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Abstract—Formal verification is a reliable and fully
automatic technique for proving correctness of hardware
designs. Its main drawback is the high complexity of veri-
fication, and this problem is especially acute in regression
verification, where a new version of the design, differing
from the previous version very slightly, is verified with
respect to the same or a very similar property. In this
paper, we present an efficient algorithm for incremental
verification, based on the ic3 algorithm, that uses stored
information from the previous verification runs in order
to improve the complexity of re-verifying similar designs
on similar properties. Our algorithm applies both to the
positive and to the negative results of verification (that is,
both when there is a proof of correctness and when there
is a counterexample). The algorithm is implemented and
experimental results show improvement of up to two orders
of magnitude in running time, compared to full verification.

I. INTRODUCTION

Today’s rapid development of complex hardware de-
signs requires reliable verification methods. In formal
verification, we verify the correctness of a design with
respect to a desired behavior by checking whether a
labeled state-transition graph that models the design
satisfies a specification of this behavior, expressed in
terms of a temporal logic formula or a finite automaton
[CGP99]. The main advantages of formal verification
tools are their reliability (if a design passes verification,
then it is 100% correct with respect the specification),
full automation of the verification process, and the ability
of the tools to accompany a negative answer to the
correctness query by a counterexample to the satisfaction
of the specification in the design [CGMZ95].

The main drawback of the formal verification tech-
nology, and the one that prevents it from being even
more widely used in the hardware industry, is that it
requires significant computational effort, even for mod-
erately sized designs. Moreover, when small changes
are introduced into the design or the specification, for
example due to a bug fix or an upgrade, the whole design
needs to be re-verified, generally requiring the same
amount of resources as for the initial verification. The
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problem is especially acute in regression verification,
where a new version of a hardware design is re-verified
with respect to the same (or very similar) specification.
Since regression verification is a only a preliminary
(albeit necessary) stage in functional verification of a
new version, the time and effort allocated to it are usually
much lower than for the initial verification; in reality,
since the amount of effort is the same as for the initial
verification, our experience is that regression verification
is often not performed thoroughly enough, thus possibly
leading to lower quality designs.1 A better option would
be to verify the changes incrementally, that is, to reuse
the results from the previous execution and only verify
the change.

Another area in which incremental verification tech-
niques are in dire need is coverage computation in formal
verification. Most of the existing work on coverage in
formal verification is based on the notion of mutation
coverage, where small mutations are introduced to the
design and the mutant designs are checked with re-
spect to the original specification [HKHZ99], [CKV06b],
[CKV06a], [KLS08], [CKP10], with the goal of check-
ing thoroughness of formal specifications. Efficient in-
cremental verification techniques can reduce the cost of
computing mutation coverage, where a large number of
slightly modified designs need to be checked with respect
to the same property.

Several papers view the problem of incremental ver-
ification as an instance of dynamic graph algorithms.
In this setting, a design is represented as a graph and
incremental verification checks the influence of small
changes in the graph (edge insertion and removal) on the
properties that were previously satisfied in this graph,
thus reducing the problem of incremental verification
to a dynamic graph problem. However, dynamic graph
connectivity, one of the main problems in dynamic graph
algorithms, and the one that is most relevant to verifi-
cation, is an open problem, hence this reduction is of
limited value in practice [SBS95], [CK03]. A somewhat
related direction is using the reduction to dynamic graph

1Our experience is based on participating in the formal verification
of IBM hardware designs, as well as on discussions with formal
verification engineers in other companies.



problems in order to prove complexity results for LTL
model checking of evolving designs with non-changing
properties [KW03].

The idea of saving the result of model checking in
order to use it for subsequent model-checking queries is
extensively used in counter-example-guided abstraction
refinement (CEGAR) approach [CGJ+03], where the
state-explosion problem is addressed by iterative veri-
fication and refinement of an abstract design. Abstract
counterexamples are analyzed and, if spurious, are used
in order to guide the refinement process of the abstrac-
tion for the next iteration of the verification process (see
also [LBBO01]).

In this paper, we present an approach for re-using the
result of model-checking a design (either a proof or a
counterexample) for verification of the same or a slightly
different property on the same or a slightly modified
design. Our method applies both for the case where
the result of the model-checking query is negative, in
which case we re-use a counterexample, and where it is
positive, and we re-use the correctness proof. In fact, the
later scenario is very common in regression verification
(since the previous version of the design is assumed to
pass the verification successfully).

