
End-to-End Formal using Abstractions to Maximize
Coverage

(Invited Tutorial)

Prashant Aggarwal
Oski Technology
Gurgaon, India

prashant@oskitech.com

Darrow Chu
Cadence Design Systems

San Jose, CA, USA
darrow@cadence.com

Vijay Kadamby
Cisco

San Jose, CA, USA
vkadamby@cisco.com

Vigyan Singhal
Oski Technology

Mountain View, CA, USA
vigyan@oskitech.com

Abstract—Model checking tools are gaining traction as a
practical formal verification solution for industrial designs.
However, the use of abstraction models is key to overcoming
complexity barriers in applying these tools. Coverage has been a
useful metric to determine when simulation-based verification
is complete. In this paper, we show how similar coverage
metrics can be used to determine the completeness of a formal
verification setup. We also show how coverage can be used to
determine effectiveness of different abstraction models are. This
methodology can be used to set formal verification goals, and
to measure the progress of the work, thereby placing formal
verification in a chip design schedule. We use a real-world
design with a large state space, and present quantitative coverage
metrics to illustrate the methodology, and its benefits for faster
run-time, faster discovery of bugs, and higher coverage.

I. INTRODUCTION

During the last decade, formal verification tools have been
increasingly more popular for the pre- and post-silicon verifi-
cation of a diverse class of IC designs, varying from custom
processor designs to general-purpose ASICs. While multiple
formal verification technologies are used in the industry (e.g.
model checking, theorem proving, C-vs-RTL sequential equiv-
alence checking), model checking tools account for most of the
usage, judging from the number of available commercial tools
as well as verification users in place. Furthermore, major EDA
vendors (Cadence, Mentor Graphics and Synopsys) as well as
a few startups (Averant, Jasper, OneSpin and Real Intent) offer
competitive solutions. In this paper, we will use the term model
checking synonymously with formal verification.

The extent to which an ASIC design tapeout schedule
depends on formal verification is greatly contingent upon the
scope of verification addressed by formal. Most often, formal
is used as a supplement to simulation, to prove some specific
difficult-to-verify behavior, local embedded RTL assertions,
or interface protocol checks between blocks. Less often is
formal used for end-to-end verification to replace simulation,
so that formal verifies most or all functionality of a design
and simulation is used only for higher chip-level or system-
level verification. End-to-end formal usually requires almost
the entire logic in the design to be analyzed by the formal
tool, and poses significant complexity barriers.

Formal verification tool developers as well as users have
long used abstraction techniques to overcome the computa-

tional complexity problem. Most tools deploy sophisticated
abstraction-refinement algorithms under the hood [5], [19].
On top of that, formal users can deploy manually crafted
abstractions [4], [6], [7], [11], [13] to further reduce the
complexity of the proofs. In this paper, we will take a complex
design with a large state space, and show how the use of
abstraction models can help achieve end-to-end formal for this
design.

Coverage metrics are widely used in simulation-based veri-
fication to improve the quality of the test suite and estimate the
progress of the verification task [9], [18]. Coverage can help
identify important gaps in the stimuli provided to the design-
under-test, although it has a known limitation that coverage
does not evaluate the quality of the simulation checkers. The
same coverage metrics can be deployed for formal verification
with the same limitation [16]. Besides identifying uninten-
tional over-constraints in a formal environment, formal cover-
age can estimate the effectiveness of the abstraction techniques
being deployed – for example, a set of abstraction techniques
is useful, if it enables many more lines or expressions of code
to be reachable in the same amount of CPU time.

In this paper, we use formal coverage metrics to quanti-
tatively demonstrate that suitable abstraction models achieve
convergence. We begin by introducing end-to-end formal
verification in Section II, and the components required to
build such an environment. We mention the role of abstraction
techniques to solve end-to-end formal in Section III. Next,
in Section IV we discuss how coverage is used for formal
verification, and introduce a coverage-driven flow for formal
verification. In Section V, we introduce the design we have.
This design has a state space that is fairly large for a typical
model checker to handle, more than 1 million flops. The
design is an integral part of a large real-world ASIC switch.
Section VI describes some of the constraints and checkers
needed for formal verification, including the most important
end-to-end data checker. In Section VII, we describe the
abstraction models deployed to overcome complexity barriers.
We present the coverage results in Section VIII.

