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Abstract—Minimally Unsatisfiable Subformulas (MUSes) find
a wide range of practical applications. A large number of MUS
extraction algorithms have been proposed over the last decade,
and most of these algorithms are based on iterative calls to a
SAT solver. In this paper we introduce a powerful technique
for acceleration of MUS extraction algorithms called recursive
model rotation — a recursive version of the recently proposed
model rotation technique. We demonstrate empirically that
recursive model rotation leads to multiple orders of magnitude
performance improvements on practical instances, and pushes
the performance of our MUS extractor MUSer2 ahead of the
currently available MUS extraction tools.

I. INTRODUCTION

A minimally unsatisfiable subformula (MUS) of an unsatis-
fiable CNF formula F is any minimal, with respect to set
inclusion, subset of clauses in F that is still unsatisfiable.
MUSes find a wide range of practical applications. For exam-
ple, MUS are used in a number of verification tasks to extract a
concise description of inconsistency. As a result, development
of effective MUS extraction algorithms is currently a very
active area of research — examples of most recent work
include [1], [2], [3], [4], [5], [6]. MUS algorithms can be
roughly categorized as constructive (or, insertion-based), as
destructive (or, deletion-based), or dichotomic. At the moment,
destructive and hybrid MUS extraction algorithms outperform
other approaches by a wide margin [1]. However, irrespective
of the approach, the main bottleneck of MUS algorithms is
the number of repeated calls to a SAT oracle.

Model rotation [1] is a method for detection of clauses that
are included in all MUSes of a given formula via the analysis
of models returned by a SAT oracle. While theoretically the
technique does not guarantee the reduction in the number of
SAT calls, in practice it does, and has been reported in [1] to
provide for considerable performance gains (up to a factor of
5). In this paper we push the idea further — we propose a
modification to the technique that in practice results in a very
large reduction in the number of invocations of SAT oracle,
significantly boosting the performance of our MUS extractor
MUSer2. One of the key aspects of the proposed technique,
which we call recursive model rotation, is that in principle it
could be used with any type of MUS extraction algorithm.

Model rotation and recursive model rotation are described
in Section III, following the necessary background in Section
II. In Section IV we demonstrate the power of the new

technique empirically. The paper is concluded in Section V
with the discussion of some of the related work and possible
enhancements to the proposed techniques.

II. BACKGROUND

While we assume the familiarity with classical propositional
logic (CPL) and SAT, here we clarify and fix the terminology
used in this paper. We focus on formulas in CNF (formulas,
from hence on), which we treat as (finite) sets of clauses. We
assume that clauses do not contain duplicate variables.

Given a formula F we denote the set of variables that
occur in F by V ar(F ), and the set of variables that occur
in C ∈ F by V ar(C). An assignment h for F is a map
h : V ar(F ) → {0, 1}. By h|¬x be denote the assignment
(h\{〈x, h(x)〉})∪{〈x, 1−h(x)〉}. Assignments are extended
to formulas according to the semantics of CPL. If h(F ) = 1,
then h is a model of F . If a formula F has (resp. does not
have) a model, then F is satisfiable (resp. unsatisfiable) and
we write F ∈ SAT (resp. F ∈ UNSAT ).

By Unsat(F, h) we denote the set of clauses falsified by
h, i.e. Unsat(F, h) = {C | C ∈ F and h(C) = 0}. If F ∈
UNSAT and for some clause C ∈ F , we have F \ {C} ∈
SAT , then C is called a transition clause for F .

Formula F is called minimally unsatisfiable, in symbols
F ∈MU , if F ∈ UNSAT and for any F ′ ⊂ F , F ′ ∈ SAT .
Equivalently, F is minimally unsatisfiable, if every clause in F
is a transition clause. Given a formula F ∈ UNSAT , a min-
imally unsatisfiable subformula of F , in symbols MUS(F ),
is any F ′ ⊆ F such that F ′ ∈ MU . In general, a given
unsatisfiable formula may have more than one MUS. Clauses
that belong to all MUSes of F are called necessary for F [7]
— clearly, every transition clause is necessary and vice versa,
as such the terms are often used interchangeably.

