
Efficient Implementation of Property Directed

Reachability

Niklas Een, Alan Mishchenko, Robert Brayton
{een,alanmi,brayton}@eecs.berkeley.edu

Berkeley Verification and Synthesis Research Center
EECS Department

University of California, Berkeley, USA.

Abstract—Last spring, in March 2010, Aaron Bradley published
the first truly new bit-level symbolic model checking algorithm
since Ken McMillan’s interpolation based model checking pro-
cedure introduced in 2003. Our experience with the algorithm
suggests that it is stronger than interpolation on industrial prob-
lems, and that it is an important algorithm to study further. In
this paper, we present a simplified and faster implementation of
Bradley’s procedure, and discuss our successful and unsuccessful
attempts to improve it.

I. INTRODUCTION

Sequential verification is hard, both model checking and equiv-

alence checking. Difficult instances are typically solved using

several simplification steps followed by multiple verification

engines scheduled sequentially or concurrently. Despite all the

available tools, numerous practical instances remain unsolved.

Therefore, research in formal verification is always on the

lookout for methods that can handle difficult cases.

In 2003, a new verification method based on interpolation

[7], was proposed by Ken McMillan to address hard UNSAT

instances. Over time it was perfected and is currently consid-

ered one of the most valuable formal verification methods.

More recently, another novel method was pioneered by

Aaron Bradley [1], [2]. He named his implementation IC3,

but gave no name to the method itself. We choose to call it

property directed reachability (PDR) to connect it to Bradley’s

earlier work on property directed invariant generation.

It came as a surprise that IC3 won the third place in the hard-

ware model checking competition (HWMCC) at CAV 2010.

It was marginally outperformed by two mature integrated

verification systems, both carefully tuned to balance several

different engines. As such, the new method appears to be the

most important contribution to bit-level formal verification in

almost a decade.

Although PDR has been generally known for less than a

year, while interpolation has been around long enough for

numerous improvements and extensions to be proposed, for

example [4], [3], an up-to-date implementation of PDR can

solve more instances from HWMCC than interpolation can.

This is also true for the benchmarks our group has received

from our industrial collaborators. Another remarkable property

of PDR is its capability of finding deep counterexamples.

Although on average BMC does better than PDR, there are

many benchmarks where PDR can find counterexamples that

elude both BMC and BDD reachability. Finally, PDR lends

itself naturally to parallel implementation, as was explained

in Bradley’s original work.

In this paper, we explore PDR and try to understand the

reason for its effectiveness. We propose a number of changes

to the algorithm to improve its performance and to simplify

its implementation. In particular:

– We achieve a significant speedup by using three-valued

simulation to reduce the burden on the SAT-solver.

– We eliminate a tedious and error-prone special-case han-

dling of counterexamples of length 0 or 1.

– We show experimentally that two elements of the original

algorithm give no speedup: (i) variable activity and (ii)

cube generalization beyond non-inductive regions.

– We separate the main algorithm from the handling of

SAT queries through a clean interface. This separation

reduces the overall complexity.

– We refute some potential improvements experimentally.

– We present detailed pseudo-code to fully document our

implementation.

II. PRELIMINARIES

This paper considers the verification of systems modeled

using finite state machines (FSMs). Each state of the FSM is

identified with a boolean assignment to a set of state variables.

The FSM further defines a set of initial states and a set of

property states. The algorithm to be presented verifies that

there exists no sequence of transitions from an initial state to

a non-property state (“bad” state).

In the presentation, a state variable or its negation is referred

to as a literal, a conjunction of literals as a cube, and the

negation of a cube (a disjunction of literals) as a clause. If a

cube contains all the state variables, it is called a minterm. It

is assumed that the FSM is represented symbolically in a way

that can be translated into propositional logic for a SAT-solver.

III. OVERVIEW OF PDR

The PDR algorithm can be understood on several levels. This

section addresses:

(1) How it works.

(2) Why it is complete.

(3) What makes it effective.

In particular the first two points can be understood in terms

of approximate reachability analysis. For the third point one

must also consider the inductive flavor of the algorithm.

A. Notation

Let I and P be predicates over the FSM’s state variables,

denoting the initial states and the property states respectively.

Also let T denote the transition relation over the current and

next state variables. Given a cube s, a call to the underlying

SAT solver will be expressed as:

SAT?
[

P ∧ ¬s ∧T ∧ s′
]

using primes to denote next states. This query asks “starting

in a state where the property holds, but outside the cube s,

can you get inside the cube s in one transition”. If the answer

is UNSAT, then it has been proved that (P∧¬s∧T) → ¬s′,

and ¬s is said to be inductive relative to P.

In the algorithm, some cubes will be proved unreachable

from the initial states in k steps or less. Such cubes will be

referred to as blocked cubes of frame k.

B. Mechanics

PDR maintains a list of facts which we will call the trace: [R0,

R1, . . . RN]. The first element R0 is special; it is simply

identified with the initial states. For k > 0, Rk is a set of

clauses that AND-ed together represent an over-approximation

of the states reachable from the initial states in k steps or less.

The trace is maintained in such a way that Ri is contained in

Ri+1. In fact, this relation is syntactic: every clause of Ri+1

is also present in Ri, except for i = 0 (R0 has no clauses).

Together with the trace, the PDR algorithm maintains a set

of proof-obligations. A proof-obligation consists of a frame

number k and a cube s, where s is either a set of bad states

or a set of states that can all reach a bad state in one or more

transitions. The frame number k indicates a position in the

trace where s must be proved unreachable, or else the property

fails.