Fig. 1. End-to-end verification setup

II. END-TO-END FORMAL

A. Checkers and Constraints

Besides reading the design-under-test (DUT), a model
checker requires a set of checkers and constraints as inputs.
The checkers and constraints can be written as properties in
SystemVerilog Assertion language (SVA) [8]. However, often
these checkers and constraints require supporting modeling
code written in synthesizable SystemVerilog.

Checkers can vary widely in scope:
• Local checkers, also known as assertions. These checkers

verify local properties of the design, and belong to one
of the following:

– Embedded RTL assertions. These assertions are local
properties about the implementation details in the
DUT, such as a state machine always stays one-hot
encoded, or that a full FIFO is never written to. These
assertions are typically written by the RTL designer,
and embedded in the RTL code [21].

– Interface assertions. These assertions encode the
handshake protocol requirements for any of the in-
terfaces of a design. These requirements can vary
from a simple request-acknowledgement protocol to
a more complex ARM AMBA AXI [15] or DDR2
protocol [6].

• End-to-end checkers (Fig. 1). These checkers primarily
use a significant modeling code to encode a reference
model for the required behavior of the design, by relating
the correctness of the output data path of a design, given
the transactions on the input datapath.

Bugs found through any of these checkers are useful. However,
if formal is to be relied upon as a primary verification
methodology for a design, simply verifying local checkers
is not enough – a significant number of end-to-end checkers
must be used to achieve adequate verification. Not surprisingly,
proving the end-to-end checkers is usually computationally
much more complex than local checkers, although there may
be exceptions to this, and some local checkers may be difficult
to prove too.

B. Complexity

The largest barrier to formal verification achieving the
desired results is the complexity barrier faced by the tools.
All known algorithms are worst-case exponential in the size

of the cone-of-influence of the checks and constraints. For
end-to-end formal verification, the model checking engine
which is often the most effective is Bounded Model Checking
(BMC) [1]. Although BMC can only find counterexamples,
and not establish the full proof of any checks, the bounded
proofs are good enough if the bounds are greater than the
interesting corner-case behavior of the design, as judged by
the verification or the design engineer.

Two complexity problems can interfere with BMC reaching
acceptable proof bounds:

• the size of the logic in the cone-of-influence, including
the number of flops as well as the combinational logic;
and

• the state space diameter of the design, especially in
presence of large counters, or sequentially deep logic.

The use of abstraction techniques, discussed in the next
section, is the best strategy to overcome these complexity
problems.

III. ABSTRACTION TECHNIQUES

Abstraction techniques [3] are used to reduce the state space
of the design, so that formal verification tools can solve a
computationally easier problem. An abstraction is considered
sound if does not reduce any design behavior, even if it adds to
the design behaviors. We will only consider sound abstractions
in this paper. Such abstractions can find proofs or failures
faster. Every proof is guaranteed to be a proof on the original
design. Each failure can be debugged to determine if it is a true
counterexample due to an RTL bug, or a false counterexample
due to an over-abstraction.

Examples of various abstraction techniques include:
1) Cut-points. Any internal logic in the design can be

replaced by a cut-point, allowing that net to freely take
a random value at any time [6], [12]. If a checker proves
with such an abstraction, we can achieve significant
reductions in run-time (of course, it also implies the
need for additional checkers, since the proven checker
is clearly independent of the excised logic).

2) Counter abstraction. Many designs have deep counters,
for example, the initialization phase for DDR2 memory
controllers last for hundreds of milliseconds, consuming
millions of clock cycles. Many useful checks can be
proved by abstracting the 2n-state graph of an n-bit
counter to a few states, e.g. 0, 1, at-least-one, at-least-
zero [14].

3) Symmetric datatypes. Certain systems [7], [13] allow
the users to specify that certain data types in the design
are symmetric, and the values of these types are used
only in certain symmetric ways (e.g. only compared for
equality, or used as indices for arrays). This allows the
system to reduce multiple symmetric proofs into a single
one.