The basis of our work is the novel ic3 (“Incremental
Construction of Inductive Clauses for Indubitable Cor-
rectness”) model checking algorithm, recently proposed
by Aaron Bradley [Bra11]. In addition to being one of
the the fastest bit-level verification methods [BEM11],
[BBC+11], the ic3 algorithm lends itself very naturally
to incremental verification.

We describe an algorithm for saving the relevant
parts of the proof obtained by ic3, and using them
to reproduce the proof (or counterexample) on a new,
possibly modified version of the model. This requires
very little computational effort in case the same proof
works for the new version as well; in case the same
proof does not apply, our method attempts to “patch” it
by extracting the maximum valid part of the previously
saved information and using it as a basis for proving
the new version. The latter case, where the original
proof does not apply “as is” is the main strength of
our method. Roughly speaking, the main idea of our
algorithm is as follows. First we observe that producing
(and saving) re-usable information does not incur any
significant overhead on top of the standard execution of
ic3; in addition, the saved part is usually very small. We
also describe a query-efficient SAT-based algorithm that
we call an invariant finder for extracting the maximum
valid part of the previously saved information. Then we
describe how the valid parts extracted by the invariant

finder can be used as a starting point of subsequent ic3’s
execution, with minor modifications to the algorithm.

Similarly, our algorithm allows to save a small part of
a counterexample produced by ic3 that is, nevertheless,
sufficient in order to easily reproduce a concrete coun-
terexample and then use this part in order to compute
counterexamples for a modified design (or a modified
property), by re-using the saved part “as is” or “patch-
ing” it to produce a valid counterexample for a modified
version. To improve the performance of the algorithm for
reusing counterexamples, we propose a simple technique
that reduces the size of the partial assignments produced
by ic3 by ≈ 30%.

The algorithm is implemented in the model-checking
engine IVE (incremental verification engine), which is
a part of the formal verification platform of IBM [Rul],
[Six] and is checked on the Hardware Model Checking
Competition (HWMCC’10) [HWM10] benchmarks as
well as on a real IBM hardware design. Our results show
a significant speed-up (up to three orders of magnitude)
compared to the re-run of the same model-checking
procedure. We note that the performance of IVE is
on par with the state-of-the art model checking tools,
which makes the speed-up achieved by our incremental
verification algorithm even more significant.

The rest of this paper is organized as follows. The
necessary definitions and an overview of the ic3 algo-
rithm are provided in Section II. We describe the main
contribution of this paper – the invariant finder and
the incremental verification algorithms – in Section III,
and present the experimental results of executing our
implementation on known benchmarks and on an IBM
design in Section IV. In Section V we summarize our
contributions and discuss possible directions for future
work. The complete table of running times and speed-
ups achieved by our algorithm on all benchmarks from
the HWMCC’10 competition appears in the full version
of this paper [Rul].

II. PRELIMINARIES

In this section, we give the necessary definitions for
our algorithm and provide overviews of a SAT solver
with incremental capabilities and of the ic3 algorithm.

A. Definitions

Throughout this paper we consider verification of
safety properties on finite state machines (FSMs). An
FSM M is a tuple 〈X, I, T 〉, where X is a set of Boolean
state variables, such that each assignment s ∈ {0, 1}X
corresponds to a state of M , and the predicates I ⊆
{0, 1}X and T ⊆ {0, 1}X × {0, 1}X define the initial
states and the transition relation of M , respectively. A



predicate P ⊆ {0, 1}X defines a property to be verified
on M .

State variables and their negations are called literals,
and disjunctions of literals are called clauses. A CNF
formula is a conjunction of clauses. (We sometimes refer
to CNF formulas as sets of clauses as well.)

We follow the standard notation of X ′ = {x′ : x ∈
X} representing the state variables in the next step, and
we assume that the FSMs are given in a representation
that allows encoding pairs of states 〈s, s′〉 into a CNF
formula ψ on variables X∪X ′, so that 〈s, s′〉 ∈ T if and
only if ψ is satisfiable (containment in I and P should
be similarly expressible with a CNF formula on variables
in X).