By manipulating the trace and the set of proof-obligations

according to a scheme detailed below, PDR derives new facts

and adds them to the trace until it either (i) produced an

inductive invariant proving the property, or (ii) added a proof-

obligation at frame 0 with a cube that intersects the initial

states. Such a cube cannot be blocked and entails the existence

of a counterexample.

(1) PROOF-OBLIGATIONS: The core of PDR lies in how

proof-obligations are handled, and how new facts are derived

from them. All reasoning in PDR take place on one transition

relation; there is no unrolling of the FSM as in, e.g., BMC.

Given the proof-obligation (s, k), consider the query:

SAT?
[

Rk−1 ∧ T ∧ s′
]

(Q1)

If it is UNSAT, then the facts of Rk−1 are strong enough

to block s at frame k, and we can add the clause ¬s to

Rk. However, the syntactic containment relation of the trace

requires us also to add the same clause to all preceding Ri,

i < k. Is it sound to do this? Consider replacing Rk−1 with

Rk−2 in the query. Containment states that Rk−2 is stronger

than Rk−1, so the query remains UNSAT. Likewise for Rk−3

and so on, all the way back to the initial states. The only thing

left to check is whether s intersects the initial states or not. If

s is not blocked by R0, then we cannot strengthen the trace by

¬s. In the algorithm, this query will not be used if s overlaps

with the initial states.

Using this approach, the quality of the learned clause

depends on the size of the cube in the proof-obligation. In

practice, these cubes often have many literals, and the negation

¬s is a weak fact. It turns out to be crucial for the performance

of PDR to try to learn stronger facts, i.e. cubes with fewer

literals. To achieve this, the above learning scheme is improved

in two ways:

Improvement 1 – “Generalize s”. Many modern SAT-solvers

do not simply return UNSAT, but also give a reason for the

unsatisfiability; either through an UNSAT-core or through a

final conflict-clause. Both these mechanisms can be used to

extract precise information about which clauses were actually

used in the proof. Since s is a conjunction inside the query,

it translates into a set of unit clauses. Not all of those clauses

may actually be needed when proving UNSAT. Any literal of

s corresponding to an unused clause can be removed without

affecting the UNSAT status. This provides a virtually free

mechanism of removing literals that just happen not to be

used by the SAT-solver.

A more directed, but also more expensive, approach is to

explicitly try to remove the literals one by one. If the query

remains UNSAT in the absence of a literal, good riddance. If

not, put the literal back. Although the order in which literals

are probed affects the outcome, the procedure is monotone

in the sense that removing a literal cannot make a satisfiable

query UNSAT. Note that we cannot remove a literal if it makes

s intersect with the initial states, even if the query is UNSAT.

Improvement 2 – “Add ¬s to the query”. A key insight of

Bradley was to realize that the query could be extended by

the term ¬s:

SAT?
[

Rk−1 ∧ ¬s ∧T ∧ s′
]

(Q2)

Adding an extra conjunct means the query is more likely to

be UNSAT, which improves chances of removing a literal, or

indeed learning a clause at all. This extended query is depicted

in Figure 1. Having s on both sides of the transition breaks

monotonicity: as s gets weaker, ¬s gets stronger. A query that

is SAT may become UNSAT if more literals are removed—

which makes the task of finding a minimal cube much harder

(exponential in the size of s). Heuristics for minimizing s are

discussed in [2].

But why is it sound to add ¬s to the query? It can be viewed

as a bounded inductive reasoning: The base case R0 → ¬s

holds by construction (s does not intersect the initial states).

We have proved that (Rk−1 ∧ ¬s ∧ T) → ¬s′, but because

Ri is stronger than Rk−1 for i < k − 1, we have also proved

that ¬s is preserved by every transition up to frame k.

Figure 1. Is s inductive relative to Rk−1? In the SAT query, we try
to find a minterm m in the white region of the first frame, that in
one transition can reach a point inside the cube s. The white region
satisfies Rk−1∧¬s, illustrated by the four blocked cubes c1 through
c4 and the cube s. If the query is UNSAT, it has been proved that
a point outside s stays outside s for the first k transitions from the
initial states. When generalizing s, we must make sure that the cube
does not grow to intersect the initial states. This property, together
with UNSAT, proves s to be unreachable in the first k frames. Note
that the figure also illustrates how Rk contains a subset of the cubes
of Rk−1.

(2) SATISFIABLE QUERIES: We now turn to the case where

the query (original or extended) is SAT. This means Rk−1 was

not strong enough to block s at frame k, and something new

must be learned at frame k−1. From the satisfying assignment,

we can extract a minterm m in the pre-image of s, which gives

us a new proof-obligation (m, k − 1).

The above learning scheme can now be applied to this proof-

obligation, drawing from Rk−2 to learn clauses in Rk−1. If

Rk−2 is not strong enough, the procedure may recursively go

further back into the trace and learn a whole cascade of facts

over many time-frames. Eventually the procedure returns to

the original proof-obligation (s, k) and may either succeed in

blocking it this time, or generate a new minterm in the pre-

image of s.

As noted in the previous section, learning short clauses is

crucial for PDR to work. Indeed, most of the runtime is spent

on generalizing cubes by removing literals. Because a minterm

is maximally long, it is a particularly undesirable starting point

for this process. To alleviate this situation, we propose to

shrink the proof-obligations by using three-valued (ternary)

simulation.1 It requires the FSM to be in circuit form, but in

practice this is often the case.

