|IC3: Where Monolithic and Incremental Meet

Fabio Somenzi Aaron R. Bradley
Dept. of Electrical, Computer, and Energy Engineering Summit Charter Middle School
University of Colorado at Boulder Email: arbrad@cs.stanford.edu

Email: fabio@colorado.edu

Abstract—IC3 is an approach to the verification of safety B. Monolithic and Incremental Methods

properties based on relative induction. It is incremental n the Outside of a classroom, such a direct application of in-

sense that instead of focusing on proving one assertion, iubdds . . .
a sequence of small, relatively easy lemmas. These lemmas ar duction is bound to fail. The development of safety model

in the form of clauses that are derived from counterexamples checking has essentially been the study of what one should
to induction and that are inductive relative to reachability do when, as usual, it does fail. emporal Verification of

assumptions. At the same time, IC3 progressively refines ap- Reactive Systems: Saf¢8], Manna and Pnueli write,

proximations of the states reachable in given numbers of sps. . . .
These approximations, also made up of clauses, are among the We present two solutions to this problem, which can

assumptions used to support the inductive reasoning, whiltheir be summarized by the following strategies:
strengthening relies on the inductive clauses themselve3his 1) Use a stronger assertion, or
interplay of the incremental and monolithic approaches lenls 2) Conduct an incremental proof, using previously

IC3 efficiency and flexibility and produces high-quality property- - . .
driven abstractions. In contrast to other SAT-based approahes, establishedP-invariants. o
IC3 performs very many, very inexpensive queries. This is They go on to endorse the latter approach when engaging in
another consequence of the incrementality of the algorithmand manual or computer-aided verification:

is a key to its ability to be implemented in highly parallel fashion. We strongly recommend [an incremental proof]
whenever applicable. Its main advantage is that of

|. INTRODUCTION modularity.

. . . . The former approach, however, is the one that has been most
This paper discusses the IC3 technique for model checki Hrsued from an algorithmic point of view in the context of

;afety propemes. It is meant as a companion tq [13]. S ardware model checking. The formal basis for this approach

tion Il illustrates the approach on examples, while the re%t :
-~ . "I% the following. If

of this introduction and Section Il put the algorithm in its (7 Pz

historical and ideological context by showing its relatitmn * F(ECE))TT(({C)E 7) = F(@)

other methods for finite-state verification.
o F(T) = P(T)

A. Induction then P is an invariant ofS. In words, if F' is inductive over

Induction is fundamental to the verification of safety prop‘? and ?mp"esp’ then both/” and P are invariants.
erties [1], [2]. The only question is how it should be applied Traditional model checkers, based on BDDs [4] or SAT [S],

Consider a finite state systes; (7, 7, 1(z), T(7,7, 7)), expllgltly compute p_ost conditions to compute the strastige
. . . — . T . possible strengthening oP, namely the reachable set of
consisting of primary inputs, state variable&, a proposi- ")
. _ o - i . states, or pre-conditions to compute the weakest possible
tional formulal(z) describing the initial configurations of the .
. -, _ strengthening ofP, namely all states except those that can
system, and a propositional formulg:, z,z') describing the

" . ; . lead to a violation ofP. Bounded model checkers (BMC)
transition relation. Primed state variabt&srepresent the next loit the fini fth h bl |
state. exploit the finiteness of the state graph to enable a complete

roach based on unrollin§ and searching, with a SAT

a
tS_ufpposte tthat onet_waﬂts éo prove ,thlat (l(everyht[eallrhable Stsagé)/er, for a counterexample trace [6]. An alternative tging
satisfies state assertigh(z). Beginner's luck might allow one on a property of the state graph is to strengthen consecution

to proceed as follows: simply by considering multiple time steps at ongenduction
« Show that the initial configuration of the system satisfiegssymes thaP holds over multiple time steps to increase the
P I(T) = P(T), where= corresponds to implication. jikelihood that P holds in the next time step [7]. BDD-based
That is, all states that satisfy the initial conditidralso g|gorithms that compute backward reachability can also be

satisfy P. interpreted as computing increasingly strong consecsitithre
« Show that aP-sEat_ei:/an 0”')’_’39 followed by anothBr ymper of iterations required for the fixpoint computation t
state:P(z) A T(1,7,7') = P(T'). converge to the weakest possible invariant that impHegives

These two steps—sometimes calieifiation andconsecution the number of time steps to be considered to tirimto an
respectively—comprise induction ovér. inductive assertion.