A sequence π of states t0, . . . , tn is a path in M if
for each 0 ≤ i < n, 〈ti, ti+1〉 ∈ T , that is, there is a
transition between each subsequent pair of states in π. A
path that starts from an initial state is called an initialized
path. A state t ∈ {0, 1}X is reachable if there is an
initialized path that ends in t. Let R denote the set of
all reachable states, and for k ≥ 0, let Rk denote the set
of states reachable by initialized paths of length at most
k. In particular, R0 = I and R2|X| = R. The goal of a
(formal) verification algorithm is to prove R ⊆ P , that
is, to prove that the property P holds in all reachable
states of M .

In all that follows we make definitions and claims with
respect to some FSM M on state variables X , with its
initial and transition relations I, T , and some property
P , without explicitly mentioning them.

Definition 2.1 (invariants and inductive invariants):
• A CNF formula ϕ is an invariant if s ∈ R =⇒
s |= ϕ. Furthermore, ϕ is a k-step invariant if s ∈
Rk =⇒ s |= ϕ.

• A CNF formula ϕ is an inductive invariant if I =⇒
ϕ and (s |= ϕ ∧ 〈s, s′〉 ∈ T ) =⇒ s′ |= ϕ. Simi-
larly, ϕ is a k-step inductive invariant if I =⇒ ϕ
and (s ∈ Rk−1∧s |= ϕ∧〈s, s′〉 ∈ T ) =⇒ s′ |= ϕ.

Note that inductive invariance implies invariance (but not
vice versa).

Observation 2.1: If ϕ is an inductive invariant and
ϕ =⇒ P , then P holds in all reachable states.

B. SAT solver with incremental capabilities

Our algorithm invokes SAT-based procedures for ver-
ifying P on M . In order to allow efficient incremen-
tal verification, we use an extended version of mage,
an IBM SAT solver with incremental capabilities (see
the homepage of the formal verification platform of
IBM [Rul], [Six], for the description of mage). Incre-
mental capabilities of the extended version of mage

are similar to those of MiniSAT [ES03], [EMA10],
specifically, the following query is supported (ϕ is a
CNF formula and A is a set of clauses (assumptions)):
Sat(ϕ,A)?
• if ϕ ∧ A is unsatisfiable return UNSAT and a

minimal subset B ⊆ A so that ϕ ∧ B is still
unsatisfiable2;

• if ϕ ∧ A is satisfiable return SAT and a satisfying
assignment α ∈ {0, 1}X ;

For example, the following queries (referring to the
given FSM) can be translated to a single query to the
SAT solver:
• s ∈ I? (is s an initial state?)
• ϕ∧ T ∧¬ϕ′? (Is there a pair of states, 〈s, s′〉 ∈ T ,

so that s satisfies ϕ but s′ does not? If the answer
is yes we can also extract a witness pair of states
〈s, s′〉 from the assignment returned by the solver.)

C. Overview of ic3

In this section we provide a brief overview of the
ic3 algorithm and highlight the features of ic3 that are
relevant to incremental verification. For a more in-depth
description of ic3 the reader is refered to the original
paper by Bradley [Bra11] and to the paper of Brayton
et al. [BEM11], who provide an overview of ic3 and
present pdr – an improved version of ic3.

The main advantage of ic3 is its ability to perform
unbounded SAT-based model checking without unfold-
ing the transition relation. Given a model checking
instance consisting of an FSM M and a property P
as defined in Section II-A, the ic3 algorithm decides
whether P is an invariant in M , producing an inductive
strengthening if so, and a counterexample trace if not.
The algorithm proceeds by incrementally refining and
extending a sequence F1, . . . ,Fk of sets of clauses, each
Fi forming an i-step inductive invariant CNF formula.
Initially k = 1, and it gradually grows until termination.
Furthermore, if M satisfies P (P holds in all reachable
states) then on termination of ic3, for some i ≤ k, the
set Fi

3 forms an inductive invariant CNF formula that
implies P :
• I =⇒ c for every clause c ∈ Fi;
• Fi ∧ T =⇒ F ′i ;
• Fi =⇒ P ;
If M does not satisfy P then ic3 produces a set of

counter-examples in form of a sequence α0, . . . , αk of
partial assignments to X . In this sequence

2Although obtaining the minimal subset is hard, there are efficient
ways to compute subsets that tend to be quite small in practice.