Reducing proof-obligations by ternary simulation. For a

satisfiable query, extract the minterm m from the satisfying

assignment, giving values to the flop outputs as well as the

primary inputs. Simulate this assignment through one time-

frame. Now, probe each flop by changing its value to X and

propagate the effect of this using ternary simulation. If an X

does not appear at any flop input among the flops in s, then

the probed flop (state variable) can be safely removed from

the proof-obligation. If the X do reach a flop in s, undo the

propagation and the probing, and move on to the next flop.

The resulting cube has the property that all the states it

represents can reach s in one transition, and hence the entire

1Ternary logic has three values: 0, 1, and X. The binary semantics is
extended by: (X ∧ 0 = 0), (X ∧ 1 = X), (X ∧ X = X), (¬X = X).

cube must be blocked.

C. The Algorithm

For clarity, we state the precise properties of the trace:

(1) R0 = I.

(2) All Ri except R0 are sets of clauses.

(3a) Ri → Ri+1.

(3b) The clauses Ri+1 is a subset of Ri for i > 0.

(4) Ri+1 is an over-approximation of the image of Ri.

(5) Ri → P, except for the last element RN of the trace.

We note that (5) is different from Bradley’s original presen-

tation, which also required the property to hold for RN . The

change eliminates the need for the special BMC check of

length 0 and 1, performed in Bradley’s implementation of

PDR.

At the start of the algorithm the trace has just one element

R0. It then runs the following main loop:

while SAT?
[

RN ∧ ¬P
]

do

(a) extract a bad state m from the SAT model

(b) generalize m to a cube s using ternary simulation

(c) recursively block the proof-obligation (s, k)

When the loop terminates, the property holds for RN , and

an empty frame is added to the trace. The algorithm will be

repeated for this new frame, but first a propagation phase is

executed, where learned clauses are pushed forward in the

trace:

for k ∈ [1, N − 1] and c ∈ Rk do

if c holds in frame k + 1, add it to Rk+1

During the propagation phase it is important to do syntactic

subsumption. If a clause c was moved forward from frame k

to k + 1, and frame k + 1 has a weaker clause d ⊇ c, then

d should be removed. Subsumed clauses accumulate quickly,

but serves no purpose except to slow down the SAT-solver.

(1) QUEUE OF PROOF-OBLIGATIONS: Section III-B1 sug-

gests a recursive clause-learning scheme. However, PDR can

be improved by reusing proof-obligations of one time-frame in

all future time-frames. After all, if a cube is bad, it should be

blocked everywhere. This requires a queue, as the algorithm

now can have many outstanding proof-obligations in each

frame. The elements should be dequeued from the smallest

time-frame first. This change has the added benefit of making

PDR capable of finding counterexamples longer than the trace.

(2) TERMINATATION: PDR can terminate in one of two

ways: either (i) a proof-obligation at frame 0 intersects with

the initial states, which implies that the property fails (in this

case, a counterexample can be extracted with some additional

bookkeeping); or (ii) the clause sets of two adjacent frames

become syntactically identical: Ri ≡ Ri+1. Since Ri → P

by (5); Ri ∧T → R
′
i+1 by (4); I → Ri by (1) and (3a); then

Ri is an inductive invariant that proves the property.

Figure 2. BMC unrolling of length N. The design is reset in the first
frame and Bad is asserted in the last frame. The last frame is drawn
partially because the next-state logic for the flops is not needed.

D. Convergence

Must the main loop terminate for some finite trace length?

When generated, each proof-obligation (s, k) contains at least

one state that is not previously blocked. If the proof-obligation

is immediately handled, or if the generalization procedure

first checks that this still holds when the proof-obligation is

dequeued, then every clause created by the learning algorithm

must block at least one more state of frame k. Because there

is a finite number of frames, and a finite number of states in

the FSM, the main loop is guaranteed to terminate.

Can the length of the trace grow indefinitely? If the syntactic

termination check (Ri ≡ Ri+1) were done semantically

instead (Ri = Ri+1), then clearly this cannot happen. Ri+1

would have to block at least one state less than Ri. Suppose

therefore Ri = Ri+1 but Ri 6≡ Ri+1. During the propagation

phase, all clauses of Ri will be moved into Ri+1, making

them syntactically identical and the algorithm terminates.

We note that the bound (2|S| frames with at most 2|S|

clauses in each) implied by the above argument is very large,

and does in no way explain why the algorithm performs well

in practice.

E. What makes PDR so effective?

The experimental analysis of Section VI shows that PDR rep-

resents a major performance improvement over interpolation

based model checking (IMC) [7], hitherto regarded as the

strongest bit-level engine. Why is this?

Consider the BMC unrolling depicted in Figure 2. Assume

for simplicity that the design can non-deterministically return

to the initial states at any time.2 This guarantees that the set of

reachable states grows monotonically with the frame number.

The first version of IMC, never published,3 considered such

an unrolling, and from an UNSAT proof computed interpolants

Φi between every adjacent time-frames. This sequence of

interpolants has the property:

(1) I = Φ0

(2) Φk ∧ T → Φ′
k+1

(3) ΦN → P

(4) symbols(Φi) ⊆ state-variables

If N is chosen large enough, one of the interpolants Φk must

be an inductive invariant proving the property: if the suffix

after Φk is longer than the backward diameter of the system,

it cannot contain any state that can reach Bad; the prefix

2This behavior can be achieved by rewiring the flops, or, alternatively, be
made part of the verification algorithm.

3Private conversation with Ken McMillan.

before Φk grows monotonically and for a finite system must

eventually repeat itself.

