
The Role of Human
Creativity in Mechanized

Verification

J Strother Moore
Department of Computer Science

University of Texas at Austin

1

John McCarthy(Sep 4, 1927 – Oct 23, 2011)

2

Contributions

Lisp, mathematical semantics for

programming languages, “Artificial

Intelligence,” garbage collection,

if-then-else, circumscription for

non-monotonic logic, . . .

3

In order for a program to be capable of

learning something it must first be

capable of being told it.

— John McCarthy, “Programs with

Common Sense” (aka “The Advice

Taker”), 1959

4

Instead of debugging a program, one

should prove that it meets its

specifications, and this proof should be

checked by a computer program.

— John McCarthy, “A Basis for a

Mathematical Theory of Computation,”

1961

5

The meaning of a program is defined by its

effect on the state vector.

– John McCarthy, “Towards a

Mathematical Science of Computation,”

1962

6

If you’d given this talk in 1981, I would

have said ‘What took so long?’

— John McCarthy, after a talk by J Moore

on applications of ACL2 in the mid-1990s

7

8

Delusion Mouse Trap (1876)

9

Royal Number 1 Trap (1879)

10

Hotchkiss 5-hole Choker (1890?)

11

12

13

14

15

16

17

18

19

Mathematicians Do It Too

Virtually every textbook proof has been

cleaned up, sometimes to the point where

the original proof (or even the original

theorem) is completely absent.

20

Probably every theorem of analysis proved

in the 17th and 18th centuries was proved

again more cleanly and rigorously in the

19th century using the “epsilon-delta”

approach.

21

“The original proof of CRT [the

Church–Rosser theorem] was fairly long

and very complicated. . . . Newman

generalized the universe of discourse

He proved a result similar to CRT by

topological arguments. Curry

. . . generalized the Newman result

22

Unfortunately, it turned out that neither

the Newman result nor the Curry

generalization entailed CRT. . . . This was

discovered by Schroer Schroer

derived still further generalizations of the

Newman and Curry results, which indeed

do entail CRT. . . . Schroer 1965 is 627

typed pages

23

Chapter 4 of Curry and Feys 1958 is

devoted to a proof of CRT for λ-calculus

and . . . is not recommended for light

reading. . . . Meanwhile a genuine

simplification of the proof of CRT had

come in sight. See Martin-Löf 1972.

24

It is agreed that Martin-Löf got some of his

ideas from lectures by Tait. An exposition

of the proof of CRT according to Tait and

Martin-Löf appears in Appendix I of

Hindley, Lercher and Seldin 1972.” – J.B.

Rosser

25

It is (apparently) in our natures to polish

our work to make it more beautiful,

elegant, and understandable.

26

It is (apparently) in our natures to polish

our work to make it more beautiful,

elegant, and understandable.

This is great if your only concern is the

beauty/elegance/clarity of the final

product.

27

It is (apparently) in our natures to polish

our work to make it more beautiful,

elegant, and understandable.

This is great if your only concern is the

beauty/elegance/clarity of the final

product.

But it is harmful in our business!

28

Our Business

Formal methods research is not about

proving hardware and software correct.

Formal methods research is about

mechanizing creativity.

By polishing our results we obscure the

problems we’re really trying to solve.

29

A Trivial Example from My Class

• (endp x) — determines if x is empty

• (car x) — first element of x (when x is

non-empty)

• (cdr x) — rest of x (when x is

non-empty)

30

• (member e x) — determines whether e

occurs as an element of list x

• (rm! e x) — deletes every occurrence

of e as a element from x

31

A Student’s Definition

(defun set-equal (x y)

(if (endp x)

(endp y)

(and (member (car x) y)

(set-equal (rm! (car x) x)
(rm! (car x) y)))))

This function determines whether x and y

have the same elements, ignoring order and

duplication.

32

The Student’s Goal Theorem

(set-equal (append a a) a)

33

The Student’s Goal Theorem

(set-equal (append a a) a)

(defun append (x y)

(if (endp x)

y

(cons (car x)

(append (cdr x) y))))

34

The Student’s Goal Theorem

(set-equal (append a a) a)

Axiom

(append x y)

=

(if (endp x)

y

(cons (car x)

(append (cdr x) y)))

35

The Student’s Goal Theorem

(set-equal (append a a) a)

Axiom Instance

(append a a)

=

(if (endp a)

a

(cons (car a)

(append (cdr a) a)))

36

We tackled this interactively in class.