3Fi is the set that becomes empty during “clause pushing”.



• all α0 states (states formed by extending α0 to a
full assignment) are in I;

• all αk states are not in P ;
• all αi states lead to some αi+1 state;

A concrete counter-example (CEX) may be extracted
from such a sequence using k+1 calls to a SAT solver.

D. Additions to ic3

a) Shrinking partial assignments: Given a pair
(s, α), where s is a full assignment to X (describing
a state), α is a partial assignment to X ′ (describing a set
of states) and there is an α-state t such that 〈s, t〉 ∈ T ,
“shrinking” is the process of generalizing s into a set of
states (represented by a sub-assignment of s) all leading
to some α-state in one step.

The optimization from [BEM11] shrinks assignments
using ternary simulation, and it is indeed very efficient.
Here we propose a different method to further shrink
the assignments using a SAT solver. This is described in
detail in Section III-C.

b) Injecting invariants: We note that instead of
starting “from scratch”, ic3 can take, as input, a set I
of invariant clauses, and use it as an absolute invariant:
during its entire execution, all clauses from I can be
directly injected into each of the sets Fi.

III. ALGORITHM

In this section we present the main contribution of
this paper – an algorithm for efficient incremental ver-
ification. We start with an overview of the algorithm,
divided into an overview of the invariant finder and
an overview of the incremental verification algorithm,
which combines the invariant finder and ic3. Then we
describe the algorithm in more detail, including some
additional (smaller) contributions that further improve
its performance.

A. Overview

We start with an overview of the invariant finder. Note
that in addition to playing a crucial role in our algorithm
for incremental verification, the invariant finder might be
of independent interest. Invariant finder takes a model M
and an arbitrary set C of (candidate invariant) clauses as
input, and finds the maximum subset I ⊆ C that is an
inductive invariant with respect to M , i.e.:
• I =⇒ c for every clause c ∈ I;
• I ∧ T =⇒ I ′;
The general idea of generating and exploiting induc-

tive invariants in formal verification is not new (see
e.g. [CCG+09], [CNQ09], [CMB07], [BMC+09]). The
novelty of our algorithm is in the way it extracts the
maximum set of inductive invariants (from an arbitrary

set of candidates) using a SAT solver with incremental
capabilities described in Section II-B; in particular, as the
experimental results show, our algorithm is very efficient
in practice (see Section IV).

The incremental verification algorithm combines ic3
and the invariant finder for storing and re-using in-
formation from previous verification runs in order to
speed up subsequent verification on modified models and
properties as follows.

If the result of the verification run of P on M is
positive, the ic3 algorithm produces an invariant set I
of clauses that implies the property P on M . We use
the invariant finder to extract from I the largest invariant
subset that holds on a modified model and provide this
subset as a starting point to ic3 (see Section II-D).

If the verification of P fails on M , the set of coun-
terexamples generated by ic3 is saved in a form of partial
assignments, together with the clauses C ,

⋃k
i=1 Fi.

Then, in subsequent runs we check whether the saved
partial assignments can be extended to full assignments
that produce a counterexample that is valid in a modified
model with a modified property. If so, we have found a
valid counterexample; otherwise, we extract the maximal
inductive invariant from C, and provide this subset as a
starting point to ic3.

B. Detailed description of the algorithm
Invariant finder: Recall that our task is: Given a

candidate set C of clauses, find its maximal subset I
that is inductive invariant with respect to a given model
M . To this end, we first check if the whole set C is
inductive invariant by making the query C ∧ T =⇒ C′.
If so, we are done; otherwise, there are clauses c ∈ C
not implied by C ∧ T . We then update C by removing
(possibly a subset of) such clauses, and repeat.

To make this straightforward process more practical,
we encode the SAT queries using auxiliary variables so
that 1) the learnt information in the solver can be re-used
from iteration to iteration; 2) C gets updated quickly –
by detecting many non-implied clauses c simultaneously.

