The paths of S of length k
can be encoded into the formula path(k) := I0 ∧

∧
0≤i<k T

i.

A typical optimization used in BMC for timed and hybrid

systems is to force the alternation of timed and discrete

transitions [1], [4].

Most of modern solvers, both for SAT and SMT, have an

incremental interface such that, if a problem is fed to the solver

incrementally, the solver can first tackle smaller parts of the

problem and then pass to large parts managing to reuse the

lemmas discovered during the previous searches.

C. K-induction

K-induction [32] is a technique that proves that if a set of

states is not reachable in k steps, then it is not reachable at all.

On the lines of the induction principle, it consists of a base

step, which solves the bounded reachability problem with a

given bound k of steps, and an inductive step, which concludes

that k is sufficient to solve the (unbounded) reachability

problem. The idea of the inductive step is to check either

if the initial states cannot reach new (non-visited) states in

k + 1 steps, or if the target set of states cannot be reached in

k+1 steps (hereafter, we will consider only the first condition).

These checks can be solved by means of satisfiability.

The formula simple(k) :=
∧

0≤i<j≤k ¬
∧

v∈V v
i = vj can

be used to strengthen the path encoding to represent only

simple (loop-free) paths. If the formula kind(k) := I(V 0) ∧
π(k+1)∧simple(k+1) is unsatisfiable, then there is no initial

simple path with more than k states. Thus, if, for all i ≤ k,

path(k) ∧ targetk is unsatisfiable and kind(k) is unsatisfiable

as well, then target is not reachable.

If the target is not reachable in a finite-state LTS, there is a

k for which the above conditions are unsatisfiable. In hybrid

systems, it is very common that the LTSs contain infinite paths,

typically with monotonically increasing variables (such as the

local time) and, therefore, it is difficult to apply k-induction.

In [33], k-induction has been integrated with predicate

abstraction [16] to deal with infinite-state systems. Typically,

an abstraction defines an equivalence relation EQα among the

the concrete states that are not distinguished by the abstraction.

As for predicate abstraction, given a certain set P of predicates

over the variables V , the equivalence relation is defined as

EQP(V, V ) :=
∧

P∈P
P (V ) ↔ P (V ).

Abstract k-induction embeds the definition of the predicate

abstraction in the encoding of the path. In particular, the for-

mula pathα(k) :=
∧

1≤h<k(T (V h−1, V h) ∧ EQα(V h, V h)) ∧
T (V k−1, V k) is satisfiable iff there exist a path of k steps in

the abstract state space. The formula simpleα(k) is defined

as simpleα(k) :=
∧

0≤i<j≤k ¬EQα(V i, V j). The formula

pathα(k) ∧ simpleα(k) is satisfiable iff there exists a simple

path of length k in the abstract state space. Finally, the

formula kindα, defined as kindα(k) := I(V 0)∧EQα(V 0, V 0)∧
pathα(k) ∧ simpleα(k), is satisfiable iff there exists an initial

simple path of length k.

Similarly to the concrete case, if, for all i ≤ k, pathα(k) ∧
EQα(V k, V k)∧ targetk is unsatisfiable and kindα(k) is unsat-

isfiable as well, then target is not reachable in the abstraction

(and therefore also in the concrete state space).

III. MSC FEASIBILITY

A. Constrained Message Sequence Charts

A Message Sequence Chart (MSC) [20] defines a single

(partial-order) interaction of the components of a network N .

MSCs have been extended in several ways. We consider here a

particular variant, enriched with additional constraints, which

turns out to be very useful and easy to handle with the SMT-

based approach.

An MSC m is associated with a set of events Am ⊆
AN , subset of the events of the network. We assume that

Am contains all and only the shared events of the network

(Am =
⋃

1≤i<j≤nAi∩Aj). In particular, in the case of hybrid

automata the timed events are not part of Am.

The MSC defines a sequence of events for every component

S of the network, called instance of S. An instance σ for the

LTS S is a sequence a1; . . . ; al ∈ (Am ∩ AS)∗ of events of

S. S accepts the instance (S |= σ) iff there exists a trace w
accepted by S such that the sub-sequence of events in Am is

equal to σ (w|Am
= σ). In other words, S accepts the instance

iff there exists a path π of S over a trace compatible with the

instance σ. In such cases, we say that π |= σ.