Here is our more general theorem:

(defthm crux

(implies (subset b a)

(set-equal (append a b) a)))

(defthm goal

(set-equal (append a a) a))

37

The Definition of Subset

(defun subset (x y)

(if (endp x)

t

(and (member (car x) y)

(subset (cdr x) y))))

38

In class we proved several beautiful and

helpful lemmas, e.g.,

(rm! e (append a b))

=

(append (rm! e a) (rm! e b))

But with no time remaining in class our

still unproved crux looked like this:

39

(defthm crux

(implies (subset b a)

(set-equal (append a b) a))

:hints

(("Goal" :induct (set-equal a b))

("Subgoal *1/2’’"

:use (:instance subset-rm!

(x b)

(y a)

(e (car a))))

("Subgoal *1/3’"

:expand ((set-equal (append a b) a)))))

40

(defthm crux

(implies (subset b a)

(set-equal (append a b) a))

:hints

(("Goal" :induct (set-equal a b))

("Subgoal *1/2’’"

:use (:instance subset-rm!

(x b)

(y a)

(e (car a))))

("Subgoal *1/3’"

:expand ((set-equal (append a b) a)))))

41

Class ended.

I went home. I ate, watched TV, read,

showered, slept.

I woke up with the alarm and knew I

should change my approach in two ways.

42

Insight 1: Redefine subset

(defun subset (x y)

(if (endp x)

t

(and (member (car x) y)

(subset (cdr x)

y))))

43

Insight 1: Redefine subset

(defun subset (x y)

(if (endp x)

t

(and (member (car x) y)

(subset (cdr x)

y))))

44

Insight 1: Redefine subset

(defun subset (x y)

(if (endp x)

t

(and (member (car x) y)

(subset (rm! (car x) x)

(rm! (car x) y)))))

45

This is Fair

It does not change the goal theorem.

The definitional principle is conservative.

Subset is not mentioned in the final

theorem.

So how it is defined doesn’t matter –

except to the proof.

46

The Proof Plan

(defthm crux

(implies (subset b a)

(set-equal (append a b) a)))

(defthm goal

(set-equal (append a a) a))

47

Redefining Subset is a Good Move

(defun subset (x y)

(if (endp x)

t

(and (member (car x) y)

(subset (rm! (car x) x)

(rm! (car x) y)))))

(defun set-equal (x y)

(if (endp x)

(endp y)

(and (member (car x) y)

(set-equal (rm! (car x) x)

(rm! (car x) y)))))

48

Insight 2: Re-state crux

(defthm crux ; Old

(implies (subset b a)

(set-equal (append a b) a)))

49

Insight 2: Re-state crux

(defthm crux ; Old

(implies (subset b a)

(set-equal (append a b) a)))

50

Insight 2: Re-state crux

(defthm crux ; New

(implies (subset b a)

(set-equal (append b a) a)))

51

The Proof Plan Still “Works”

(defthm crux ; New

(implies (subset b a)

(set-equal (append b a) a)))

(defthm goal

(set-equal (append a a) a))

52

But the New Crux is Easier to Prove

(defthm crux ; Old

(implies (subset b a)

(set-equal (append a b) a)))

(defthm crux ; New

(implies (subset b a)

(set-equal (append b a) a)))

53

About Induction

To prove φ(x, y) by induction on x:

Base:

(endp x) → φ(x, y)

Induction Step:

(¬(endp x) ∧ φ(x′, y′)) → φ(x, y)

where x′ is “shorter than” x.

54

About Induction

To prove φ(x, y) by induction on x:

Base:

(endp x) → φ(x, y)

Induction Step:

(¬(endp x) ∧ φ(x′, y′)) → φ(x, y)

where x′ is “shorter than” x.

55

About Induction

To prove φ(x, y) by induction on x:

Base:

(endp x) → φ(x, y)

Induction Step:

(¬(endp x) ∧ φ(x′, y′)) → φ(x′, y′)

where x′ is “shorter than” x.

56

About Induction

To prove φ(x, y) by induction on x:

Base:

(endp x) → φ(x, y)

Induction Step:

(¬(endp x) ∧ φ(x′, y′)) → φ(x′, y′)

where x′ is “shorter than” x.

57

So the key to proving φ(x, y) by induction

is finding a φ with the property that it can

be rewritten to an instance of itself.

58

Rewrite to an Instance?

(defthm crux ; Old

(implies (subset b a)

(set-equal (append a b) a)))

(defthm crux ; New

(implies (subset b a)

(set-equal (append b a) a)))

59

The Old Crux: Rewrite to an Instance?

(implies (subset b a)

(set-equal (append a b) a))

60

The Old Crux: Rewrite to an Instance?

(implies (subset b

a)

(set-equal

(append a

b)

a))

61

The Old Crux: Rewrite to an Instance?

(implies (subset b

a)

(set-equal

(append a

b)

a))

62

The Old Crux: Rewrite to an Instance?

(implies (subset (rm! (car b) b)

(rm! (car b) a))

(set-equal

(append a

b)

a))

63

The Old Crux: Rewrite to an Instance?