4) Data independence. When data moves across a design,
and the design does not use the data contents for control-
ling the movement of the data, a few finite instantiations

of data values are sufficient to establish the correctness
of any checkers [20]. This technique has been used to
prove data correctness for many data transport hardware
designs [11], [17].

5) Tagging. Often systems deal with a finite but large set of
distinct data values [13]. Portions of such systems can
be abstracted by simplifying the structure with respect
to a specific or a symbolic tag.

Often, using an abstraction technique requires cut-pointing a
section of the design, and adding constraints on the cut-points.
The abstraction can be used to prove the desired checks. To
complete the compositional proof [13] however, a second step
is required – the constraints need to be converted into checks,
and proven on the previously excised logic.

IV. COVERAGE

A. Coverage in Simulation

In simulation-based verification, coverage metrics are used
heavily to determine when simulation is complete. The most
common coverage metric is code coverage, including line,
expression, FSM and toggle coverage. Line coverage, for
example, computes what percentage of RTL statements in the
DUT were exercised by a given set of tests. For example,
consider:

1: always @(posedge clk) begin
2: if ((a && b) || c)
3: e <= d1;
4: else
5: e <= d2;
6: end

This example results in two line coverage targets, corre-
sponding to lines 3 and 5. If a test causes c to be 1, the line
3 will be marked as covered. If no test in a test suite covers
line 5, line coverage for the suite will be reported at 50%.

100% judged line coverage (given, say 99% automated cov-
erage) is frequently a requirement for an ASIC tapeout – each
line that is not automatically reported as covered in simulation,
must be manually judged to be either redundant, or legacy
code, or symmetric to another tested line. Tapeout would be
delayed until more tests are written to cover the remaining
lines. 100% line coverage does not imply an absence of bug.
Still, line coverage helps measure the continuous progress of
verification completeness in a dynamic chip design schedule,
and often points to important coverage holes.

B. Formal Coverage Metrics

The same coverage metrics used in simulation can be
applied to answer the question of whether the planned formal
verification tasks are complete, or how much the formal
verification tasks complement the simulation effort [16].

Simulation-based line (or expression) coverage metrics can
be used to mean exactly the same in formal – given the
constraints used and the proof depths reached in BMC (say, n
cycles), report what percentage of line (or expression) targets
are reachable in n cycles. For the example in Section IV-A, if

Fig. 2. Formal verification coverage flow

((a && b) || c), in line 2, is reachable in n cycles, this
line would be reported as covered, and otherwise, not. Thus,
line coverage numbers would mean the same in simulation –
whether a certain coverage target is exercised or not. And
for formal, this would measure the quality of constraints (i.e.
absence of over-constraints), as well as the BMC proof depths.
Abstraction techniques, described in Section III, can help in
achieving higher proof depths, improving the coverage results
and thereby increasing the value of formal verification. Com-
mercial formal tools are beginning to support the measurement
of formal coverage.

C. Formal Coverage Flow

Refer to Fig. 2 for the flow we use for a coverage-
driven formal verification deployment. Like simulation, code
coverage results are used to identify missing gaps in the
formal verification implementation. Abstraction models are
used heavily to increase the coverage to acceptable levels on
complex designs where formal would otherwise be infeasible.

Since we are using the same coverage metrics, we can
even merge coverage results. It is often the case that one
block is verified end-to-end with formal, and a larger block
containing this block is verified with simulation. Even if the
line coverage with formal is not 100% for the block, as long
as the unified simulation and formal line coverage is 100%,
verification is considered complete from the perspective of
line coverage goals. This of course relies on an important
assumption – that the set of formal checkers is as complete as
the set of simulation checkers. Although formal coverage helps
determine the quality of constraints as well as sequential depth
reached, like simulation, coverage does not imply anything
about the completeness of checkers. This has to be evaluated
independently.

V. CELLREFORMATTER DESIGN

The Packet Rewrite Module (PRM) design modifies in-
coming packets from multiple ports and reformats these
packets before passing them on. Fig. 3 shows the sequence
of operations on a packet when it passes through various

Fig. 3. Various stages of PRM

stages of PRM. The four stages are Fragmentation (Stage #1),
Insert/Strip/Replace operations on packet payload (Stage #2),
CellReformatting (Stage #3) and Repacking (Stage #4).