We denote the j-th event aj of the instance σi with σi[j], the

number l of events in σi with |σi|, the local segment between

the event σi[j] and σi[j + 1] of σi with lsg(σi[j]), where the

first local segment before a1 is lsg(σi[0]) and the final local

segment after a|σi| is lsg(σi[|σi|]).

If π |= σ, π must be in the form q0
τ
→ . . .

τ
→ qh1

σ[1]
→

qh1+1
τ
→ . . .

τ
→ qh|σ|

σ[|σ|]
→ qh|σ|+1

τ
→ . . .

τ
→ qh|σ+1|

, where

qh ∈ Q and τ are local events of S. We denote the sub-

sequences of the path π in which it is split by σ as follows:

• prej(π) = qhj
, it is the source state of the transition

labeled with σ[j] in π.

• postj(π) = qhj+1, it is the destination state of the

transition labeled with σ[j] in π.

• locj(π) = qhj+1; . . . ; qhj+1
, it is the sequence of states

between the j-th and the j + 1-th shared events, where

we denoted 0 with h0.



An MSC is the parallel composition σ1|| . . . ||σn where σi

is an instance of Si. The network N of LTSs accepts the MSC

m (N |= m) iff there exists a trace w accepted by N such

that, for every Si, the sub-sequence of events in Am ∩ASi
is

equal to σi (w|(Am∩ASi
) = σi). In other words, N accepts the

instance iff there exists a path of N over a trace compatible

with every instance of the MSC. If H is a network of HAs,

then we say that H |= m iff NLOCTIME(H) |= m.

We define a Constrained MSC (CMSC) as a pair 〈m,φ〉
where m is an MSC σ1|| . . . ||σn and φ is a formula over the

variables vi[j] with 1 ≤ i ≤ n and 1 ≤ j ≤ |σi|, where vi[j]
represents the value of the variable v of the i-th component

at the time of the j-th event σi[j] of σi. N |= 〈m,φ〉 iff

there exists a path π = π1|| . . . ||πn such that πi |= σi and the

assignments of prej(πi) to vi[j] satisfy φ.

The model checking problem for a CMSC 〈m,φ〉 is the

problem of checking if a network satisfies a CMSC. The

classical approach is based on the construction of a monitor

(or a network of monitors) that, composed with N , forces N
to follow only paths that satisfy the MSC.

An MSC σ1|| . . . ||σn is consistent iff for every pair of

instances σi and σj the projection on the common alphabet is

the same, i.e., if A = Ai ∩ Aj , σi|A = σj|A. Henceforth, we

assume that the MSCs are consistent. The check of consistency

is trivial and can be done syntactically with a simple traversal

of the MSC’s structure.

B. Scenario-driven encoding

The drawbacks of the traditional SMT-based encoding is

that it cannot exploit the sequence of messages prescribed by

the MSC in order to simplify the search because of the uncer-

tainty on the number of local steps between two events. We

encode the path of each automaton independently, exploiting

the local time semantics, and then we add constraints that

force shared events to happen at the same time, as in shallow

synchronization [8]. Moreover, we fix the steps corresponding

to the shared events and we parametrize the encoding of the

local steps with a maximum number of transitions.

We extend the encoding presented in [10] with different

numbers of steps for different local segments of the MSC.

Let us consider a network H = H1|| . . . ||Hn of LHAs and

the encoding 〈Vi,Wi, Ii, Ti〉 representing the LHA Hi, for 1 ≤
i ≤ n, in the local-time semantics. We denote with Ti|φ the

transition condition restricted to the condition φ, i.e., Ti|φ =
Ti ∧ φ. We abbreviate Ti|ε=a with Ti|a and Ti|ε∈τi∪{S} with

Ti|τ (notice that τi, the set of local actions, contains also the

timed event T).