(implies (subset (rm! (car b) b)

(rm! (car b) a))

(set-equal

(append a

b)

a))

64

The Old Crux: Rewrite to an Instance?

(implies (subset (rm! (car b) b)

(rm! (car b) a))

(set-equal

(rm! (car a) (append a

b))

(rm! (car a) a)))

65

The Old Crux: Rewrite to an Instance?

(implies (subset (rm! (car b) b)

(rm! (car b) a))

(set-equal

(append (rm! (car a) a)

(rm! (car a) b))

(rm! (car a) a)))

66

The Old Crux: Rewrite to an Instance?

(implies (subset (rm! (car b) b)

(rm! (car b) a))

(set-equal

(append (rm! (car a) a)

(rm! (car a) b))

(rm! (car a) a)))

67

The Old Crux:

(implies (subset b

a)

(set-equal

(append a

b)

a))

68

The Old Rewritten Crux: Not an

Instance!

(implies (subset (rm! (car b) b)

(rm! (car b) a))

(set-equal

(append (rm! (car a) a)

(rm! (car a) b))

(rm! (car a) a)))

69

The Old Rewritten Crux: Not an

Instance!

(implies (subset (rm! (car b) b)

(rm! (car b) a))

(set-equal

(append (rm! (car a) a)

(rm! (car a) b))

(rm! (car a) a)))

70

The Old Rewritten Crux: Not an

Instance!

(implies (subset (rm! (CAR B) b)

(rm! (car b) a))

(set-equal

(append (rm! (car a) a)

(rm! (CAR A) b))

(rm! (car a) a)))

71

The Old Crux...

is hard to prove by induction because some

of its subterms remove (car b) but others

remove (car a), so we need “inconsistent

instantiations”, sometimes replacing b by

one term, (rm! (car b) b), and

sometimes by another, (rm! (car a) b).

72

The New Crux: Rewrite to an

Instance?

(implies (subset b a)

(set-equal (append b a) a))

73

The New Crux: Rewrite to an

Instance?

(implies (subset b

a)

(set-equal

(append b

a)

a))

74

The New Crux: Rewrite to an

Instance?

(implies (subset b

a)

(set-equal

(append b

a)

a))

75

The New Crux: Rewrite to an

Instance?

(implies (subset (rm! (car b) b)

(rm! (car b) a))

(set-equal

(append b

a)

a))

76

The New Crux: Rewrite to an

Instance?

(implies (subset (rm! (car b) b)

(rm! (car b) a))

(set-equal

(append b

a)

a))

77

The New Crux: Rewrite to an

Instance?

(implies (subset (rm! (car b) b)

(rm! (car b) a))

(set-equal

(rm! (car b) (append b

a))

(rm! (car b) a)))

78

The New Crux: Rewrite to an

Instance?

(implies (subset (rm! (car b) b)

(rm! (car b) a))

(set-equal

(append (rm! (car b) b)

(rm! (car b) a))

(rm! (car b) a)))

79

The New Crux: Rewrite to an

Instance?

(implies (subset (rm! (car b) b)

(rm! (car b) a))

(set-equal

(append (rm! (car b) b)

(rm! (car b) a))

(rm! (car b) a)))

80

The New Crux

(implies (subset b

a)

(set-equal

(append b

a)

a))

81

The New Rewritten Crux: an Instance!

(implies (subset (rm! (car b) b)

(rm! (car b) a))

(set-equal

(append (rm! (car b) b)

(rm! (car b) a))

(rm! (car b) a)))

82

The New Crux

The improved formulation is easy to prove

because we remove (car b) uniformly

from b and from a everywhere.

83

So after breakfast, I typed in the new

formulation of subset and crux and the

proof was done.

Then, while driving to campus...

84

Insight 3: No Generalization Needed

Using the rules developed for the proof

above, we can prove

(defthm goal

(set-equal (append a a) a))

directly by induction on a by

(rm! (car a) a). There is no need for

subset or crux!
85

A Tale of Two Papers

Which is the better paper to write?

An Automatic Proof of Goal

or

How Not to Prove Goal, and Why

Which paper might lead somebody to

breakthrough research?

86

Other Examples

• How do you model the system in

question? Should you include the

behavior of resource x in your model?

Why not?

• What is the right specification?

87

• How do you define the concepts used in

the specification? What “goes wrong” if

you adopt some equally obvious

alternative?

• What “obvious” variable orderings did

you try before the one that worked? Why

were they “wrong?”

88

• What “obvious” canonical forms did you

adopt before finding the ones that

worked? Why were they “wrong?”

• What modeling/testing/proof debugging

tools did you use?

By highlighting such issues we facilitate

automation.

89

Summary

Our customers rightly want to see the

elegant solution.

But we should be showing each other the

failures and false starts.

90

91