A. Functional Specification

By the end of Stage #1, each packet is fragmented into
single/multiple subpacket(s), called cells, depending upon the
payload size. A cell has three main attributes: start of packet
(SOP), end of packet (EOP) and number of payload bytes
carried (ValidBytes). Some desired properties of the cells are:

1) The first and only the first cell has SOP as 1
2) The last and only the last cell has EOP as 1
3) A cell with EOP as 0 will have ValidBytes as 128
4) A cell will have ValidBytes greater than 0

e.g. As an example, suppose at the end of Stage #1, cell #1
has SOP as 1, EOP as 0 and ValidBytes as 128, cell #2 has
SOP as 0 and EOP as 0 and ValidBytes as 128 and cell #N
(N = 3) has SOP as 0, EOP as 1 and ValidBytes as 120.

Stage #2 modifies bytes of payload of a cell by performing
insert, strip and replace operations. ValidBytes of each cell
also gets modified accordingly. In Fig. 3, for the simplicity
of illustration, we show that only cell #2 is being modified –
i.e., the payloads of other cells do not undergo any change.
Payload of cell #2 gets modified to payload #2’ by insertion
of two new payloads, one before, and one after the original
payload, as depicted by Modified cell in the figure. In the
actual design, Stage #2 can modify any or all N cells. With a
combination of insert, strip and replace operations, ValidBytes
of a modified cell can vary between 1 and 256. Suppose, in
our example, after Stage #2, ValidBytes of cell #2 is 144,
resulting in ValidBytes of 128, 144 and 120, respectively,
for the three cells. Due to these modifications, a cell may
not satisfy the desired properties on ValidBytes listed in the
previous paragraph, at the end of Stage #2. The purpose of the
next Stage #3, which constitutes our DUT, the CellReformatter
design, is to rectify this.

Fig. 4. Toplevel of CellReformatter

CellReformatting (Stage #3) reformats the modified cells
so that they satisfy the desired ValidBytes properties and can
be repacked into a packet in the next stage. The number of
cells for a packet at end of Stage #3 may be different than
the number of cells at the beginning of the stage, depending
upon reformatting. In our example, the payload of the non-
EOP cell #2, at start of stage #3, does not satisfy the non-
EOP ValidBytes property. So, in the CellFormatter stage, this
cell gets reformatted to comprise of the first 128 bytes of the
input cell. The remaining 16 (= 144−128) bytes are appended
before the payload of cell #3, resulting a modified cell #3 of
128 bytes. The 8 (= 120 + 16 − 128) trailing bytes of the
original cell #3 constitute a new cell #4.

Repacking (Stage #4) repacks the reformatted cells into a
packet that can be forwarded to port(s).

B. Micro-Architecture

CellReformatter supports reformatting of cells for packets
from 56 different concurrent ports. Cells for a packet on one
port may be interleaved with cells from other ports. This
increases the design and verification complexity. Fig. 4 shows
the interfaces of the CellReformatter design, the interface to
Stage #2 on the left side, and the interface to the Stage #4
on the right side. portIdIn refers to incoming port. cellIn
represents incoming cell, varying between 1 and 256 bytes
long. cellInAttri is a structure consisting of cell attributes,
including SOP, EOP, ValidBytes. validIn and validOut indicate
the validity of inputs and outputs of CellReformatter respec-
tively. Inputs are valid if they are transmitted when validIn is
high. Similarly, outputs are valid if they arrive when validOut
is high. flowCtrlOut is a feedback to Stage #2 to stop it from
sending more cells for the relevant port. Thus this acts as
a throttle and prevents the overflow of internal FIFO(s) for
the port. flowCtrlOut is a 56-bit wide signal with each bit
corresponding to a port.