We associate a bound ki[j] to the j-th segment lsg(σi[j]) of

the i-th instance. ki[j] is used to limit the number of transitions

in the local path locj(π) of a path π satisfying the instance

σi. We use ki to denote 〈ki[0], . . . , ki[hi]〉 and k to denote

〈k1, . . . , kn〉.
Note that the event σi[j] is preceded by

∑j−1
v=0 ki[v] + j −

1 transitions consisting of local transitions (
∑j−1

v=0 ki[v]) and

shared events (j− 1). idxi[j] defines the index used to encode

the event σi[j] as idxi[j] :=
∑j−1

v=0 ki[v] + j − 1.

The following encoding represents all paths of the network

compatible with the MSC where the local transitions of the j-
th segment of the i-th instance have been unrolled up to ki[j]
times (note that the “up to” is due to the ability of stuttering):

enc(m, k) :=
∧

1≤i≤n

enc(σi, ki) ∧

∧

1≤j<i≤n

sync(σj , σi) ∧ (t
∑|σj |

v=0 kj [v]
j = t

∑|σi|
v=0 ki[v]

i )

enc(σi, ki)) := I0
i ∧

∧

1≤h≤k0
i

Th−1
i|τ ∧

∧

1≤j≤|σi|

(T
idxi[j]
i|aj

∧
∧

1≤h≤ki[j]

T
idxi[j]+h

i|τ )

sync(σj , σi) :=
∧

1≤z≤|σj|A
|=|σi|A

|

t
idxi[f

ij
i (z)]

i = t
idxj [f

ij
j (z)]

j

where A = Ai ∩Aj and the function f ij
i maps the z-th event

az shared between σi and σj to the index of az in σi. More,

specifically, if σj|A = σi|A = a1; . . . al, then f ij
i , f

ij
j : N → N

are such that az = σi(f
ij
i (z)) = σj(f

ij
j (z)), for 1 ≤ z ≤ l.

Intuitively, enc(m, k) encodes the unrolling of each compo-

nent according to its instance and guarantees that the different

unrollings have the same time for every occurrence of a shared

event and the same final time.

In order to encode the paths that satisfy a CMSC we have

just to conjoin the additional constraints:

enc(〈m,φ〉, k) := enc(m, k) ∧ φ[v
idxi[j]
i /vi[j]]

where for all the instances i, 1 ≤ i ≤ n, and all events j,
1 ≤ j ≤ |σi|, we substitute vi[j] in φ with the timed variable

v
idxi[j]
i .

Theorem 1: If enc(〈m,φ〉, k) is satisfiable then H |=
〈m,φ〉. Vice versa, if H |= 〈m,φ〉, then there exists integers

k such that enc(〈m,φ〉, k) is satisfiable.

IV. SCENARIO-DRIVEN INDUCTION

In this section, we describe how the structure of the MSC

can be exploited to tailor k-induction to prove the unfeasibility

of the scenario. For the base case, we use the encoding

of [10]. For the inductive step, we apply the simple path

condition to each segment of the scenario and prove that

such partitioned simple-path condition is equivalent to the

path condition applied to composition of the network and

the scenario monitor. The use of different local bounds as

presented in Section III-B allows k-induction to stop the

unrolling of the local path at different depths according to the

local structure of the component at the considered segment.

A. Partitioned simple-path condition

Our goal is to find an inductive condition kind(〈m,φ〉, k)
such that, in the finite-state case, N 6|= 〈m,φ〉 if and only if

there exist k such that enc(〈m,φ〉, k) and kind(〈m,φ〉, k)
are unsatisfiable. In the hybrid case, we would like that

the “if” condition still holds, while the “only if” condition



should hold when the corresponding inductive condition for

the composition of the network with the MSC monitor holds

(relatively complete). The difficulties are that:

• the projection of a simple path on a component may be

not a simple path;
• if a simple path is the concatenation or the parallel

composition of two paths, these may be not the longest

simple paths of their segments.

The CMSC 〈m,φ〉 defines a partial order <m among the

segments of m defined as the reflexive and transitive closure

of the smallest relation such that:

• lsg(σi[j]) <m lsg(σi[j
′]) if 0 ≤ j < j′ ≤ hi;

• lsg(σi[j]) <m lsg(σi′ [j
′]) if there exists lsg(σi′′ [j

′′]) such

that there is a synchronization between σi[j] and σi′′ [j
′′]

and lsg(σi′′ [j
′′]) <m lsg(σi′ [j

′]).