Specifically, we propose the following algorithm:
1) Remove from C all clauses not in I;
2) For each clause ci ∈ C (whose literals refer to

current cycle)
• introduce two auxiliary variables xi and yi;
• introduce the “shifted” copy c′i of ci (whose

variables refer to the next cycle);
• add the clause (¬xi ∨ ci) to the solver (this is

equivalent to xi =⇒ ci);
• for each literal a′i,j of c′i, add the binary clause

(yi,¬a′i,j) to the solver (these clauses are
equivalent to c′i =⇒ yi)



3) Initialize it← 0, Iit ← C;
4) while Iit 6= ∅ do:

a) If Sat({(x1), ..., (x|Iit|), (¬y1 ∨ . . . ∨
¬y|Iit|)}) is UNSAT report “I , Iit is
invariant”;

b) Else, let α denote the satisfying as-
signment that respects the assumptions
(x1), ..., (x|Iit|), (¬y1 ∨ . . . ∨ ¬y|Iit|). Form
Iit+1 by removing from Iit all clauses with
indices corresponding to each yi assigned to
0 in α (see Remark 3.1), update xi’s and yi’s
accordingly, and proceed with it← it+ 1;

5) Report “no invariant”;

Remark 3.1:

• Observe that in Step 4b there must be at least one
such yi assigned to 0, thus in the worst case the
number of iterations and SAT calls until termination
is bounded by |C|− |I|. In practice, however, many
yi’s may be assigned to 0 at once, making the loop
terminate faster.

• Note that all SAT queries involve only a single copy
of transition relation.

• Note that the invariant finder can take any set of
clauses as the candidate set C, thus there is no
need to worry about validity of the previously saved
information.

Claim 3.1: Invariant finder always outputs the maxi-
mum inductive invariant subset I ⊆ C (which may be
an empty set).

Proof: First, observe that there is a unique max-
imum inductive invariant subset; indeed, it is easy to
verify that if A and B are inductive invariant subsets of
C, then so is A ∪ B.

Let I be the output of the invariant finder upon
termination. By definition, since in every iteration we
check if Iit ∧ T =⇒ I ′it, the set I with which the
loop terminates is clearly inductive invariant, thus we
only need to argue that it is maximal. Let I∗ denote the
maximal invariant subset of C, and assume towards a
contradiction that I∗ 6⊆ I. Let it denote the first iteration
in which some clause of I∗ was removed from Iit, that
is, I∗ ⊆ Iit but I∗ 6⊆ Iit+1 (such it must exist since I∗
was initially contained in I0). This means that Iit ∧ T
did not imply I∗, contradicting the inductiveness of I∗.

Incremental verification: First, let us consider the
(more challenging) case where the design passes the
verification, namely, P holds in all reachable states
of M . As explained in Section II-C, ic3 produces an
invariant set I of clauses, and we can save it (in form of

a standard CNF file) as the “proof of correctness” (see
Observation 2.1).

Now assume that we want to re-verify P on the same
model; this amounts to verifying the validity of Fi,
which is done in just three SAT calls:

1) I =⇒ I?
2) I ∧ T =⇒ I ′?
3) I =⇒ P ?

To summarize, if the saved proof is re-used for the same
model, the verification is completed almost immediately
(see Table I).

In case a model or a property are modified, our
algorithm invokes the invariant finder to extract from
I the largest invariant subset Î (with respect to the
updated model), and injects it into ic3’s data-structure as
described in Section II-C. In particular, after this step,
ic3 does not need to rediscover all the invariant clauses
that hold both in the original and modified models. We
note here that discovering a single invariant clause in
ic3 requires several (often more than its size) SAT calls;
hence, quite naturally, the amount of work that is saved
by re-using the previous verification results corresponds
to the amount of overlap between the two models.

Now let us consider the case where the verification
fails and a counterexample is produced. We can store
the set of counter-examples generated by ic3, in form
of the aforementioned partial assignments α0, . . . , ak,
and the set of clauses C ,

⋃k
i=1 Fi. To check if a

concrete counter-example can be extracted in a future
run (on a possibly modified model) we make k+1 SAT
calls, essentially asking for a sequence s0, . . . , sk of full
assignments to X with the following properties:

1) si is an extension of αi for all i ≤ k, and in
particular, s0 ∈ I;

2) 〈si, si+1〉 ∈ T for all i < k;
3) sk /∈ P .
If a counterexample cannot be extracted, we proceed

with the usual execution of ic3, but first we attempt,
using the invariant finder, to find an inductive invariant
subset in C to use it as a starting point of ic3.