This method is not as effective as the published version of

IMC. So what is wrong with it? One can argue that the impor-

tant feature of interpolation is its generalizing capability.4 For

instance, the interpolant Φ1 can be viewed as an abstraction

of the first time-frame, containing just the facts needed for the

suffix to be unsatisfiable (this interpretation is particularly in

accord with McMillan’s asymmetric interpolant computation).

Even though logically (2) implies that each interpolant can

be derived from its predecessor, this is not how the SAT-solver

constructs them. During its search, the solver is free to roam

all over the unrolling. We argue that this may deteriorate the

generalizing capability of interpolation.

In the published algorithm, McMillan used the insight that

(a) interpolants are smaller and more general toward the ends

of the unrolling, and (b) repeatedly applying interpolation on

its own output will improve the generalizing capability. In his

algorithm, the interpolant Φ1 is therefore repeatedly used to

replace the initial states constraint, resulting in interpolants

that are less and less dependent on the initial states and in

an increasingly more general way imply the unsatisfiability of

the suffix.

In a way, the procedure can be viewed as committing to

the abstraction that was computed. It disallows the SAT-solver

from going back to the real initial states and learning more

facts. For this to work, the suffix must be long enough to

prevent any state that can reach the bad states from entering

into the interpolants. If it fails to prevent this, the algorithm

has to start over from scratch, typically with a longer unrolling

(although randomizing the SAT-solver and restarting with the

same length works sometimes).

We now compare this to how PDR works. First note that

at the end of each major cycle, just before pushing clauses

forward, the Ri are in fact interpolants; all the facts in frame

k and future frames are derived from Rk.

During the computations, PDR completely commits to its

current abstractions Ri. The localized reasoning prevents it

from learning new facts from earlier time-frames unless it

has been proved that new facts must be learned. In a way,

the whole procedure can be viewed as one big SAT-solving

process, where the solver is carefully controlled to make sure

it does not roam all over the unrolling. Further, when new facts

are brought in from previous frames, a lot of effort is spent on

simplifying those facts (the literal removing consumes ∼80%

of the runtime). There is no similar mechanism in IMC, it

must use whatever proof the SAT-solver happened to give it.

Also, PDR constantly removes subsumed clauses, especially

during the forward-propagation phase.

To summarize, PDR sticks to the facts it has learned as long

as possible, similar to the way IMC commits to its interpolants.

If what PDR has learned at a frame is too weak, it can repair

the situation by learning new clauses rather than scrapping all

4Indeed, interpolation based model checking is probably better understood
as a method for “guessing” an inductive invariant rather than, as often done,
an approximate reachability analysis.

the work done so far and starting over, as IMC does. PDR

has a very targeted approach to producing small facts by its

literal removing scheme, and it constantly weeds out redundant

clauses by subsumption checking and forward propagation.

A possible drawback of PDR, however, is the strong in-

ductive bias of its learning: it can only learn clauses in

terms of state variables. But this bias is also the very reason

it can efficiently do generalization. It might be that future

improvements to the algorithm will allow it to work efficiently

on a different domain.

IV. IMPLEMENTATION

This section details our implementation of PDR. In the pseudo-

code, only cubes are used and not clauses. In particular we

represent the trace as sets of blocked cubes rather than learned

clauses. Furthermore, we only store a cube in the last time-

frame where it holds (to avoid duplication). We call this delta-

encoded trace F, and it relates to R through:

Rk =
∧

i≥k

¬Fi

We also extend F by a special element F∞ which will hold

cubes that have been proved unreachable from the initial states

by any number of transitions. In the code, the following data-

types are used:

– Vec. A dynamic vector with methods:

uint size() – returns size of the vector

T& op[](uint i) – returns the ith element

void push(T elem) – pushes an element at the end

T pop() – pops and returns last element

– Cube. A fixed-size vector of literals (no push/pop).

– TCube. A pair (cube ∈ Cube, frame ∈ uint) referred to

as a timed cube. Two special constants are defined for

the frame component:

FRAME NULL – cube has no time component

FRAME INF – cube belongs in F∞

Function next(TCube s) returns s with the frame number

incremented by one.

An overview of the functions implementing PDR, and the

program state they work on is given in Figure 3. The FSM

is assumed to be given in circuit form, containing one safety

property to be proved. The special frame F∞ is stored as the

last element of the vector F.

An outline of the execution: Function pdrMain() gets a

bad state in the last frame and calls recBlockCube() to block

it, using the helper function isBlocked() (which checks if a

proof-obligation has already been solved) and generalize()

(which shortens a cube). When the property has been proved

for the last frame, propagateBlockedCubes() pushes cubes of

all time-frames forward while doing subsumption, handled by

addBlockedCube().

A. Separation of concerns

Our PDR implementation abstracts the handling of SAT calls

through the interface in Figure 4. The semantics of the

Program State:

Netlist N; – Netlist with property
Vec〈Vec〈Cube〉〉 F; – Blocked cubes of each frame
PdrSat Z; – Supporting SAT solver(s)

Main Function:

bool pdrMain();

Recursive Cube Generation:

bool recBlockCube(TCube s0);
bool isBlocked(TCube s);
TCube generalize(TCube s0);

Cube Forward Propagation:

bool propagateBlockedCubes();

Small Helpers:

uint depth();
void newFrame();
bool condAssign(TCube& s, TCube t);
void addBlockedCube(TCube s);

Figure 3. Overview of PDR algorithm. “pdrMain()” will use
“recBlockCube()” to recursively block bad states of the final time
frame until the property holds, then call “propagateBlockedCubes()”
to push blocked cubes from all frames in the trace forward to the
latest frame where they hold.