Finally, one can abstract the post-condition in order tinen P is an invariant ofS.
ease the computation, as in abstract interpretation [8¢nEv Bradley and Manna proposed the first incremental safety
better, one can abstract it with respect to the propertynasmodel checking algorithm [10], [11]. It discovers indu&iv
interpolation-based model checking, in which interpadaente subclauses of the negation of states that lead, not neigssar
derived from failed BMC queries [9]. directly, to violations of P. Such clauses eliminate the states

We refer to these methods amnolithicbecause they spendfrom which they are derived while generalizing to eliminate
all of their resources in computing one inductive assertiomany other states as well. Each clause is an assestitimat is
Furthermore, their success is fundamentally tied to the raadeed typically inductive only relative to prior assensobut
soning engines—either the BDD package or the SAT solvert on its own. As expected, deriving the clauses is relgtive
The representation of states reachable from the initia @me easy: the employed SAT solver solves many, often hundreds or
states that can reach the target ones often entails priohlpit thousands, of queries per second, in stark contrast to BMC,
large BDDs. BMC,k-induction, and interpolant-based modeinduction, and the interpolant method. An unexpected benefi
checking fail when the SAT solver is overwhelmed by thi that this instance of the incremental approach is effelsti
number of unrollings off". parallelizable—and easily so. This characteristic hasiezhr

One must then wonder whether @crementalapproach, through in subsequent work.
which is so successful for humans, might not be a bad ideaBesides modularity and reduced labor, the incremental ap-
as the basis for an algorithm. An incremental approach woyséoach has one more benefit: induction-based generalizatio
compute many inductive assertions that all together sthemg is a powerful mechanism for property-directed abstraction
P. It would thus have the modularity that Manna and Pnudliduction tends to find semantic relationships among states
highlight—each assertion need only refer to an asped-ef rather than simply adjacency, or structural, relationshis
as well as the potential of not taxing the reasoning enginies traditional model checking. The clause that eliminates
quite so much. Moreover, the incremental approach woudd states may well eliminate states that are far, or even
be property directed, like the interpolant-based methadhe disconnected, frons in the state graph. When induction is
intermediate assertion would arise to eliminate some Hypotipplied throughout the analysis rather than being the dgoal o

esized error. monolithic propagation, it abstracts the system in a pryper
The formal basis for an incremental approach is the followdirected fashion.
ing. Consider a sequengg (T), . . ., »,(T) of assertions such Unfortunately, this algorithm suffers from a common pitfal
that of incremental methods. Manna and Pnueli write:
« every assertion is satisfied by the initial states: for each There are cases in which the conjunctiona ¢ is
7 1(T) = ¢;(), inductive, but it is not the case that is inductive

« each assertion obeys consecution under the assumption and, is inductive relative top;.

that its predecessors hold: for eafn In the context of the algorithm, a statecan be encountered

/\ ox(@) A TGT,T) =)T, such that-s does not contain a subclause that is inductive
1<k<j relative to known information. In such situations, the aithon
falls back on state enumeration until sufficient informatie
acquired to resume inductive clause construction. Yet when

/\ 0;(@) = P(T). such a situation does not occur, the algorithm is extremely
1<j<n effective [11].

This weakness of the incremental method is not an issue
for manual or computer-assisted verification, as the huraan c
provide an insight. But in an algorithmic context, one tybig
limits the form of assertions in order to control computa#ib
costs [8]. Is an algorithmic incremental method thus doomed
from the start?