It is important to make the partial assignments
α0, . . . , αk as small as possible (in the initial run), so that
extracting a concrete counter-example becomes possible
even when the modified model significantly differs from
the original model. In Section III-C we discuss the
improvements we added to the ic3 algorithm that enable
to “shrink” the partial assignments computed by ic3.

C. Shrinking partial assignments with solver
We introduce an additional improvement of the algo-

rithm allowing us to further shrink the partial assign-
ments produced by ic3. The goal of this improvement is



to enlarge the set of valid counter-examples as discussed
in Section II-D.

For some i < k, all αi states can reach some αi+1

state in one step. Shrinking αi results in an increase of
the number of states that can lead to some αi+1 state,
and is done using a single SAT call (and in fact this SAT
call only involves BCP).

Specifically, given a pair 〈s, s′〉 ∈ T and the cor-
responding input values β (under which the transition
(s = α ∧ inp = β) → s′ holds), we can shrink
α to a partial assignment so that all α states lead to
s′ in one transition. To this end, we query the solver
(knowing in advance that the answer is negative) if
(s = α) ∧ (inp = β) ∧ 〈s, ŝ′〉 ∈ T ∧ (ŝ′ 6= s′) is
satisfiable. The first condition is passed to the solver
in form of |α| assumptions, so that it also returns the
minimal subset of those assumptions required for the
conflict (see Section II-B). Then we can safely remove
from α all those indices that are not required for reaching
the conflict.

We conjecture that the reason why this additional step
is effective is that instead of only looking at the structure
of the model (as in ternary simulation) it takes into
account all learned information (invariants from ic3 and
the learned clauses from solver) to rule out unreachable
states that do not lead to any αi+1 state.

IV. EXPERIMENTAL RESULTS

We implemented our algorithm for incremental verifi-
cation in IVE (incremental verification engine), which
is a part of the formal verification platform of IBM
[Rul], [Six], and measured its performance on known
benchmarks and on a real IBM hardware design.

HWMCC’10 benchmarks

The first set of experiments is based on the bench-
marks used in the Hardware Model Checking Competi-
tion [HWM10] that was a part of the first Hardware Veri-
fication Workshop (HVW’10), affiliated with Computer-
Aided Verification (CAV) Conference in 2010. We note
that, out of the 758 publicly available benchmarks, IVE
successfully verified 713 within 15 minutes, while the
winner of the HWMCC’10, an engine abcsuperprove
[abc] from Berkeley, verified 717 benchmarks within 15
minutes on comparable machines4. In other words, the
performance of IVE is comparable to the state-of-the-art
model-checking tools.

For each benchmark, we measured the running time
of the verification procedure (setting 1 hour time limit),

4HWMCC’10 used Intel Quad Core 2.6 GHz with 8 GB; we used
Intel Quad Core 2.6 GHz with 2 GB.

and the running time of incremental verification of the
same benchmark (in other words, re-verification based
on the results of the previous verification procedure).
This setting emulates the most common scenario in
incremental verification, where the changes introduced
into the design do not, in fact, affect the verification
at all, either because they fall outside of the cone of
influence of the verified properties, or because they are
“filtered out” during the preliminary reductions.

For each benchmark, we also measured the running
time of IVE with incremental verification after small
changes were introduced into the design. We simulated
introduction of a small change by a random mutation
in 1% of the assignments in the original instances
(represented in AIG form) as follows. An assignment
of the form res = `1&`2 was selected with probability
0.01 and mutated into one of the following assignments:
{res = 0, res = 1, res = ¬`1&`2, res = `1&¬`2,
res = ¬`1&¬`2, res = `1, res = ¬`1, res = `2,
res = ¬`2 } with equal probability. In the absence of
a domain-specific knowledge about the structure of the
design, random mutations are the best approximation
of small changes introduced into the design, and they
also ensure that the experimental results are not biased
towards any specific type of changes. We then measured
the running time of IVE with incremental verification for
the original benchmarks after the mutated ones and of
the mutated ones after the original ones. In each case, the
results of the previous verification were saved and used
by the subsequent verification. The detailed results are
presented in the full version of this paper [Rul]; Table I
contains their summary. The row “overall” contains the
results summarized for all benchmarks together, thus
the speed-up represents a speed-up that is achieved
by model-checking all benchmarks one after another.
The overall speed-up is by the factor of 76 for re-
verification of the same instance, and is by the factor
of 3 after a small mutation was introduced. The median
speed-up shows only a very slight improvement of our
technique compared to re-verification without using the
previous results. However, this is mostly due to the fact
that median is dominated by very light instances, that
constitute the vast majority of HWMCC’10 benchmarks.
The most significant improvement in the running time
was achieved for heavy instances: indeed, the median
speedup (rerun vs. original) computed on instances that
take > 60 seconds to solve is larger by two orders of
magnitude (277 vs. 1.2).