Memory Design: CellReformatter has FIFOs for storing
the reformatted cells (dataFifo) and its attributes (statusFifo).
Each of dataFifo and statusFifo is implemented as an SRAM
memory, with separate regions for different ports. The least-
significant bit of portId, called oddBank, is used to determine
which of the two banks is used, while the remaining higher-
significant bits, called streamId, are used as memory address:

portId = {streamId, oddBank}

Fig. 5. Banked architecture of dataFifo

As shown in Fig. 5, the memory in each bank is logically
divided into 28 streamId’s. Each bank of the dataFifo memory
is further divided into two separate single-port SRAMs 128-
bytes wide, called MSB and LSB. Further, each port occupies
a depth of 8 entries in each of MSB and LSB. Note that in one
clock at most 256 bytes will arrive from Stage #2 for a given
port. Depending on where we wrote the last data for this port,
this data will cause one or two writes into the MSB and/or
the LSB section for that port. For the example in Section V-A,
when cell #1 arrives, all of its 128 bytes are written into LSB,
at depth of 0. When cell #2 arrives, 128 of its least significant
bytes are written to MSB at depth of 0, and the remaining 16
bytes are written to LSB at depth of 1. Finally, when cell #3
arrives, its 112 (= 128−16) least significant bytes are shifted
up by 16 bytes and written to LSB at depth of 1, and the
remaining 8 (= 120− 112) bytes are written to MSB at depth
1.

CellReformatter has another FIFO (stateFifo) for remember-
ing the current write and read address pointers into dataFifo
for a port. This FIFO is also implemented by a single-port
two-bank SRAM memory.

Latency: The fastest end-to-end latency of CellReformatter
is 6 clock cycles; the FIFO write operation has a 4-cycle
latency and the FIFO read operation has a 3-cycle latency.
A constraint on the design, that oddBank toggles every clock
cycle, ensures that bank contention is avoided for simultaneous
read and write operations.

TABLE I
DESIGN SUMMARY OF CELLREFORMATTER

Parameters Values

Inputs 4,425

Outputs 3,488

Total flops 1,048,481

C. Challenges to Formal

The major challenges to achieving convergence with formal
are:

1) Large number of flops. Greater than 1 million storage
elements (Table I) is enough to create a state space
search problem that cannot be solved without the use
of abstraction models. This large count is dominated by
the number of flops needed for dataFifo: due to number
of ports (56), number of per-port cells stored (16) and
the size of each cell (128 bytes).

2) High sequential depth due to latency. No input port
at input is allowed to appear more than once in 4
consecutive clock cycles. This constraint, along with
the latency of CellReformatter and the FIFOs depths,
implies that a high sequential depth is required for
proofs.

VI. CHECKERS AND CONSTRAINTS

The CellReformatter design has following interface con-
straints:

1) For a port, between 2 cells at input with SOP as 1, there
should be a cell with EOP as 1

2) For a port, between 2 cells at input with EOP as 1, there
should be a cell with SOP as 1

3) For a port, the next valid cell after an EOP as 1 must
have SOP as 1

4) For a port, input cell should have ValidBytes > 0
5) For a port, input cell should have ValidBytes < 256
6) The oddBank should toggle each cycle
7) A port at input should appear no more than once in 4

consecutive clock cycles
The interface checkers are as follows:

1) For a port, between 2 cells at output with SOP as 1,
there should be a cell with EOP as 1

2) For a port, between 2 cells at output with EOP as 1,
there should be a cell with SOP as 1

3) For a port, the next valid cell after an EOP as 1 must
have SOP as 1

4) For a port, output cell should have ValidBytes > 0
5) For a port, output cell with EOP as 0 should have

ValidBytes as 128
End-to-end checkers are written using a reference model that
tracks the outstanding cells for a port, and also reformats
them into 128-byte cell boundaries. Examples of end-to-end
checkers:

1) For a port, the valid output (validOut) can be 1 only if
there are outstanding cells in flight that have not been
sent out

2) For a port, payload of a cell at the output should
correspond to payload of expected cell in the reference
model, computed based on payloads that arrived at the
input in the past

Consider this last end-to-end checker, the most important
checker for this DUT. The checker is written in SVA as:

property cellOutMatch_a;
@(posedge clk) disable iff(reset)
(validOut &&
(portIdOut == watchedPort)) |->

(cellOut[watchedByte][watchedBit] ==
referenceBit);

endproperty
cellOutMatch_A:
assert property(cellOutMatch_a);

We used the following symbolic variables in this checker:
1) watchedPort. This variable, varying between 0 and 55,

represents the specific port that is being verified. While
the design interleaves the inputs and outputs across
multiple ports, in one trace, we can verify the outputs
for a specific port.