Most of the algorithms computing MUSes rely on the
identification of the necessary clauses of the input formula
F or its subformulas. In the constructive approach the clauses
of F are added to an initially empty set F ′ until F ′ becomes
unsatisfiable. Then, the last clause added to F ′ is necessary for
F ′. In the destructive approach the clauses are removed from
F until the resulting formula F ′ becomes satisfiable. Then, the
last clause C removed from F is necessary for F ′ ∪{C}. We
refer the reader to [1] for an overview of the state-of-the-art
in MUS computation algorithms.



III. RECURSIVE MODEL ROTATION

Let F be an unsatisfiable formula, let C ∈ F be a transition
clause, and let h be a model of F \ {C}. Note that this
implies Unsat(F, h) = {C}. In fact, we have the following
observation [1]:

Proposition 1: Let F be an unsatisfiable formula. Then C ∈
F is a transition clause if and only if there exists an assignment
h such that Unsat(F, h) = {C}.

Proof: C is a transition clause iff F \ {C} ∈ SAT iff
there exists an assignment h such that Unsat(F \{C}, h) = ∅
iff Unsat(F, h) = {C}.

Model rotation exploits Proposition 1 to detect additional
transition clauses during the computation of MUS. Assuming
the destructive approach, let C be a transition clause detected
by invoking a SAT solver on the formula F ′ = F \ {C} —
that is, the SAT solver determined that F ′ is satisfiable, and
returned a model h of F ′, while F is known to be unsatisfiable.
A similar situation occurs in the constructive approach when
C is the clause that caused unsatisfiability of the current
subset of F . In most MUS extraction algorithms the model
h is discarded (a notable exception is MiniUnsat [5] — in
Section V we discuss the relationship of our technique with
this algorithm). However, consider the assignment h′ = h|¬x
for some x ∈ V ar(C). Clearly, C /∈ Unsat(F, h′), but
Unsat(F, h′) 6= ∅. Furthermore, if the set Unsat(F, h′)
contains exactly one clause C ′, then by Proposition 1, C ′ is
a transition clause. The model h′ (of F \ {C ′}) is said to be
obtained by the rotation of the model h with respect to clause
C and variable x. Note that now, the model h′ can be rotated
again — this time, with respect to clause C ′ and some variable
x′ ∈ C ′ — possibly giving another transition clause. Note that
x′ should be different from x, as otherwise the rotation will
give the initial model h.

Example 1: Let F = {C1, . . . , C5}, where

C1 = ¬x1 ∨ ¬x2 C3 = x2 ∨ ¬x3 C5 = x1 ∨ x2

C2 = x1 ∨ ¬x2 C4 = x2 ∨ x3

The formula F is unsatisfiable, and the clause C1 is a
transition clause for F , i.e. F1 = F \ {C1} ∈ SAT . Let
h1 = {x1, x2, x3} be the model of F1 returned by a SAT
solver. We have Unsat(F, h1) = {C1}. Let h2 = h1|¬x1

, that
is h2 = {¬x1, x2, x3}. We have Unsat(F, h2) = {C2}, and
therefore, C2 is another transition clause.
In model rotation the process is continued until for some
clause Cf and the corresponding model hf of F \ {Cf}, for
every variable x ∈ Cf the set Unsat(F, h|¬x) is either not a
singleton, or contains a clause that is already known to be a
transition clause. In the above example, the rotation stops at
h2 as Unsat(F, h2|¬x2

) = {C3, C5}.
This stopping criterion guarantees that the total number of

model rotations during the execution of an MUS computation
algorithm on formula F is at most |M | ·cmax, where M is the
computed MUS of F , and cmax is the maximum among the
lengths of clauses in M . On the other hand, each successful
model rotation (i.e. the one that detects a new transition clause)

saves a potentially expensive call to a SAT solver. Given that
in practical instances the size of MUSes rarely exceeds a few
tens of thousands of clauses, it is not surprising that model
rotation often provides for significant performance gains — in
Section IV we demonstrate these gains empirically.