IBM hardware design

In the second set of experiments, based on a real
and up-to-date IBM hardware design, we measured the



original rerun speedup original after mutated speedup mutated mutated after original speedup
Overall: 30597.01 402.89 75.92 10070.84 3.04 50294.46 37348.26 1.35
Average 42.49 0.55 114.06 13.98 1.80 69.85 51.87 2.95
Median 0.175 0.11 1.20 0.13 1.43 0.43 0.15 3.00

TABLE I
SUMMARY OF RUNTIMES ON 721 BENCHMARKS FROM HWMCC’10.

benefit of our algorithm when the changes between
the two verification runs are significant and represent
real changes in the design. Namely, we checked our
algorithm on two versions of a model composed of a
hardware design, augmented with a driver and a set of
properties. The design implements logic that responds
to requests from several threads. The two versions differ
only in the driver: In the first (1T : 19,822 state vari-
ables and 299,185 gates before reductions; 2,187 state
variables and 55,756 gates after reductions) the driver
allows requests from a single thread, disabling all others.
In the second version (8T : 19,831 state variables and
300,316 gates before reductions; 2,249 state variables
and 56,458 gates after reductions), the driver enables
8 requesting threads. Therefore, in the first version
all interleavings and priority-based decisions between
threads are disabled, creating a significant difference in
behaviors between the first and the second version. The
verification suite for the design consists of 17 temporal
logic properties. Table II presents the results of executing
IVE with incremental verification implementation for
both versions on all properties, including the original
running time, the re-verification running time, and the
running time of verifying one model after another.

The most important number in Table II is the accu-
mulated speed-up, presented in the row ‘‘overall”. This
number represents the performance gain of incremental
verification in the scenario where the whole verification
suite is re-checked in the design, which is a typical
scenario after a bug fix and in regression verification.

The accumulated speed-up between the original run of
model 1T and its re-run, presented in the row ‘‘overall”,
is by the factor of ≈ 30, compared with re-run of the
verification “from scratch”; the accumulated speed-up
between the original run of model 8T and its re-run is by
the factor of ≈ 61. These numbers model a performance
gain in a typical scenario of regression verification, when
the changes do not affect the properties at all.

The accumulated speed-up between the original run
of model 1T and the run of model 1T after model 8T
is by the factor of ≈ 3, and the accumulated speed-up
of model 8T after model 1T is by the factor of ≈ 2.
These numbers show that even if a change in the model
is wide and applies to all behaviors of the design, using
the incremental verification techniques has the potential

of reducing the running time quite significantly. The
difference in speed-up between verifying the 8T model
after 1T and the 1T after the 8T is due to the fact that
1T has a small fraction of behaviors of 8T , and hence
the proof of 1T is only a small step in proving 8T ; on the
other hand, the correctness of 1T for most part follows
from the correctness of 8T .

It is clear that in some cases, incremental verifi-
cation techniques will not be beneficial in improving
performance; after all, our algorithm incurs an additional
computational cost in analyzing stored data. It is easy to
see that this situation occurs when the instance is solved
almost immediately, thus making the time required for
analyzing the stored data very significant in the overall
performance estimation – see, for instance, some of the
results for properties ϕ07 and ϕ08 in Table II. We also
note that the speed-up of this set of experiments is in
most cases significantly smaller than the speed-up of
the HWMCC’10 benchmarks; this is, again, due to the
contribution of the time required to analyze the stored
data in this relatively big design.