interface PdrSat {
Cube getBadCube();
bool isBlocked(TCube s);
bool isInitial(Cube c);
TCube solveRelative(TCube s, uint params = 0);

void blockCubeInSolver(TCube s);
};

Figure 4. Abstract interface for the SAT queries of PDR. These
methods can be implemented using either a monolithic SAT-solver,
or one SAT-solver per time-frame. The roles of “Init” and “Bad” can
be exchanged within this SAT abstraction to obtain the dual PDR
procedure based on backward induction (although ternary simulation
cannot be used backwards). The first four functions corresponds to
actual SAT queries (although for some common restriction on initial
states, “isInitial()” can be implemented by a syntactic analysis).
The fifth function, “blockCubeInSolver()”, merely informs the SAT
implementation that a new cube has been added to the vector “F”.

interface is defined as follows:

Method getBadCube() returns a bad cube not yet blocked

in the last frame. Method isBlocked(s) returns TRUE if the

cube s.cube is blocked at s.frame. Method isInitial(c) returns

TRUE if the cube c intersects with the initial states. Method

blockCubeInSolver(s) reports to PdrSat that a cube has been

added to the vector F.

Finally, method solveRelative(s) tests if s.cube can be

blocked at frame s.frame using the extended query (Q2) of

Section III-B1. If the answer is UNSAT, then the implemen-

tation returns a new cube z where:

z.cube ⊆ s.cube

z.frame ≥ s.frame

The method guarantees that not only is s.cube blocked at frame

s.frame, but that actually the subset z.cube is blocked at a later

frame. The SAT solver may learn these more general facts by

bool pdrMain() {

F.push(); – push “F∞”
newFrame(); – create ”F[0]”

Z = createPdrSat(N, F);

forever{
Cube c = Z.getBadCube();
if (c != CUBE NULL){

if (!recBlockCube(TCube(c, depth())))
– failed to block ’c’ ⇒ CEX found
return FALSE;

}else{
newFrame();
if (propagateBlockedCubes())

– invariant found, may store it here
return TRUE;

}
}

}

Figure 5. Main procedure. The last element of F (referred to as
“F∞”) contains all the cubes that have been proved to be unreachable
for all k. Their negation constitutes a proper inductive invariant.
Function “newFrame()” inserts a new frame into F just before F∞.

inspecting the final conflict-clause of the solver (or the UNSAT

core), and taking this “free” information into account.

If instead the query is satisfiable, then the implementation

returns a generalization, using ternary simulation, of a minterm

in the pre-image of s.cube. All states of the returned cube

z.cube can reach s.cube in one transition. The time component

z.frame is set to FRAME NULL.

The behavior of solveRelative() can be altered by the

params argument. Default value “0” means: do not extract

a model if the query satisfiable, just return (CUBE NULL,

FRAME NULL). Parameter “EXTRACTMODEL” means:

work as described above. Parameter “NOIND” means: use the

original query (Q1) instead of (Q2).

V. SAT SOLVING

In this section, we discuss the details of implementing

solveRelative() of the PdrSat interface using MINISAT and a

single SAT instance. The other methods of the PdrSat interface

can be implemented in a similar way.

There are two features that are particularly important: (i)

MINISAT allows incremental SAT through assumption literals;

a set of unit clauses that are temporarily assumed during one

SAT call. After the call, the assumptions are undone and new

regular clauses can be added before the next call. (ii) For

UNSAT calls, MINISAT returns the subset of assumptions that

were used in the proof.

The netlist is transformed to CNF using the standard Tseitin

transformation [9] plus variable elimination [6]. Logic cones

are added to the solver on demand, starting with just the

transitive fanin of Bad. Whenever a new frame is added

to the trace, a new activation literal acti is reserved. All

clauses learned in that frame will be extended by ¬acti in

blockCubeInSolver().

Given a cube s = (s1 ∧ s2 ∧ . . .∧ sn), procedure solveRel-

ative() does the following:

bool recBlockCube(TCube s0) {

PrioQ〈TCube〉 Q; – orders cubes from low to high frames
Q.add(s0);

while (Q.size() > 0){
TCube s = Q.popMin();

if (s.frame == 0)
– Found counterexample, may extract it here
return FALSE;

if (!isBlocked(s)){
assert(!Z.isInitial(s.cube));
TCube z = Z.solveRelative(s, EXTRACTMODEL);

if (z.frame != FRAME NULL){
– Cube ’s’ was blocked by image of predecessor:
z = generalize(z);
while (z.frame < depth()−1

&& condAssign(z, Z.solveRelative(next(z))));

addBlockedCube(z);
if (s.frame < depth() && z.frame != FRAME INF)

Q.add(next(s));

}else{
– Cube ’s’ was not blocked by image of predecessor:
z.frame = s.frame − 1;
Q.add(z);
Q.add(s);

}
}

}
return TRUE;

}

Figure 6. Recursively block a cube. The priority queue “Q” stores all
pending proof-obligations: a cube and a time frame where it should
be blocked. In a practical implementation, it may also store the proof-
obligation from which the element was generated (this facilitates
extraction of counterexamples). We noticed (or think we noticed)
a small performance gain by giving “PrioQ” a stack-like behavior
for proof-obligations of the same frame. We left one of our program
assertions in the pseudo code because this invariant is important and
non-obvious. Finally, note the line “Q.add(next(s))” line (just above
the “else”). Adding the current proof-obligation in the next frame
is not necessary, but it improves performance for UNSAT problems
and allows PDR to find counterexamples longer than the length of
the trace—sometimes much longer.