« and all together they imply:

If P also satisfies initiation, then it is an invariant®fIn this
version of consecution (the second condition), we say ¢hat
is inductiverelative to 1, ..., ;1.

In the incremental approach, one might as well assiime
If

« P is satisfied by the initial stated(z) = P(i),

- every assertion is satisfied by the initial states: for eagh 3. A Monolithic-Incremental Hybrid

7, 1(@) = ¢; (@), . . o
. each assertion obeys consecution under the assumptioHVh”e an incremental method may be limited in the form of

that its predecessors ardl hold: for eachy, its assertions, Bradley eventually realized that the constd
clauses need not be truly inductive. The machinery of induc-
/\ ou(T) NP@)ATGE,T,T) = ¢;i(T) , tion can be applied just as well when stronger information
1<k<j is assumed—information that is not necessarily valid for
« and P is inductive relative to the assertions, the entire state space. In particular, stepwise assungstion
B assertions that hold for some number of timesteps rather tha
N\ #@ AP@E)ATGETTE) = PE), for all time—could be combined with relative inductive ciau

1<j<n generation to yield a hybrid monolithic-incremental methio

which relatively inductive clauses are guaranteed to exfst
P is invariant. IC3 is the result of this insight [12], [13].
IC3is incremental in that it finds inductive subclauses ef th
negations of states, just as the first approach does—exapt t
these clauses are now inductive relative to certain assongt
Its use of SAT solvers is thus similar: hundreds to thousands Fig. 1. The state transition graph of a simple system.
of queries are solved per second. Additionally, the claases
the right compromise between effort and information coften
so that they can be traded effectively among parallel pseses quickly compute long counterexamples, or to find large sets
IC3 is monolithic in that it computes over-approximationsf mutually inductive clauses, are better understood v th
to the sets of states reachable in one step, two steps, eifjorithm’s fundamental intentions. This section only\pdes
until it converges upon an inductive strengthening asserti a stepping stone in that direction.)
Each major iteration propagates the clauses that comrese t The initial check performed by IC3 establishes that there
timestep approximations forward in time as much as possibige no counterexamples of length 0 or 1. Therefore, the over-
These over-approximations are the information relative tgproximations (or stepwise assumptions)
which new clauses are generated.
Hence, IC3 alternates between an incremental mode, in Fo=1=-x1 A~y
which it uses states that lead, not necessarily directly, to Fy,=P=-x1Vua
violations of P to discover new relatively inductive clauses,
and a monolithic mode, in which it propagates clauses fatwagatisfy the fundamental IC3 invariants flr= 1:
across time steps. Models on which the original method [10]

devolves into enumerating states cause IC3 to go through I'=F

more major iterations, yielding long sequences of stepwise Fi= Fip 0<i<k
over-approximations. Models on which the original method F,=P 0<i<k
succeeds are just as easy, and often easier, for IC3, anitl resu F,AT = F/, 0<i<k.

in short sequences of stepwise over-approximations béfiere

final inductive strengthenings are formed. And many othdpgether, these invariants assert the “reasonablenestieof
models cause IC3 to adapt either a more monolithic or a m@i@pwise assumptions. In particular, since no counterplam
incremental strategy at various stages. The power of IQ8ais tof length up tok exists, all states reachable in at mbsiteps
it can quickly deduce lemmas for certain aspects of a modae P-states. TakingF, to be P is therefore a valid over-
while working harder—and, at times, more monolithically—approximation. If IC3 eventually increaskdo 2, it is because

for other lemmas that require more clauses. it has established that there are no counterexamples afhleng
up to 2. In general, if IC3 increasek from n to n + 1, it is
Il. EXAMPLES because it has established that there are no counterexample

This section presents IC3 by way of two examples. Th¥ length up ton + 1. It does so by proving that there are no
objective is to show the nature of the algorithm. Certaipounterexamples-to-induction (CTI) states that are ralaleh
optimizations omitted from this exposition are essential iin at mostn steps from some initial state. For that, it checks

practice for good performance. whetherF,, AT = P’ can be violated.
) The checkly AT = P’ producess = z1 Axy as CTI. (Note
A. A Passing Property that this check is equivalent t& A T = P’, the inductive