2) watchedByte. This variable, varying between 0 and 127,
represents the specific byte number in an output cell that
is being verified in this trace.

3) watchedBit. This variable, varying between 0 and 7, rep-
resents the specific bit being verified in the watchedByte
byte.

Since these variables are symbolic, all possible output data
bits from all possible ports are verified with the end-to-end
checker. In any given trace of execution, these variables can
be kept constant with SVA constraints like the following:

property watchedPort_r:
@(posedge clk) disable iff(reset)
(##1 $stable(watchedPort));

endproperty
watchedPort_R:
assume property(watchedPort_r);

This end-to-end checker also depends on the predicted value
of the output bit from the reference model, referenceBit. The
reference model is implemented in SystemVerilog, and using
the three watched symbolic variables, implementing a queue of
watched bits in flight in the design. The value of referenceBit
equals the bit at the top of the queue. We will discuss an
abstraction in Section VII-B, that shows how to implement
this reference model more efficiently.

VII. ABSTRACTION MODELS

We have a design with more than 1 million flops. This will
lead to state space explosion with any existing formal verifi-
cation tool. Abstractions are essential to achieve convergence
on a design like this.

Fig. 6. Deploying memory abstraction for dataFifo

A. Memory Abstraction

The dataFifo memory stores up to 16 cells for every port, 8
cells in LSB, and 8 in MSB. The memory stores the reformatted
cells, after performing the necessary shifting, described in Sec-
tion V-B. Since the main end-to-end checker (cellOutMatch A
in Section VI) uses symbolic watched variables for the port
number and the verified bit in a cell, each flop in dataFifo is
essential to establish the correctness of the proof. This places
a tremendous burden on a formal verification tool.

Using the three watched symbolic variables, we create an
abstraction for dataFifo, shown in Fig. 6. This abstraction
model contains only 16 flops, 8 for an abstraction of the LSB
section of the memory banks, and 8 for an abstraction for the
MSB section.

We tie the inputs of the abstract dataFifo to the inputs
of the RTL dataFifo (implemented by the SystemVerilog
bind construct). In addition, watchedPort, watchedByte and
watchedBit are extra inputs to the abstract dataFifo.

When there is write to the RTL memory, if the write address
input matches watchedPort, we pick the watchedBit bit from
the watchedByte of the write data input to the memory, and
store that in one of the 16 bits in the abstract memory (4 least
significant bits of the write address input determine which of
the 16 per-port cells was being written by the write command).

To enable the abstraction, we add cut-points at the read data
outputs of the RTL dataFifo. Further, we add a constraint that
if the read address input matches watchedPort, then watchedBit
bit of watchedByte read data output byte equals the value
stored in the i-th (of 16) abstract dataFifo bits (where i equals
the 4 least significant bits in the read address input). This
enables the read data for the watched bit to be faithful to
what is in the RTL, and the remaining bits or read data output
for a non-watched port to be arbitrary. But, since the checker

Fig. 7. State machine for pattern 0?110ω detection

is checking only the watched port and the watched bit, the
abstraction should not give a false negative.

Using this abstraction model, we have reduced 917,504 flops
in the RTL dataFifo that were in the cone-of-influence of the
end-to-end checker to the 16 flops in the abstract dataFifo.
More important, this abstraction does not introduce any false
negatives with respect to the end-to-end checker. Similar
abstraction models were built for statusFifo and stateFifo,
albeit only with respect to watchedPort. See Table II for the
reductions in the cone-of-influence; note that there are other
peripheral flops in the memories because the memories have
additional flops due to the latency, as well as some parity-
checking flops.

Note that to complete the proof with abstractions using
compositional reasoning, we also need to separately prove
that the abstract dataFifo is a sound abstraction of the RTL
dataFifo. We do this by removing the cut-points on the read
data outputs, and reversing the constraints on the read data
outputs to checkers, then proving them independently of the
main end-to-end checker.