Given a CMSC 〈m,φ〉 and the local path lsg(σi[j]) we

define the partial CMSC 〈mi[j], φi[j]〉 where:

• mi[j] = σ1|| . . . ||σn such that for all 1 ≤ v ≤ n,

|σv| ≤ |σv| and for all 1 ≤ z ≤ |σv| σv[z] = σv[z]
and lsg(σv[z]) <m lsg(σi[j]) or lsg(σv[z]) = lsg(σi[j]),
while for all |σv| < z ≤ |σv| lsg(σv[z]) 6<m lsg(σi[j]).

• φi[j] contains only the constraints of φ which are over

variables in mi[j].

We define the local simple path condition as follows:

kindi[j] := enc(〈mi[j], φi[j]〉, k) ∧ simplei[j]

simplei[j] :=
∧

1≤h,z≤ki[j]

s
idxi[j]+h
i 6= s

idxi[j]+z
i

Theorem 2: If there exist k s.t. enc(〈m,φ〉, k) is unsatisfi-

able and, for all i, j, kindi[j] is unsatisfiable, then N 6|= m.

In order to check if k-induction holds incrementally, we

visit the MSC m according to the partial order <m. We

incrementally apply the partitioned simple path condition to

the local segments of m. The incremental checks exploit the

standard Push/Pop/Assert incremental interface of the solver.

B. K-induction for hybrid systems

1) Alternation of timed and discrete transitions: The al-

ternation of timed and discrete transitions has been proposed

in different works to optimize the search of BMC for timed

and hybrid systems [1], [4]. With k-induction, the alternation

is fundamental to allow a concrete search to close. In fact,

without forcing the alternation, the system will likely have

infinite loop-free paths where timed transitions change some

continuous variables infinitely often.

In order to enhance k-induction with alternation, the follow-

ing points must be taken into account:

• since consecutive discrete transitions are possible, the

timed transition must permit the elapsed time to be zero;

therefore, the loop-free condition of k-induction must be

relaxed in order to allow self loops with a timed transition

with no elapsed time;

• the scenario-based encoding of the bounded model check-

ing problem exploits stutter transitions in order to encode

paths with up to k steps (instead of exactly k steps);

the stuttering makes the alternation ineffective because

it allows infinite loop-free paths alternating timed and

stutter transitions; therefore, it is fundamental to avoid

stuttering when considering the simple path condition.

2) Enabling a partitioned abstraction: The structure of

local transitions between two shared events is often simple and

without loops. In these cases, the alternation without stuttering

allows k-induction to prove the unfeasibility of scenarios.

If instead there are loops in the local structure, they may

correspond to infinite loop-free paths. In order to prove the

unfeasibility of scenarios also in these cases, we combine k-

induction with predicate abstraction as in [33].

We can associate to different segments of the MSC different

abstractions of the local transition relation. This way, we can

obtain a fined-grained abstraction which abstract away the

continuous components only where necessary.

V. UNFEASIBILITY EXPLANATION

We identify the following types of explanations to under-

stand the reasons of the unfeasibility of the CMSC 〈m,φ〉:

1) which parts of the CMSC cannot be executed by the

network;

2) why the paths of the network consistent with m cannot

satisfy φ;

3) why the paths of a component consistent with the

corresponding instance of m are inconsistent with the

rest of the CMSC.

We answer these questions by exploiting both unsat cores

and interpolation. The unsatisfiable core for an unsatisfiable

formula φ is a formula ψ iff ψ is unsatisfiable and φ = ψ∧ψ′,

for a (possibly empty) formula ψ′. Given two formulas A and

B, with A∧B |= ⊥, the Craig interpolant of A∧B is a formula

I such that |= A → I , B ∧ I |= ⊥, and which contains only

variables common to A and B. Intuitively, the interpolant is

an over-approximation of A “guided” by B.