We now note that in model rotation at most one variable
from each necessary clause C is used for rotation — the
original motivation in [1] was to keep the model rotation
a low overhead technique. We observe, however, that the
stopping criterion described above still guarantees that number
of rotations is linear in the size of the computed MUS, even if
all variables from C are used for rotation. On the other hand,
we have the following result:

Proposition 2: Let F be an unsatisfiable formula, let C ∈ F
be a transition clause, and let h be a model of F \{C}. Then,
the sets Unsat(F, h|¬x) for x ∈ V ar(C) are pairwise disjoint.

Proof: Let x be a variable in C, and let C ′ be some clause
in Unsat(F, h|¬x). Since C ′ /∈ Unsat(F, h), the literal of
variable x was critical in C ′ under h (that is, the only literal
in C ′ that evaluates to 1 under h). Since every clause has at
most one critical literal, the fact follows.
Hence, by performing model rotation on different variables
of C we are guaranteed to obtain disjoint sets of clauses,
thus increasing the likelihood of detecting additional transi-
tion clauses. Consider again the formula F in Example 1,
and assume that the model rotation stopped at assignment
h2 = {¬x1, x2, x3} due to the stopping criterion. We can now
“backtrack” to the assignment h1 and attempt to rotate h1 with
respect to C1 on variable x2. The rotation results in the assign-
ment h′2 = {x1,¬x2, x3}, and since Unsat(F, h′2) = {C3}
we have a new transition clause C3. Rotation of h′2 on x3

results in the assignment h3 = {x1,¬x2,¬x3}, which gives
another transition clause C4. Rotating h3 on x2 results in the
assignment h4 = {x1, x2,¬x3} at which point the rotation
terminates, because Unsat(F, h4) = {C1} and C1 is already
known to be a transition clause. In this example, such recursive
model rotation allows to detect all of the transition clauses of
F . Remarkably, as demonstrated in Section IV, the cases when
the recursive model rotation finds all, or close to all, of the
necessary clauses do occur often on practical instances. The
sketch of the algorithm for the recursive model rotation is
presented in Algorithm 1. The algorithm is invoked whenever
an MUS extractor detects a new transition clause as a result
of a call to a SAT solver.

We now note that the “if” direction of Proposition 1 can be
generalized as follows:

Proposition 3: Let F be an unsatisfiable formula. Then, for
any assignment h the set Unsat(F, h) contains at least one
clause from each of the MUSes of F .

Proof: If not, then the set F \ Unsat(F, h) includes an
MUS of F , and so must be unsatisfiable.
Proposition 3 justifies the following heuristic for selection of
clauses in deletion-based MUS extraction algorithms: when-
ever the recursive model rotation arrives at an assignment
h with |Unsat(F, h)| > 1, try to remove the clauses from
Unsat(F, h) next. The idea is that for instances with many



Algorithm 1 RECURSIVE-MODEL-ROTATION(F , M , C, h)
Input: F — an unsatisfiable CNF formula

M ⊆ F — a set of transition clauses of F
C ∈M — a transition clause
h — a model of F \ {C}

Effect: M may contain additional transition clauses of F

1: for all x ∈ V ar(C) do
2: h′ ← h|¬x
3: if Unsat(F, h′) = {C ′} and C ′ /∈M then
4: M ←M ∪ {C ′}
5: RECURSIVE-MODEL-ROTATION(F , M , C ′, h′)
6: end if
7: end for

MUSes chances are that the clauses from this set belong to
different MUSes, and so among the next few calls to the
SAT solver, there will be UNSAT results — these, in turn,
are beneficial for the deletion algorithms which use clause set
refinement [1] to remove the clauses outside of unsatisfiable
core. Our experiments, reported in Section IV, confirm that
this rotation-based re-ordering of clauses is indeed beneficial
on some classes of problems.