B. Data Independence Abstraction

The main end-to-end checker (cellOutMatch A in Sec-
tion VI) requires a reference model for the expected behavior
of the referenceBit bit. Even after the memory abstraction in
the previous section, we know that there are at least 16 bits in
flight for the watched bit we want to track. However, this is
just a lower bound, since there may be additional bits on the
way to dataFifo, or on the way from dataFifo. Suppose there
are at most n bits in flight we need to track; to implement the
reference model with a FIFO, we will need at least n entries
in the reference model FIFO.

Fortunately, we can use a variant of the data independence
abstraction [20], to avoid the dependence on the unknown n,
and more importantly to verify with more efficient state space.
The data independence theorems state that for certain data-
independent designs (when data is merely transported across
the design, and not queried to make the routing decisions),
a small set of finite data values is sufficient for end-to-end
proofs. For our end-to-end checker, it is sufficient to prove

the preservation of infinite streams of the form 0?110ω across
the design. Each stream in this set has a finite but arbitrary
number of 0’s followed by two consecutive 1’s, followed by
an infinite sequence of 0’s; for example, input sequences like
11000 · · ·, 011000 · · ·, and 000 · · · 011000 · · ·. Note that given
the three watched symbolic variables, we need to apply this
abstraction only to the consecutive bits that will be written to
the abstract dataFifo from the previous section.

We add a constraint to the inputs of the DUT so that watched
bits create this sequence by using the state machine in Fig. 7.
We constrain the inputs so that the error state S3 is never
reachable. Next, we use an identical state machine to verify
the output watched bit from the DUT. We modify the checker
so that the expected referenceBit is not allowed to be 0 is state
S1, or to be 1 in state S2 – all other values are allowed for
referenceBit.

Using this data independence abstraction, we do not have
to implement a reference FIFO, whose depth is design-
dependent. We save additional flops in the cone-of-influence,
and proofs run much faster.

VIII. EXPERIMENTAL RESULTS

We used the Cadence R© Incisive R© Enterprise Verifier (IEV)
tool [2] for this verification. Since the un-abstracted design
has more than 1 million flops, hence it is not feasible to run
formal without deploying the abstraction models described in
Section VII.

The verification setup for the DUT consists of the CellRe-
formatter RTL, checkers and constraints (using the necessary
reference models), and the abstraction models described in
Section VII. There are 23 checkers and 21 constraints. We
found 15 bugs in the RTL design.

As expected, BMC was the most effective engine for ver-
ifying the main end-to-end checker. For the shortest possible
packet, the data can be seen at the output of the design at
a BMC proof depth of 7 clock cycles. However, the most
interesting behavior of the design occurs when dataFifo is full
before data is unloaded to the outputs. By understanding the
design micro-architecture, including the latencies and memory
depths, it was determined that a proof depth of 63 cycles
is sufficient to hit this extreme behavior (the constraint that
successive input data for the same port must be 4 cycles apart
is responsible for much of this depth).

We use the IEV code coverage feature to report the amount
of coverage hit to determine if the use of abstractions was suc-
cessful in covering the design. Coverage results are reported
in Table III. We notice that the expression coverage is 100%
and the line coverage is almost 100% at a proof depth of 63.
The missing coverage holes need to be judged and possibly
waived by the design engineers. For the un-abstracted design,
the BMC proof depths reached at similar run-times are close
to 0, hence the corresponding coverage results are close to 0%
(not surprising given the amount of state in the DUT).

The level of coverage reached is very much in line with the
desired verification coverage, if we were verifying this design
using simulation. We must remind the reader that the desired

TABLE II
COMPARISON OF RTL AND ABSTRACT MEMORIES

Memory Flops in Flops in

RTL abstract memory

dataFifo 948,636 204

statusFifo 89,986 4,854

stateFifo 2,394 268

TABLE III
FORMAL COVERAGE RESULTS

Proof Line Expression

depth coverage coverage

7 96.5% 100.0%

15 99.5% 100.0%

63 99.7% 100.0%

coverage result must be considered in conjunction with the
confidence in the completeness of checkers. Unfortunately, as
with simulation, formal code coverage by itself does not yet
determine the completeness of checkers. However, we do know
that with the use of the abstraction models, we were able to
exercise almost all the RTL code. Without these abstraction
models, we would not get much more than 0% coverage,
and formal verification would not have been able to replace
simulation on this design.