In particular, after reaching the maximum bound in ev-

ery local segment of the CMSC, we can build the proof

of unsatisfiability of the BMC problem with such bounds.

The unsat core extracted from the proof contains a subset

of the unrolling of the components along the MSC and a

(possibly empty) subset of the CMSC constraints which are

incompatible. Since the local paths, events, and constraints are

asserted in different conjuncts of the encoding, the unsat core

is fine-grained enough to distinguish them.

By partitioning the encoding into the constraints obtained by

unrolling the network (A) and the constraints of the CMSC

(B), we can compute an interpolant of their unsatisfiability.

This way, we obtain a formula over the variables at the time

of the events implied by the network executing the MSC and

inconsistent with the constraints of the CMSC. Note that if

the interpolant is false, we can deduce that the constraints are

not responsible of the unfeasibility and that the unrolling of

the network is inconsistent by itself.

Finally, by partitioning the encoding into the unrolling of

one component along its instance (A) and the rest (B, i.e.,



other components and constraints), the interpolation produces

a formula over the variables at the time of the events implied

by the component executing the instance and inconsistent with

the other components or with the constraints of the CMSC.

Note that if the interpolant is true, it means that the component

does not play a role in the unfeasibility. On the contrary, if

the interpolant is false, the component does not have a path

compatible with the instance.

Note that, when the abstraction is used to prove the unfea-

sibility of the scenario, the explanations based on unsat core

and interpolation are still valid.

VI. RELATED WORK

MSCs [20] are a basic building block to describe the inter-

actions among components. Several works, such as High-Level

Message Sequence Charts [26] and Live Sequence Charts

(LSC) [12], extend the language of the MSCs increasing their

expressive power. We consider a basic version of MSCs which

describes a single (partial-order) composition of sequences

of events, augmented with additional constraints [2], [5]. We

consider a trace-based semantics for the MSC, where the MSC

predicates over the observable events of a system [23], [24].

While several works use MSCs to describe the entire system

[3], [28], we instead use the MSC as a specification language.

A common approach to deal with the verification of MSC

specifications consists in translating the scenario into automata

or temporal logic formulas. LSCs are translated into timed

automata in the UPPAAL model checker [25], while in [22]

the authors propose a translation from charts with timing

constraints and synchronous events to Timed Büchi Automata.

These works deal with expressive specification languages but

they do not exploit the structure of the scenario. Moreover,

in case of unfeasibility, these techniques do not provide

explanations that narrow the events of the scenario or that

gives meaningful information about a specific component.

The approach which translates the MSC into an automaton

reduces the feasibility problem of the MSC to a reachabil-

ity problem. Thus, the works on Bounded Model Checking

(BMC) for hybrid systems [1], [4], [8], [14], [15], [34] can be

used to solve the feasibility problem. The BMC encodings for

hybrid automata can be further optimized exploiting the step

semantics [17], [21], which allows independent transitions of

different automata to be executed in parallel. However, BMC is

unable to prove the unfeasibility of the MSC. When we encode

the MSC into an automaton the unfeasibility problem can be

solved using unbounded model checking techniques, such as k-

induction [32]. K-induction is complete for finite state systems,

but it was applied also to infinite state systems in [13], [29],

[33]. In [13] the authors use k-induction to verify timed and

hybrid automata and they generalize the simple path condition

to simulation relations. K-induction is combined with predicate

abstraction [16] in [33]. These works are not tailored to the

problem of deciding the unfeasibility of a scenario and do not

provide explanations in the case of unsatisfiability.

In [10] we propose a Bounded Model Checking encoding

tailored to check the feasibility of a scenario in a network of

hybrid automata. This approach turns out to be very efficient in

dealing with complex scenarios, since it exploit the local-time

semantics [6] in order to partition the encoding with respect

to the MSC structure. However, the approach is unable to

prove the unfeasibility of the scenario. We extend that work

in order to prove the unfeasibility of a scenario and to provide

meaningful explanations of unfeasibility.