(1) Reserve a new activation literal a and add the clause

{¬a,¬s1,¬s2, . . . ,¬sn} (unless NOIND is given).

(2) Call the solve method with the following assump-

tions: [a, actk, actk+1, ..., actN+1, s′1, s′2, . . ., s′n], where

s′
i

denotes a flop input.

(2u) If UNSAT:

– Remove all literals of s whose corresponding assump-

tion s′i was not used, unless doing so makes the new

cube overlap with the initial states.

– Find the lowest acti that was used. Return the timed

cube (snew, i + 1).

(2s) If SAT and EXTRACTMODEL is specified:

– Extract a minterm m from the satisfying assignment.

– Shorten m to cube by ternary simulation. Return

(mnew , FRAME NULL).

bool isBlocked(TCube s) {

– Check syntactic subsumption (faster than SAT):
for (uint d = s.frame; d < F.size(); d++)

for (uint i = 0; i < F[d].size(); i++)
if (subsumes(F[d][i], s.cube))

return TRUE;

– Semantic subsumption thru SAT:
return Z.isBlocked(s);

}

TCube generalize(TCube s) {

for all literals p ∈ s {
TCube t = “s minus literal p”
if (!Z.isInitial(t.cube))

condAssign(s, Z.solveRelative(t));
}
return s;

}

Figure 7. Helper functions for recursive cube blocking. Function
“isBlocked()” semantically checks if s is already blocked, which
could have happened after the proof-obligation was enqueued. For
efficiency reasons, it first does a syntactic check. This check is so
effective that we did not notice any performance loss by disabling the
semantic SAT check at the end (but we kept it to ensure convergence,
as argued in Section III-D). In fact, deriving a new cube from s, even
if s is blocked, may be a good idea, as the new cube can subsume
several old cubes. We note that function “generalize()” iterates over
s while s is being modified, which the implementation must handle.

(2s’) else if SAT, return (CUBE NULL, FRAME NULL).
(3) Add unit clause {¬a} permanently.

The last step (3) forever disables the temporary clause added

in (1). The periodic cleanup of MINISAT will reclaim the

memory. However, the variable index reserved for the acti-

vation literal cannot be reused. For that reason we recycle the

solver when more then 50% of the variables currently in use

are disabled activation literals. This has the added benefit of

cleaning up cones of logic that may no longer be in use. We

note that the previous activation literal can be reused if s is a

subset of the cube of the previous call, which happens quite

frequently.

VI. EXPERIMENTAL ANALYSIS

A number of experiments have been performed to evaluate

our PDR implementation, both on public benchmarks from the

Hardware Model Checking Competition of 2010 (HWMCC10)

and on industrial benchmarks.5 This section summarizes the

most interesting results we have found.

A. Comparison of IC3 and PDR

This experiment was performed using 274 hard problems

from our industrial collaborators. We simplified the designs

by running the ABC command “dprove”(see Figure 4.1 of

[8]). With a timeout of 10 minutes, 42 problems were solved

by either IC3 or PDR; included in Table I. From the table

we see that our implementation solves almost twice as many

5Although we cannot distribute the industrial benchmarks, we will make
our implementation of PDR available at http://bvsrc.org

uint depth() { return F.size() − 2; }

void newFrame() {

– Add frame to ’F’ while moving ’F∞’ forward:
uint n = F.size();
F.push();
F[n−1].moveTo(F[n]);

}

bool condAssign(TCube& s, TCube t) {

if (t.frame != FRAME NULL){
s = t;
return TRUE;

}else
return FALSE;

}

void addBlockedCube(TCube s) {

uint k = min(s.frame, depth() + 1);

– Remove subsumed clauses:
for (uint d = 1; d ≤ k; d++){

for (uint i = 0; i < F[d].size();){
if (subsumes(s.cube, F[d][i])){

F[d][i] = F[d].last();
F[d].pop();

}else
i++;

}
}

– Store clause:
F[k].push(s.cube);
Z.blockCubeInSolver(s);

}

Figure 8. Small helper functions. Function “addBlockedCube()” will
add a cube both to Fa nd the PdrSat object. It will also remove
any subsumed cube in F. Subsumed cubes in the SAT-solver will be
removed through periodical recycling.

instances as the original IC3 (38 vs. 21), but there are also 4

instances where IC3 solves them and our PDR does not. The

last column shows for comparison the results of interpolation

based model checking (IMC).

Figure 10 shows the behavior of the implementations for

increasing timeout limits. For space reasons we included two

more PDR runs discussed in the next section.

Figure 11 shows the performance of PDR, IC3 and IMC

on the HWMCC10 benchmarks. Looking closer at PDR vs.

IMC reveals that the difference is mostly on UNSAT problems,

where PDR solves 420 vs. 362 for IMC (14% difference). On

satisfiable instance, numbers are 303 vs. 294 (3% difference).

B. Ternary simulation and Generalization

The third column of Table I, and the corresponding curve

in Figure 10, show the performance of PDR without ternary

simulation. It is clear that ternary simulation has a big impact.

Without it, our implementation drops way below IC3. One

reason for this may be that IC3 never had ternary simulation,

and Bradley implemented some other tricks that compensates

bool propagateBlockedCubes() {

for (uint k = 1; k < depth(); k++){
for all cubes c ∈ F[k] {

TCube s = Z.solveRelative(TCube(c, k+1), NOIND);
if (s.frame != FRAME NULL)

addBlockedCube(s);
}

if (F[k].size() == 0) return TRUE; – Invariant found
}

return FALSE;
}

Figure 9. Propagating blocked cubes forward. All cubes in F are
revisited to see if they now hold at a later time-frame. If so, they are
inserted into that frame. The subsumption of “addBlockedCube()”
will remove the cube from its current frame (and possible other
cubes in the later frame). Note that in a practical implementation, the
iteration over cubes in Fk must be aware of these updates. Because
c is already present in frame k, we can use (Q1) instead of (Q2) in
the call to solveRelative().