IV. EXPERIMENTAL STUDY

The algorithm for recursive model rotation (RMR) is im-
plemented in our new MUS extractor MUSer2. MUSer2 is
a slightly optimized version of MUSer — an MUS extractor
from [1]. Both MUSer2 and MUSer implement HYB — a
deletion-like MUS computation algorithm that employs clause
set refinement, redundancy removal and (non-recursive) model
rotation. The results of the experimental evaluation of HYB
reported in [1] show clearly that it significantly outperforms
all of the publicly available MUS extraction algorithms — we
also reproduce some of the data from [1] in this section.

To evaluate the effectiveness of recursive model rotation
we performed a comprehensive experimental study on 500
benchmarks submitted to the MUS track of SAT Competi-
tion 2011 (http://www.satcompetition.org/2011) — this is also
the same set of instances that was used in [1] to evaluate
HYB. The benchmark instances were obtained from various
industrial applications of SAT, including hardware bounded
model checking, FPGA routing, hardware and software veri-
fication, equivalence checking, abstraction refinement, design
debugging, functional decomposition and bioinformatics. Note
that the benchmarks are pre-processed via trimming [1]. The
benchmarks are available for download at http://logos.ucd.ie/
∼jpms/Drops/SAT11. The experiments were performed on an
HPC cluster, where each node is dual quad-core Xeon E5450
3 GHz with 32 GB of memory. The timeout was set at 1200
seconds, and memory was limited at 4 GB.

Figure 1 presents the incremental-time plot that provides
an overview of the results of our experimental study. The
plot contains data from [1] for SAT4J [8] MUS extractor
in destructive mode (SAT4J-D), a destructive MUS algorithm
Picomus from the Picosat distribution [9], and the algorithm
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Fig. 1. Incremental-time plot showing data for all MUS extractors. To keep
the plot legible, the data for the first 225 instances in not shown.

TABLE I
SUMMARY OF THE PERFORMANCE OF THE VARIANTS OF MUSER2
MUSer2 Solved Total Total Avg. MUS Avg. % of
variant (from time SAT size (% of tr. clauses

500) (sec) calls input size) by rot
no MR 457 44227 1741954 93.44 n/a

with MR 474 20249 797490 93.45 61.33
+RMR 488 12609 570303 93.46 77.57

+RMR+reorder 490 12153 570867 93.44 77.44
Columns 3-6 contain data for instances solved by all variants of MUSer2.
The last column shows the percentage of transition clauses in the computed
MUS that were detected by model rotation.

HYB implemented in MUSer. The former two are the top
performing publicly available MUS extractors among those
evaluated in [1]. In addition, the plot contains data for:
MUSer2 with model rotation disabled (MUSer2 no MR),
MUSer2 (with model rotation), MUSer2 with recursive model
rotation (MUSer2 + RMR), and, finally, MUSer2 + RMR with
rotation-based reordering of clauses described in Section III.

The following conclusions can be drawn. First, we note
that MUSer2 has a clear performance edge on the currently
publicly available MUS extraction tools. Second, the compar-
ison between MUSer2 and MUSer2 without model rotation
demonstrates that model rotation, even in the form introduced
in [1], is an extremely powerful acceleration technique for
MUS extraction algorithms. Third, we note that recursive
model rotation increases the power of model rotation fur-
ther. Finally, it appears that rotation-based clause re-ordering
heuristic might also result in a slight performance edge.