Unsat cores and interpolation are often used to explain

and generalize the source of unsatisfiability. Unsat cores are

typically subsets of the conjuncts forming the unsatisfiable

formula. However, other forms are possible, especially in

the context of temporal unsatisfiability [31]. Interpolation

for temporal properties is proposed in [30] as a theoretical

framework for analyzing vacuity for discrete systems; the

practical implications are not addressed in depth. In [31], it

is suggested that k-induction can be used to find a k for

which the BMC encoding of a temporal formula yields its

unsatisfiability and that the unsat core contains the relevant

parts of the formula that cause the unsatisfiability. However,

mapping the BMC unsat core back to the original problem is

not always easy. We achieve this by exploiting the scenario-

based encoding that respects the structure of the scenario.

VII. EXPERIMENTAL EVALUATION

The techniques discussed in the previous sections were im-

plemented in an extension of the NuSMV model checker [9],

which is able to deal with networks of HAs, formalized in

the HYDI language [11]. The NuSMV extension features an

SMT-based approach to the verification of hybrid systems, and

is tightly integrated with MathSAT [7], a state-of-the-art, full-

fledged Satisfiability-Modulo-Theory solver (SMT). MathSAT

provides the functionalities of incremental reasoning, unsat-

isfiable core extraction, and interpolation, which are used for

bounded model checking, inductive reasoning, and explanation

extraction.

In the experimental evaluation, we used the following

benchmarks: the Distributed Controller [19], the Audio Pro-

tocol proposed in [19], the Nuclear Reactor [35], a hybrid

version of the Fischer mutual exclusion protocol, and the

Electronic Height Control System (EHC) described in [27]. All

the test cases, the executable and the results of the evaluation

are available at http://es.fbk.eu/people/mover/tests/FMCAD11/.

A. Scenario-driven Induction vs K-Induction

First, we compared the scenario-based induction with k-

induction applied to the monolithic encoding of the network

of HAs and the automata translated from the MSC.

The monolithic encoding is obtained composing the network

with the automata obtained from the MSC. The construction

of the monitor automata is described in details in [10]. In

particular, we rely on the “distributed” monitor automata,

where we build a monitor for each instance of the MSC,

and the step semantics, which enables multiple transition to

be executed in parallel. The combination of both approaches

demonstrated to be the most efficient among the different

automata construction and encoding presented in [10].
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Fig. 1. Run times (sec.): monolithic induction (x axes) vs. scenario-induction
(y axes)

In order to test the scalability of both approaches, we

considered a set of unfeasible MSCs of different lengths, and

parameterized the number of HAs in the network. We set a

time out of 300 seconds and a memory out of 2 GB. The

scatter plot in Figure 1 shows the execution time for both

methods on all the instances. The Scenario-based induction

is clearly superior to monolithic k-induction. This is due to

the exploitation of the structure of the scenario: this results

in localized simple path conditions, that are both simpler, and

more effective, so that unsatisfiability is detected with a much

shorter unrolling.

B. Unfeasibility Explanation

Then, we analyzed the unfeasibility explanations on the

three benchmarks with non-trivial scenarios, showing their

usefulness in identifying the causes of unfeasibility.

1) Distributed Controller [19]: the benchmark models the

interactions of two sensors (sensor1 and sensor2) with a

controller of a robot. The two sensors interact with a scheduler

to access a shared processor. The time needed for computation

by the two sensors is bounded but it is non-deterministic, and

is tracked in the scheduler with two stopwatches (x1 and x2).

Also the controller sets a time-out (variable z = 0) after the

receipt of the first message. If the time-out expires (z = 10)

the controller discards all the received data.

The MSC shown in Figure 2 models the interaction where

sensor1 requests the processor; the scheduler grants it for a

total duration of x2 time; sensor2, which has a higher priority,

requests and receives grant to the processor; when sensor2
finishes its computation (event read2), sensor1 finishes to read

data while, in parallel, sensor2 sends its data to the controller;

finally, the sensor1 and the controller synchronize on send1 and

ack1. The time spent to process the data of sensor1 is given

by the stopwatch x1. In Figure 2 x1 is the sum of the intervals

x′1 and x′′1 . Moreover, we add two additional conditions on the

duration of x1 and x2 in the scheduler (x2 = 1.5 and x1 =
1.1), and we fix the maximum time spent by the controller

Ack2

Send1

Send2

Request2

Read2

Ack1

Read1

Request1

x
′′
1

x
′
1

x
′
1 + x

′′
1 =
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3

2

z < 1

SchedulerSensor1 ControllerSensor2

Fig. 2. The MSC for the distributed controller

before receiving the data from sensor1 (z < 1). The MSC

augmented with these constraints is unfeasible.