Figure 1 shows the state transition graph of a sys$ewith step of a simple inductive proof.) I§ = P, a CTI must be
no primary inputs and state variablés= {x;, x>} such that unreachable from the initial states. Hs A I} AT = -/,
unreachability is proved. If, however, the implication do®t

I(T) = w1 A~y hold, the CTI may still be unreachable (as in this case) asd IC
T(Z,T') = (x1V ~aa V) A(z1 Vo V) tries to learn something useful about it: specifically, iggrto
A (=zy V) A (mzy Vv —ah) A (2 V —xh) bound the length of a counterexample that goes through the

CTI. Hence,—s = —x1 V =25 is checked for inductiveness
relative to the varioud;’s. It is not inductive relative taFy
Each state in the figure is annotated with its encoding. Thecause of the transition between and ¢,. It is, however,
incoming arrow designateg as initial, while the shaded stateinductive relative toFj. (Otherwise,P would not hold.)

(¢3) violates P. Inspection of Fig. 1 reveals that the only The inductiveness check has established that the CTI is
reachable state of is ¢y and thatS = P. This example is not reachable in one step. Therefore, it would be possible to
not meant to highlight the efficiency of IC3. On the contraryemove it fromF; by adding the clause:s to it. However,

it provides the opportunity for a rather extensive tour of thremoving one CTI at a time is not practical for all but the
algorithm in spite of its simplicity. (The reader is howevesimplest systems. Instead, IC3 looks for more states, be the
cautioned that interesting aspects of IC3, like its abitity CTIs or not, that, like the one at hand, are not reachable in

P(T):ﬁ.%‘l\/xg .

one step and such that they are all described by a subclathed is anF; state, but not arfy state. The only choice is

of —s. That is, IC3 tries to generalizes. t = —x1 A zo. If this state is proved unreachable, progress is
Generalization of-s is thus attempted at levd). The made. More generally, if all predecessorssdn F; are shown

algorithm may find eitherx; or —zo as subclauses ofs, to be unreachable in at most one step, thés not reachable

because both satisfy both initiation and consecution. &, fain at most two steps and hence there is no counterexample of

the conjunction of either clause witl} yields Fy itself, from length up to3 through it.

which no state violating eitherxz; or —zo may be reached. 1C3 therefore recurs otto find which is the least (if any)

For the execution of the algorithm, however, which clause sich that

the result of generalization makes a difference. Suppase tAF, AT = =t .

is found. Then the update df; produces] o]) o .]
Since —t is itself inductive ¢; in Fig. 1 has no incoming

Py = (mz1 V) A, transitions from other states)= 2. Sincex; does not satisfy
initiation, the only generalization ofit is —x,. The addition
of this clause to bothF; and F, makes them identical and
causes termination.

In this case [} is exact at termination. That i$}; describes
exactly the states reachable in at most one step from the

Fi. That is, it adds-z» to F, becauseFy A T = —a?. The initial states. Oftentimes, though, the ability to provepperties

addition causeg’ and F» to be identical and terminates thequ'CkIy stems from the ability to keep the over-approxiras

proof becauseF, — (—a1 V x2) A —a» has been shown to be!oose. This is one reason why IC3 does not decompose the

inductive ¢ = F, and F, AT =) and is known to imply initial condition into a set of strong clauses that can be

P. (F, is initially P and ly get st through thropagated.
run(oflllé3”)“ \ally 7and can only get stronger throug In contrast to IC3, the approach of [10] focuses on removing

If, instead of-a», the generalization ofa; \V -z, produces each CTI by generalizing its negation to an inductive clause