Overall vs. median and average speed-up: The
median and average speed-ups in Tables I and II are
affected by the (negligible) speed-up achieved on very
light instances, where the analysis of the stored data is
the major component in the overall verification. On the
other hand, the overall speed-up is computed by dividing
the sum of the running times of the original verification
by the sum of the running times of incremental verifi-
cation of all instances. Thus, the speed-up achieved on
heavy instances, which are also the most important target
for the application of incremental verification, is more
accurately represented by the overall speed-up column.

The order of verification: Table I presents the re-
sults of executing incremental verification of the original
designs after the mutant designs and vice versa. It is
easy to see that the speed-up achieved by re-verifying the
original design after the mutant design is larger (by the
factor of 2) than the speed-up achieved by re-verifying
the mutant design after the original. It is hard to say
whether this difference is meaningful; SAT solvers are
based on heuristic techniques, and the correlation of the
size of an instance with the time required to solve it is
not always clear. We conjecture that the difference may
stem from the fact that mutations create SAT instances



property 1T 1T after 1T speedup 1T after 8T speedup 8T 8T after 8T speedup 8T after 1T speedup
φ01 1 0 ∞ 1 1.00 1 2 0.50 2 0.50
φ02 2330 299 7.79 3336 0.70 5603 129 43.43 1742 3.22
φ03 95 96 0.99 124 0.77 86 48 1.79 58 1.48
φ04 4913 91 53.99 1777 2.76 13458 234 57.51 1231 10.93
φ05 204 12 17.00 238 0.86 786 83 9.47 630 1.25
φ06 77 19 4.05 863 0.09 112 7 16.00 13 8.62
φ07 1 3 0.33 1 1.00 6 2 3.00 2 3.00
φ08 0 2 0.00 1 0.00 0 1 0.00 0 ∞
φ09 13636 332 41.07 3848 3.54 13602 121 112.41 10291 1.32
φ10 8 29 0.28 174 0.05 15 1 15.00 0 ∞
φ11 13823 79 174.97 2 6911.50 17421 55 316.75 9658 1.80
φ12 17 96 0.18 37 0.46 9 5 1.80 3 3.00
φ13 129 1 129.00 139 0.93 106 21 5.05 2 53.00
φ14 177 72 2.46 220 0.80 108 13 8.31 3 36.00
φ15 135 8 16.88 170 0.79 250 1 250.00 5 50.00
φ16 651 6 108.50 30 21.70 1814 36 50.39 32 56.69
φ17 407 93 4.38 749 0.54 779 116 6.72 772 1.01

Overall 36605 1238 29.57 11710 3.13 54160 883 61.34 24447 2.22

TABLE II
TWO VERSIONS OF AN IBM DESIGN – ONE THREAD AND EIGHT THREADS. ORIGINAL AND RERUN TIMES IN SECONDS.

that do not always correspond to real designs. Since SAT
solvers are fine-tuned to efficiently solve real designs,
introducing a small mutation can cause a significant
increase in the number of clauses that SAT solver is
required to learn in order to solve the instance.

V. CONCLUSIONS

We described a novel algorithm for incremental
model-checking of hardware. Our algorithm is partially
based on an improved version of the ic3 algorithm and it
relies on the results of the previous verification procedure
in order to improve the complexity of verification after a
small change was introduced in either the design or the
property. Our algorithm applies both to the case where
the original model-checking procedure failed producing
a counter-example, and to the case where the original
model-checking was successful producing a proof of
correctness. The algorithm requires storing a minimal
amount of information from the proof or a counterex-
ample, hence the overhead for the initial verification is
negligible. We implemented our algorithm in IVE, an
engine which is a part of the formal verification platform
of IBM. We measured the performance improvements
obtained by our implementation on publicly available
benchmarks and on a real IBM design. The performance
of IVE engine is on par with the state-of-the-art model
checkers on known benchmarks, and we demonstrate that
with our implementation we are able to achieve a speed-
up of up to two orders of magnitude on “heavy” instances
for re-verification after a small change.

To conclude, our technique clearly presents significant
performance improvements, even when the difference
between the original model and the changed model

is significant. In fact, when we compare the original
model-checking execution and re-verification of the same
model, the speed-up is usually huge. We consider this
result to be especially significant, because in the standard
re-verification scenario – regression verification – the
changes in the design are usually very small, and are
often outside the cone of influence of the verification
procedure.
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