IX. CONCLUSION

In this work, we show how end-to-end formal can replace
simulation efforts and provide faster verification with higher
coverage. Without the use of abstraction models, formal veri-
fication is often infeasible for end-to-end verification. With the
use of abstraction models, we can counter state space explo-
sion, and reach acceptable levels of quantifiable code coverage
metrics. These results can be integrated with simulation-based
code coverage results on neighboring designs, or the rest of
the system.

ACKNOWLEDGEMENT

The authors would like to thank Sandesh Borgaonkar, Anton
Lopatinsky and Deepak Pant for their for help and support in
making this work possible.

REFERENCES

[1] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, Y. Zhu. Bounded model
checking. Advances in Computers, 58, 2003.

[2] Cadence Incisive Enterprise Verifier datasheet. Cadence Design Systems,
Inc.

[3] E. M. Clarke, O. Grumberg, D. E. Long. Model checking and abstraction.
ACM Trans. Program. Lang. Syst., 16(5), pp. 1512–1542, 1994.

[4] E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMil-
lan, L. A. Ness. Verification of the Futurebus+ cache coherence protocol.
Formal Methods in System Design, 6(2), pp. 217–232, 1995.

[5] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith. Counterexample-
guided abstraction refinement for symbolic model checking. J. ACM
50(5), pp. 752–794, 2003.

[6] A. Datta, V. Singhal. Formal Verification of a Public-Domain DDR2
Controller Design. In Proc. VLSI Design, pp. 475–480, 2008.

[7] C. N. Ip, D. L. Dill. Better verification through symmetry. Formal
Methods in System Design, 9(1/2), pp. 41–75, 1996.

[8] IEEE standard for SystemVerilog: unified hardware design, specification
and verification language. IEEE Std. 1800-2009.

[9] M. Kantrowitz, L. M. Noack. I’m done simulating; now what? Verification
coverage analysis and correctness checking of the DECchip 21164 Alpha
microprocessor. In Proc. Design Automation Conf., pp. 325–330, 1996.

[10] S. Katz, O. Grumberg, D. Geist. Have I written enough properties? A
method of comparison between specification and implementation. In Proc.
CHARME, LNCS 1703, pp. 280–297, 1999.

[11] B. A. Krishna, A. Sullerey, A. Jain. Formal verification of an ASIC
Ethernet switch block. In Proc. FMCAD, pp. 13–20, 2010.

[12] R. P. Kurshan. Formal verification in a commercial setting. In Proc.
Design Automation Conf., pp. 258–262, 1997.

[13] K. L. McMillan. Verification of an implementation of Tomasulo’s
algorithm by compositional model checking. In Proc. CAV, LNCS 1497,
pp. 110-121, 1998.

[14] F. Pong, M. Dubois. A new approach for the verification of cache
coherence protocols. IEEE Trans. Parallel Distrib. Syst. 6(8), pp. 773-
787, 1995.

[15] C. Sayer, J. Sonander. Formal verification of AMBA 3 AXI bus systems.
In ARM Information Quarterly, pp. 15-17, 4(2), 2005.

[16] V. Singhal, P. Aggarwal. Using Coverage to Deploy Formal in a
Simulation World. In Proc. CAV, LNCS 6806, pp. 44-49, 2011.

[17] C. Stangier, U. Holtmann. Applying formal verification with Protocol
Compiler. In Proc. Euromicro Symp. Digital Systems Design, pp. 165–
169, 2001.

[18] S. Tasiran, K. Keutzer. Coverage metrics for functional validation of
hardware designs. IEEE Des. Test, 18(4), pp. 36–45, 2001.

[19] C. Wang, G. D. Hachtel, F. Somenzi. Abstraction refinement for large
scale model checking. Springer, 2006.

[20] P. Wolper. Expressing interesting properties of programs in propositional
temporal logic. In Proc. POPL ’86, pp. 184–193, 1986.

[21] P. Yeung. How to instrument your design with simple SystemVerilog
assertions. EE Times DesignLine, January 26, 2011.