—x1, the update of the reachability over-approximations tesuf ©" the system of Fig. 1, t_his entgils generalizing: —z, v
inﬂh P y PP —z2 by checking whether it contains a subcladssuch that

which is equivalent taF,. While this observation suffices to
prove termination, IC3 first checks whethErAT = P’; that
is, it checks whether the strengthening 6f has gotten rid
of the CTI. Since the answer is positive, it increaget® 2,
instantiatesf, = —x; V x2, and then propagateszs from

Fy = (mx1 Vo) Ay, AANPAT = d .

which is equivalent to-x;. This F; is not as strong as in the The solution is in this casd — —z,. Once this clause is
previous case, and in particular does not exclgdebut it is yiscovered. it is possible to prove thats A P AT = P’
still sufficient to satisfyFy AT = P'. Therefore, IC3 set& \ynich in turn provesS = P. However, if the encoding of the
to 2, instantiatesl, = —x; V x2 and tries to strengthen it by gtates is changed so th@t = 21 A ~z2 and gz = a1 A 22,
propagating clause.; from Fy. However, then the negation of the CFhs = -, V 22 has no inductive
FAT # - generalization and the approach of [1Q] falls b_ack on _rem}pvi
- ~ the CTl alone from further consideration. While this is Hgard
because of the transition froga to ¢,; hence, no strengtheninga disadvantage when there are only four states, it is the main
takes place. State = z; A 3 is found once again as a CTl.weakness of that method. IC3 is also affected by the change
The difference from the previous iteration is that it is nowf encoding, in that-s = =z \VV 2, can only be generalized
known that no counterexample of length less tamay go to —z;, but relatively inductive clauses can always be found.
through it. IC3 then tries to prove that no counterexample of B
length 3 exists. The next step is therefore findinguch that B- A Failing Property

Figure 2 shows the transition graph of a syst€nmwith no
primary inputs and state variablas= {1, 22,23} defined
Since I, = P and Fy has not changed, the answers fee 2 by
and: = 0 are already known. It remains to ascertain whether
F is strong enough to suppotts. Once again, the transition
between;; andg, causes the answer to be negative. Therefore, T(@,T') = (x1 V—ah) A (1 V ab)
—s is inductive at leveD, but not at levell. Generalization of (w2 V —zh) A (mz2 V 25)
this clause also proceeds as in the previous iteration aryd ma
result in either literal being dropped. Hz- is found, then its
addition to F; makes it inductive, so that bothz; and -z, Stateq; has code. For examplegs is —x1 A 23 A xz3. As in
are propagated td, causing termination. Fig. 1, the shaded state violates propefrty

If, on the other handyx; V -z is generalized tenz, then
no changes taF; result and no clause propagation ensues_llmplementat_ions rely on pre-analysis of the model thatlgatiscovers
Since F;, has not changed, the CTI has not been removed. fﬁé’rs;lssﬁfn \{ﬁre'amzl T:rt]d(i“t?;n ?nly tﬁkel Onfh Valuaer;a Uslmg ?)"}ammg it

ypically lengthensetanalysis because i
guarantee termination, IC3 identifies a predecessar-6fg, overconstrains the early over-approximations.

21 Vox) AR AT = (ma) Vb)) .
1 2

I(T) = I AN) AN X3

P(T) = T \/_‘IQ\/_‘I;; .

at the same level, producing a path with several states fer on
F; until either the path eventually crosses it ; or new
clauses are generated that cause a refinement of the stepwise
assumptions. Under these circumstances IC3 may still disco

a deep counterexample even thougls small.

IIl. DISCUSSION
Fig. 2. Transition graph for a system with a failing property A. What Problem is IC3 Trying to Solve?
Interpolation andk-induction address the practical incom-

Having checked that there are no counterexamples of len tlﬁteness f)f BMC. The latter combines BMC with a consecu-
on check:
up to1, IC3 setsk = 1 and chooses

k—1
Fo=1=-x1 N\ 29 N\ I3 P/\/\(T(Z)/\P(l))ip(k)
Fi=P=-x1V-xyV x3 i=0

When that check failsf is increased, corresponding to a
further unrolling ofT'. In practice £ can be prohibitively large.