We prove the unfeasibility of the scenario directly on the

concrete system, since all the automata cannot loop performing

only local transitions. The analysis takes 3 seconds and the

longest simple path is 2 in the controller automaton, and 1

in the other automata. In the Figure 2 we outline in gray

the elements of the scenario, events and constraints, which

contribute to the unfeasibility. In particular, we find that the

unfeasibility depends on all the events of the MSC apart from

the events Ack1 and Ack2. Moreover, we discover that all the

additional constraints of the scenario, x2 = 1.5, x1 = 1.1 and

z < 1, contribute to the unfeasibility.

We exploit the interpolation techniques to get the constraints

z >= x1. In fact, z counts the time elapsed in the controller

between the send1 event and the send2 event. This means

that the controller cannot receive the send1 message before

x1 seconds, which is the time spent to process data from

sensor1. If we fix z >= 1.1 then the scenario is feasible.

We find a similar result if we look at the interpolant obtained

partitioning the encoding in the constraints from sensor1 (the

A formula) and the rest of the network and the scenario (the

B formula). We denote with timeeventcomponent the time variable

of component when performing event. The interpolant is

6 <= time
request1
sensor1 −timeread1sensor1

+timesend1sensor1
. Since time

request1
sensor1

is 6, from the initial condition and invariants of sensor1, we can

infer that the scenario and the other processes in the network

do not allow timeread1sensor1
<= timesend1sensor1

, which is a necessary

condition for sensor1.

2) Audio Control Protocol [19]: this protocol transmits

an arbitrary-length bit sequence from a sender to a receiver

based on the timing-based Manchester encoding. The protocol

relies on division of the elapsed time in slots. Every slot

corresponds to a bit. The sender transmits a signal up in the

slots corresponding to bits with value 1 (thus, a slot without

signals correspond to bit 0). The protocol is robust to bounded

errors in the timers used by the sender and receiver.

The considered scenarios consist of unfeasible timed se-

quences of up. For example, the sequence 〈up, 4〉, 〈up, 8〉,
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Fig. 3. The automaton structure of the EHC controller with a line that traces
the scenario sequence of events.

〈up, 12〉, 〈up, 16〉, 〈up, 19〉, 〈up, 23〉 does not respect the pro-

tocol, since the 4-th and 5-th events must be separated by 3
seconds.

Scenario-based induction proves that the scenario is un-

feasible in 41 seconds. The explanation extracted from the

unsat core identifies the 4-th and 5-th events as the cause of

unfeasibility. Interpolation “explains” that the inconsistency

arises because the sender requires the 5-th event to happen

after at least 3.8 seconds; it also shows that the receiver does

not play any role in the inconsistency.

3) Electronic Height Control System [27]: this benchmark

presents a case where the concrete k-induction is not able to

prove the unfeasibility. We therefore rely on abstraction and

we show that, despite the over-approximation, the explanation

is effective in pinpointing the cause of unfeasibility.

This industrial case study models a system that controls the

height of a car’s chassis. A timer tells the controller when to

read the height from a filter, while disturbances which changes

the height of the vehicle are modelled by the environment.

The structure of the controller is depicted in Figure 3. The

MSC describes a scenario where the height of the chassis

falls outside the allowed thresholds, first below and then above

the permitted height intervals. The sequence of events in the

scenario is highlighted by the dashed line.

The scenario is not feasible due to the timing constraints

imposed by the timer on each event and to the dynamics of

the environment which requires an incompatible time to pass

from the initial level of the chassis to a value read outside

the allowed threshold. More precisely, the timer forces every

event to happen every second, while the filter chassis level

f read by the sensors evolve according to the differential

equation ḟ = h−f
T

, where h represents the current level. This

is approximated by the linear-phase portrait partitioning which

linearizes the differential equation into flow conditions of the

form ḟ ∈ [a, b]. The constants fixed by the authors of [27] are

sufficient to prove the inconsistency.