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500 600

s
o
lv

e
d
 i
n
s
ta

n
c
e
s

timeout seconds

PDR
PDR with stronger generalization

IC3
PDR without ternary simulation

Figure 10. Comparison of IC3 and PDR on industrial problems. Two
modifications to PDR are also evaluated.

for this loss, notably removing multiple literals per SAT call

in the cube generalization.

The fourth column shows the effect of stronger cube gen-

eralization, as proposed in the paper on IC3. The modified

procedure will try to remove a literal even if the SAT query is

satisfiable by exploiting the non-monotonicity. As in IC3, this

is done for three random literals. Our conclusion from looking

at the results is that this technique was not helpful. Although

we do not have room to present the data here, the result holds

for the HWMCC10 benchmarks as well.

C. Effect of changing the semantics of RN

As pointed out in Section III-C, we diverge from IC3 by not

requiring the last frame of the trace to fulfill the property. The

approach of IC3 has two effects compared to ours:

(1) When a new frame is opened, the property is known

to hold, so P can be added to the relative induction SAT

query. This means that the final invariant will be of the

form Ri ∧P rather than just Ri, and that the clauses in

R∞ may depend on P.

Benchmark IC3 PDR NoSim StGen IMC

design01 prop1 – – – – 249.5
design01 prop2 4.1 0.3 102.5 0.4 0.2
design01 prop3 – 81.2 – 126.9 –
design01 prop4 – 70.0 – 191.0 –
design01 prop5 – 91.6 – 166.5 –
design01 prop6 – 100.7 – 176.7 –
design01 prop7 – – – – 168.8
design01 prop8 160.1 6.1 – 11.1 21.9
design01 prop9 130.1 5.9 – 10.7 42.8
design01 prop10 71.9 7.1 – 12.3 44.2
design02 prop1 594.0 30.2 – 144.0 –
design02 prop2 – 489.2 – – –
design02 prop3 – 68.0 – – –
design03 prop1 – 466.4 – 129.8 –
design03 prop2 – 483.3 – 130.8 –
design04 84.5 – – – –
design05 prop1 – 172.5 – 152.5 –
design05 prop2 – 182.1 – 172.0 –
design06 prop1 2.7 0.8 1.8 1.0 –
design06 prop2 3.1 3.1 5.6 0.8 –
design07 94.4 6.0 88.6 13.8 –
design08 298.3 83.6 – 133.1 –
design09 – 77.8 – 151.2 –
design10 prop1 2.0 1.0 2.3 1.4 –
design10 prop2 2.6 1.0 2.7 2.7 –
design11 prop1 324.4 28.1 474.0 27.4 –
design11 prop2 7.7 2.1 8.9 3.3 –
design12 – – – – 62.6
design13 prop1 – 126.1 – 85.0 –
design13 prop2 – 47.2 – 57.2 –
design13 prop3 – 26.0 – 22.2 –
design13 prop4 – 17.6 – 22.1 –
design13 prop5 – 18.1 – 26.4 –
design14 prop1 41.7 – – – –
design14 prop2 61.5 – – – –
design15 prop1 – 5.3 – 20.7 4.7
design15 prop2 – 32.8 – 10.9 595.8
design16 2.2 0.9 2.6 2.2 286.6
design17 – – – 185.8
design18 10.8 0.7 4.9 1.4 409.7
design19 501.7 13.4 – 23.3 –
design20 17.1 10.0 138.0 20.4 –
design21 169.9 – – 225.4 –
design22 – 154.1 – 185.0 –
design23 prop1 – 438.7 – – –
design23 prop2 – 320.5 – 133.0 –

Total solved 21 38 11 37 11

Table I. Comparison of IC3 and PDR on industrial problems. Two
modifications to PDR are also evaluated (disabling ternary simulation
“NoSim”, and stronger cube generalization “StGen”). Interpolation
(IMC) is also included for comparison. All benchmarks are UNSAT
except for design02 (3 properties) and design14 (2 properties).
Boldfaced figures indicates winner between IC3 and PDR only.

(2) Seeding the recursive cube-blocking with minterms

of the pre-image of P rather than with minterms of P

corresponds to a one-step target-enlargement.

The second difference, target-enlargement, can be imple-

mented by preprocessing the design (unroll the property cone

for one frame and combine the new and the old property

outputs). Figure 12 shows the effect it has on the HWMCC10

benchmarks. Note that it improves the performance for simple

satisfiable problems solved in less than 100 seconds. The

difference is substantial enough to motivate the use of target-

enlargement.

 500

 550

 600

 650

 700

 750

 0 100 200 300 400 500 600

s
o
lv

e
d
 i
n
s
ta

n
c
e
s

timeout seconds

PDR
IC3

interpolation

Figure 11. Comparison of IC3 and PDR on HWMCC10 problems.

 150

 200

 250

 300

 350

 400

 450

 0 100 200 300 400 500 600

s
o
lv

e
d
 i
n
s
ta

n
c
e
s

timeout seconds

1 step target enlargement (UNSAT)
No target enlargement (UNSAT)
1 step target enlargement (SAT)

No target enlargement (SAT)

Figure 12. Effect of target enlargement.

