Specification Based Testing with QuickCheck

(Tutorial Talk)

John Hughes
Chalmers University of Technology and QuviQ AB

ABSTRACT

QuickCheck is a tool which tests software against a formal specification, reporting discrepancies as
minimal failing examples. QuickCheck uses properties specified by the developer both to generate test
cases, and to identify failing tests. A property such as

Vxs :list(int()). reverse(reverse(xs)) = xs

is tested by generating random lists of integers, binding them to the variable xs, then evaluating the
boolean expression under the quantifier and reporting a failure if the value is false. If a failing test case
is found, QuickCheck “shrinks” it by searching for smaller, but similar test cases that also fail, terminating
with a minimal example that cannot be shrunk further. In this example, if the developer accidentally wrote

Vxs:list(int()). reverse(xs) = xs

instead, then QuickCheck would report the list [0, 1] as the minimal failing case, containing as few
list elements as possible, with the smallest absolute values possible. The approach is very practical:
QuickCheck is implemented just a library in a host programming language; it needs only to execute the
code under test, so requires no tools other than a compiler (in particular, no static analysis); the shrinking
process “extracts the signal from the noise” of random testing, and usually results in very easy-to-debug
failures.

First developed in Haskell by Koen Claessen and myself, QuickCheck has been emulated in many
programming languages, and in 2006 I founded QuviQ to develop and market an Erlang version. Of
course, customers’ code i1s much more complex than the simple reverse function above, and requires
much more complex properties to test it. The challenge in applying QuickCheck to real code is in finding
ways to formulate properties that are simple enough for people to use easily, concise enough to make
property-based testing cost-effective, and avoid the trap of replicating the mistakes of the implementation
in the specification. To this end we have extended QuickCheck with state machine formalisms, and
standardized serializability properties that can expose harmful race conditions in concurrent code. I will
present examples using these formalisms, and discuss our experiences of applying property-based testing
in the telecoms, automotive, and distributed database industries.

SHORT BIOGRAPHY

John Hughes began research in functional programming in 1980 as a D.Phil. student at the University
of Oxford, graduating in 1983. He wrote Why Functional Programming Matters in 1985 while a post-doc
at Chalmers University—a functional manifesto which is still one of the most widely read papers in the
field. He took up a Chair at Glasgow University from 1985-1992, where he was a founder member of
the Haskell design committee (and later its co-Chair for the Haskell 98 standard). In 1992 he moved
to a Chair at Chalmers University, Gothenburg. He and Koen Claessen began work on QuickCheck in
1998—initially just for fun—and published the first paper on it in 2000. In 2006, he and Thomas Arts
founded Quvig AB to commercialize the QuickCheck approach, and since then he has shared his time
between Chalmers and Quviq. In 2010, the first QuickCheck paper received the ACM SIGPLAN award
for the Most Influential Paper of ICFP 2000.