The interpolant method goes further: it suggests forming
over-approximate stepwise reachability sétsusing a fixed
unrolling. It addresses the failure of the following img@limon
Fir=PA-xo by increasingk:

as stepwise assumptions. Checking whetherh T = P’
yields s = —x1 A 29 A z3 as CTIL. Inductiveness ofs is
established at leve) and the generalization ofs is —us.
After the strengthening of",

Iy AT = P'. Therefore,k increases t® and F, = P is k=1 .
instantiated. No clause is propagated fréinto F,. Therefore, FEn N (@O APD) = PR
the same CTI as before is found whehAT = P’ is tested. =0
Since—-s A Fy AT # —s', inductiveness is again established @ecause the implication does not hold, no interpolant exist
level 0 and the generalization is agaitws. Nothing changes that lies between theé-step over-approximatiod; and the
in the stepwise assumptions, and the CTI remaingastate. k-step unrolling leading to a violation aP. The interpolant
IC3 therefore looks for a predecessorsothat is in ;. The method thus increasds for the next round, yielding better
choice is betweemz; A ~z2 A 3 andxz; A ~z2 A ~xz3. The over-approximations;.
former is immediately shown to be a successor of the initial Hence, neithek-induction nor the interpolant method drop
state because its negation is not inductive even at levelthe regime of unrolling that BMC introduced. While they
Therefore the minimum-length counterexampde ¢1, ¢3, g7 attempt to reduce the number of necessary unrollings, their
is found. completeness—both practically and theoretically—id &iih-
If, instead of—z; A —~z3 A x3, IC3 chooses = 1 A —z2 A damentally tied to unrolling.
—x3 as F; predecessor of the CTht is proved inductive IC3 entirely sidesteps the need for unrolling and thus sets
at level 1 because the two predecessorstare not inF;. out on a new trail than that blazed by BMC. When confronted
Generalization of-t produces—z;, which is added to both with a problem similar to the one in interpolation (though
Fy1 and F;, eliminatingz; A —~z2 A —x3 from both. This forces lacking any unrolling), that is, the failure of the impligat
the choice of-x; A -2 A z3 as F; predecessor of the CTI FAT = P’
and leads to the same counterexample as before. It should be ’ ’
noted how the refinement of the stepwise assumptions actegfines the-step over-approximatioh; itselfi—and typically
as guidance in the search for the counterexample. earlier stepwise over-approximations—in order to make the
IC3 does not guarantee counterexamples of minimurgfined implication come closer to holding. It accomplishes
length. Whilek cannot increase beyond the length of a shortesiis refinement by incrementally generating stepwisetivela
counterexample, IC3 may find a counterexample well beforeinductive clauses in reaction to the CTI that the implicao
matches its length. This ability proves an important adsget failure reveals. In the end, the sequence of over-appragima
when the transition relation is such that refining the StSpWistepwise assertionk; can be seen as a possible outcome of
assumptions beyond a certain point becomes difficult. Thige interpolant method—though derived in a fundamentally
may be the case when the CTls and the states that shouldgi¥erent manner.
removed from one of thé;’s to get out of an impasse have
codes that are different enough that the generalized iiductB- The Incremental Method: Beyond IC3
clauses do not cover the “problem” states. The purely incremental method fails when the space of
When refinement of the stepwise assumptions proves diffissertions is too poor to provide lemmas for all possible
cult, IC3 often finds that the negation of the target statel (CSituations. In the case of safety model checking, clauses ar
or one of its predecessors) is inductive at the level imnteljia too weak to be the basis of a robust algorithm. IC3 provides a
preceding that of the target state. It then chooses a presl@cestronger framework in which to use a weak, but expressively

complete, assertion domain. However, a pure incremens] R. Bloem, H. N. Gabow, and F. Somenzi, “An algorithm farosgly

approach can work on its own in other settings. connecteq component analysis 7_inlogn symbolic steps,” inFormal
In thi f t . tal h Methods in Computer Aided Desigw. A. Hunt, Jr. and S. D. Johnson,
n this conrerence, we present an incremental approacn gqg, Springer-Verlag, Nov. 2000, pp. 37-54, INCS 1954.