K-induction proves that the controller and the timer do

not have a simple path longer than 1 alternating timed and

discrete transitions (since there is no local transition). While,

on the concrete state space of the environment, the portrait

partitioning creates discrete loops that correspond to infinite

simple paths. Therefore we rely on abstraction. We use a set of

predicates in the form t ∈ [i, i+1], h ∈ [at, bt] and f ∈ [at, bt]
where i is an integer while a and b are the constants used in the

partitioning. We localize the abstraction by using t ∈ [i, i+1]
only in the i-th event and considering the partition consistent

with the initial values.

With this setting, the tool proves the unfeasibility of the

scenario in 4.4 seconds reaching a depth of the longest abstract

simple path equal to 6 for the local path before the first event

and 9 as for the local path before the second event. The tool

correctly reports an unsat core which identifies the first two

events as the cause of unfeasibility. The interpolation with

regards to components reports that while the timer requires

that the second event must happen in no more then 3 seconds,

the environment requires the same event to happen at least

after 3.3 seconds.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a new approach to proving

that a network of hybrid automata has no trace that satisfies

a given MSC. We have also proposed the first algorithm

to explain the unfeasibility of a scenario. The approach

is made practical by the use of segments of the MSC to

guide the search, and on the localization of simple paths.

The experiments show that the proposed method significantly

outperforms techniques based on the reduction to reachability,

and is able to construct interesting explanations.

In the future, we will address the issue of non-linear hybrid

systems, the use of hierarchical information that is often

available in the network, and an automation of the abstraction-

refinement loop.
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[1] E. Ábrahám, B. Becker, F. Klaedtke, and M. Steffen. Optimizing
bounded model checking for linear hybrid systems. In VMCAI, pages
396–412, 2005.

[2] S. Akshay, B. Bollig, and P. Gastin. Automata and logics for timed
message sequence charts. In FSTTCS, pages 290–302, 2007.

[3] R. Alur and M. Yannakakis. Model checking of message sequence
charts. In CONCUR, pages 114–129, 1999.

[4] G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani. Verifying
Industrial Hybrid Systems with MathSAT. ENTCS, 119(2):17–32, 2005.

[5] H. Ben-Abdallah and S. Leue. Timing constraints in message sequence
chart specifications. In FORTE, pages 91–106, 1997.

[6] J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partial Order Reductions
for Timed Systems. In CONCUR, pages 485–500, 1998.

[7] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani.
The MathSAT 4 SMT Solver. In CAV, pages 299–303. Springer, 2008.

[8] L. Bu, A. Cimatti, X. Li, S. Mover, and S. Tonetta. Model Checking
of Hybrid Systems using Shallow Synchronization. In FORTE, pages
155–169, 2010.

[9] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV 2: An OpenSource
Tool for Symbolic Model Checking. In CAV, pages 359–364, 2002.



[10] A. Cimatti, S. Mover, and S. Tonetta. Efficent Scenario Verification for
Hybrid Automata. In CAV, 2011.

[11] A. Cimatti, S. Mover, and S. Tonetta. Hydi: a language for symbolic
hybrid systems with discrete interaction. In EUROMICRO-SEAA, 2011.

[12] W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence
Charts. Formal Methods in System Design, 19(1):45–80, 2001.

[13] L. de Moura, H. Rueß, and M. Sorea. Bounded Model Checking and
Induction: From Refutation to Verification. In CAV, pages 14–26, 2003.

[14] M. Fränzle and C. Herde. Efficient Proof Engines for Bounded Model
Checking of Hybrid Systems. ENTCS, 133:119–137, 2005.

[15] M. Fränzle and C. Herde. HySAT: An efficient proof engine for bounded
model checking of hybrid systems. Formal Methods in System Design,
30(3):179–198, 2007.

[16] S. Graf and H. Saı̈di. Construction of Abstract State Graphs with PVS.
In CAV, pages 72–83, 1997.
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