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ABSTRACT

QuickCheck is a tool which tests software against a formal specification, reporting discrepancies as
minimal failing examples. QuickCheck uses properties specified by the developer both to generate test
cases, and to identify failing tests. A property such as

Vxs :list(int()). reverse(reverse(xs)) = xs

is tested by generating random lists of integers, binding them to the variable xs, then evaluating the
boolean expression under the quantifier and reporting a failure if the value is false. If a failing test case
is found, QuickCheck “shrinks” it by searching for smaller, but similar test cases that also fail, terminating
with a minimal example that cannot be shrunk further. In this example, if the developer accidentally wrote

Vxs:list(int()). reverse(xs) = xs

instead, then QuickCheck would report the list [0, 1] as the minimal failing case, containing as few
list elements as possible, with the smallest absolute values possible. The approach is very practical:
QuickCheck is implemented just a library in a host programming language; it needs only to execute the
code under test, so requires no tools other than a compiler (in particular, no static analysis); the shrinking
process “extracts the signal from the noise” of random testing, and usually results in very easy-to-debug
failures.

First developed in Haskell by Koen Claessen and myself, QuickCheck has been emulated in many
programming languages, and in 2006 I founded QuviQ to develop and market an Erlang version. Of
course, customers’ code i1s much more complex than the simple reverse function above, and requires
much more complex properties to test it. The challenge in applying QuickCheck to real code is in finding
ways to formulate properties that are simple enough for people to use easily, concise enough to make
property-based testing cost-effective, and avoid the trap of replicating the mistakes of the implementation
in the specification. To this end we have extended QuickCheck with state machine formalisms, and
standardized serializability properties that can expose harmful race conditions in concurrent code. I will
present examples using these formalisms, and discuss our experiences of applying property-based testing
in the telecoms, automotive, and distributed database industries.
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