Table I provides additional evidence of the power of model
rotation in general, and recursive model rotation in particular.
The table presents the number of solved instances for each of
the variants of MUSer2 in the second column. The data in the
remaining columns is for instances solved by all of the four
variants. We note that the addition of recursive model rotation
results in significant reduction in overall MUS extraction time,
and allows to solve significantly more instances. We also
point out that RMR is really a clear-win technique for MUS
extraction algorithms as the size of computed MUSes is not
affected negatively. Finally, the last column in Table I shows
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Fig. 2. MUSer2 with model rotation vs. recursive model rotation: CPU time.

the percentage of MUS clauses detected by model rotation —
over 77% on average for RMR.

Both Figure 1 and Table I show that the addition of recursion
to model rotation results in a significant performance edge.
Nevertheless, we present additional scatter plots comparing
the two versions of the technique. The plot in Figure 2 shows
that on many problems the addition of recursion results in
1, 2 and in some cases 3 orders of magnitude speed-ups.
The analysis of our experimental data suggests that recursion
allows to detect significantly more necessary clauses, in many
cases all of them.

The effect of recursive model rotation on some of the
specific classes of instances from our benchmark set are
demonstrated in Table II — debug refers to design debugging
instances, decomp refers to functional decomposition instances
(cf [10]), ibm refers to benchmarks from IBM, and intel are the
abstraction-refinement benchmarks from [6]. While for some
of the classes the performance improvements are moderate
(although exceeding a factor of 2), on instances from design
debugging and abstraction refinement we observe over 2 orders
of magnitude speed-ups.

Finally, in Table III we compare the performance of
MUSer2 with that of the resolution-based destructive MUS
extraction algorithm 1MN [6]. Since the solver that imple-
ments the latter is not publicly available, we reproduce the data
from [6]. For this experiment we used the original, untrimmed
instances, and set the timeout to 2 hours, as in [6], and
memout to 4 GB. The hardware used in our experiments
appears to be similar to the one reported in [6]. We note
that with the exception of two 4pipe instances, MUSer2 has a
clear performance advantage over 1MN — on some instance
(longmult) we observe 2 orders of magnitude speed-ups. On
4pipe MUSer2 is slower by a factor of 1.5, and on 4pipe k
it runs out of memory. The reason for the latter is the SAT
solver used in this set of experiments (picosat-935), as our
techniques have negligible memory overhead. It should be
noted that MUSer2 uses SAT solver as a black-box (as opposed
to resolution-based approach of [6] which requires significant
modifications to a SAT solver). We suspect that switching to
a more efficient SAT solver will resolve this issue.

TABLE II
MUSER2: NO ROTATION VS. RECURSIVE ROTATION, SELECTED CLASSES

Class no rotation recursive rotation
(total num time SAT num time SAT % by
num) solv. (sec) calls solv. (sec) calls rot.

debug(120) 103 7041 129651 120 65 5713 94.82
fdec(143) 143 9738 874946 143 4679 307422 64.79
ibm(45) 42 5156 204134 42 2255 66563 84.38
intel(49) 41 7441 31640 48 38 346 97.27

TABLE III
MUSER2 + RMR VS. 1MN [6]: CPU TIME (SEC)

Instance 1MN MUSer-2 + RMR MUSer-2 + RMR
+ reorder

4pipe 1417 2101 1776
4pipe 1 ooo 1528 425 477
4pipe 2 ooo 2383 1070 1227
4pipe 3 ooo 2560 593 779
4pipe 4 ooo 2432 568 600

3pipe k 167 104 90
4pipe k 1426 MO MO
barrel5 68 9 10
barrel6 348 95 150
barrel7 849 115 103
barrel8 4115 1270 2338

longmult4 14 0.4 0.4
longmult5 143 2.5 1.6
longmult6 968 13 10
longmult7 5099 103 40

V. CONCLUDING REMARKS

The analysis of models returned by a SAT solver during
MUS extraction can be attributed to [5], where it was explored
in the context of constructive MUS extractor MiniUnsat.
Nevertheless, model rotation differs fundamentally from this
work. In our view, recursive model rotation (and clause re-
ordering) is just one example of structure-based techniques
for MUS extraction. – we are currently investigating additional
techniques of similar nature.
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