to model checking LTL properties of systems [14]. The
fundamental insight is thaBCC-closed regionsf the state
graph, which are a fundamental characterization used in-BDD
based techniques [15], can be discovered through induction
Hence, inductive assertions, as discovered by IC3, are the
intermediate lemmas of this approach. Unlike the relatigms
between error states and clauses in safety model checking,
every hypothesized error—which we cakkeletor—that does

not correspond to an actual error has a corresponding iveuct
proof. Thus, the algorithm is purely incremental, and itogs;j

the usual benefits: modular reasoning, natural abstraciimh
opportunities for parallelization.

Acknowledgments.This material is based on work supported
in part by the National Science Foundation under grant No.
0952617 and by the Semiconductor Research Corporation
under contract GRC 1859. Any opinions, findings, and conclu-
sions or recommendations expressed in this material asetho
of the authors and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES

[1] R. W. Floyd, “Assigning meanings to programs,”8ymposia in Applied
Mathematicsvol. 19. American Mathematical Society, 1967, pp. 19—
32.

[2] C. A. R. Hoare, “An axiomatic basis for computer programgy’
Communications of the ACMol. 12, no. 10, pp. 576-580, October
1969.

[3] Z. Manna and A. Pnueli;Temporal Verification of Reactive Systems:
Safety Springer-Verlag, 1995.

[4] J.R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and LJ. Hwang,
“Symbolic model checking102° states and beyond/hformation and
Computation vol. 98, no. 2, pp. 142-170, 1992.

[5] K.L.McMillan, “Applying SAT methods in unbounded symlomodel
checking.” in CAV, ser. LNCS, vol. 2404. Springer-Verlag, 2002, pp.
250-264.

[6] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic meldcheck-
ing without BDDs,” in Fifth International Conference on Tools and
Algorithms for Construction and Analysis of Systems (TAE@HS
Amsterdam, The Netherlands, Mar. 1999, pp. 193-207, INC®.15

[7]1 M. Sheeran, S. Singh, and G. Stalmarck, “Checking gafebperties
using induction and a SAT-solver,” iformal Methods in Computer
Aided DesighW. A. Hunt, Jr. and S. D. Johnson, Eds. Springer-Verlag,
Nov. 2000, pp. 108-125, INCS 1954.

[8] P.Cousot and R. Cousot, “Abstract interpretation: Afigdi lattice model
for static analysis of programs by construction or appration of
fixpoints,” in POPL ACM Press, 1977, pp. 238-252.

[9] K. L. McMillan, “Interpolation and SAT-based model cheéeg,” in
Fifteenth Conference on Computer Aided Verification (CAY'QV. A.
Hunt, Jr. and F. Somenzi, Eds. Berlin: Springer-Verlag, 2003, pp.
1-13, INCS 2725.

[10] A. R. Bradley and Z. Manna, “Checking safety by induetyeneraliza-
tion of counterexamples to induction,” Formal Methods in Computer
Aided Design (FMCAD'07)Austin, TX, 2007, pp. 173-180.

[11] A. R. Bradley, “Safety analysis of systems,” Ph.D. digation, Stanford
University, May 2007.

[12] —, “k-step relative inductive generalization,” CU Boulder, fieRep.,
March 2010, http://arxiv.org/abs/1003.3649.
[13] ——, “SAT-based model checking without unrolling,” iverification,

Model Checking, and Abstract Interpretation (VMCAI'LBustin, TX,
2011, pp. 70-87, INCS 6538.

[14] A. R. Bradley, F. Somenzi, Z. Hassan, and Y. Zhang, “Acrémental
approach to model checking progress propertiesFarmal Methods in
Computer Aided Design (FMCAD’11pustin, TX, 2011.