We also investigated if the first difference above had any

effect by running our previous PDR implementation which

had the same behavior as IC3 in this respect (but includes

ternary simulation and other improvements). For space reason

we do not include the graph here, but the curves of the new

implementation (with target enlargement) and the previous

implementation match exactly on both SAT and UNSAT

problems. We also tried target enlargement of 2 steps, but

there was no additional benefit.

We conclude that there is no performance loss due to our

modification of the original algorithm. It makes the implemen-

tation simpler, and it has the extra benefit that R∞ is a proper

invariant, which can be used to strengthen other proof-engines

running in parallel, or be useful for synthesis.

D. Runtime breakdown

In order to identify directions for future improvements, we ran

an instrumented version of our PDR on a handful of examples.

Our findings suggests that about 20% of the runtime is spent

in propagateBlockedCubes() and 80% in recBlockCube()—

most of which is in generalize(), but a substantial portion also

in the first call to solveRelative(). Satisfiable calls to the SAT-

solver are about twice as common as unsatisfiable ones, and

5x more expensive.

E. Other things we tried

— We evaluated the effect of the extended query (Q2) vs.

the original (Q1) (Section III-B1). Although the (Q2) gave a

clear performance boost, PDR works remarkably well even

 550

 600

 650

 700

 750

 0 100 200 300 400 500 600

s
o
lv

e
d
 i
n
s
ta

n
c
e
s

timeout seconds

Semantic COI
With activity

With reverse activity
No Propagation + Sem. COI

Figure 13. Refuting activity / Semantic cone-of-influence.

without it (it solved 704 instead of 723 problems; more than

interpolation, which solved 656 problems).

— We evaluated the proposed activity scheme of IC3, which

controls the order in which literals are tried for removal. We

ran it against itself with the activity reversed (“worst” order)

and could see no difference (Figure 13), and no difference to

a static order either (not in the graph).

— We implemented a technique we call semantic cone-of-

influence. At the end of each major round, all cubes in the

trace that is not needed to prove the property of the final frame

are removed. This analysis can be done through a series of

SAT calls of roughly the same cost as forward-propagation.

The method removes many cubes. However, running PDR

with this turned on did not give any noticeable speedup, but

it also did not degrade performance (thus the cost of doing

semantic COI was amortized by the improvement). But a really

interesting result is that running semantic COI, while turning

off forward-propagation, works almost as well as the standard

version of PDR (Figure 13). In contrast, turning off forward-

propagation without semantic COI is a disaster! This shows

that an important feature of the forward-propagation is the

cleansing effect it has through the subsumption mechanism.

— Because most of the time is spent in satisfiable SAT

calls, and this partly is a result of MINISAT always returning

complete models, we made a modified version of MINISAT

that only does BCP in the cone-of-influence of the flops in

the query. With this version, a few more benchmarks (728

instead of 723) were solved. However, we think a justification

based variable order should do even better. We are currently

working on a circuit based SAT-solver with this feature.

We have also implemented a non-monolithic version of PDR

(one solver instance per time-frame) that helps to localizing

the SAT solving better, especially together with frequent solver

recycling. For large benchmarks, where the relevant logic is

small compared to the size of the design, this version does

very well. It is worth noting that most of the work in PDR

takes place in the last couple of time-frames where the COI

is the smallest. In a monolithic PDR, early time-frames may

pollute these calls.

— We made a version that finds an inductive subset of

RN after propagating the cubes forward. This will find true

inductive invariants that can be put into F∞. Although the

cost of this procedure did not quite amortize over the gains,

having more clauses in F∞ can be useful if those facts are

exported to other engines.

— We made an extension that allows PDR to develop and use

an abstraction, where some flops are considered as primary

inputs. This is relatively straight-forward to implement. The

only tricky part in using localization abstraction is when it is

combined with proof-based abstraction [5], which can shrink

the current abstraction in the middle of PDR’s operations. The

reason is that the assertion in Figure 6 will not hold if we

apply a smaller abstraction to the initial states. The way to

address this is to introduce a reset signal that gives the correct

value at the flop outputs of frame 0, and then let all flops be

uninitialized.

REFERENCES

[1] A. R. Bradley. SAT-based model checking without unrolling.
In Proc. VMCAI, 2011.

[2] A. R. Bradley and Z. Manna. Checking safety by inductive
generalization of counterexamples to induction. In Proc.
FMCAD, 2007.

[3] G. Cabodi, L. A. Garcia, M. Murciano, S. Nocco, and S. Quer.
Partitioning interpolant-based verification for effective un-
bounded model checking. In IEEE TCAD, 2010.

[4] G. Cabodi, M. Murciano, S. Nocco, and S. Quer. Boosting inter-
polation with dynamic localized abstraction and redundancy
removal. In ACM TODAES, 2008.

[5] N. Een, A. Mishchenko, and N. Amla. A Single-Instance
Incremental SAT Formulation of Proof- and Counterexample-
Based Abstraction. In FMCAD, 2010.

[6] Niklas Een and Armin Biere. Effective Preprocessing in SAT
through Variable and Clause Elimination. In SAT, 2005.

[7] K. L. McMillan. Interpolation and SAT-based Model Check-
ing. In CAV, 2003.

[8] A. Mishchenko, M. L. Case, R. K Brayton, and S. Jang. Scalable
and scalably-verifiable sequential synthesis. In Proc. ICCAD,
2008.

[9] G. Tseitin. On the complexity of derivation in propositional
calculus. Studies in Constr. Math. and Math. Logic, 1968.

