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Introduction

Minimal Unsatisfiability

I F is minimally unsatisfiable (F ∈ MU), if F ∈ UNSAT and for any
C ∈ F , F \ C ∈ SAT.

I F ′ is minimally unsatisfiable subformula (MUS) of F

(F ′ ∈ MUS(F )) if F ′ ⊆ F and F ′ ∈ MU.

Example

I {C1,C2,C3,C4} ∈ MU.
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I F ′ is minimally unsatisfiable subformula (MUS) of F

(F ′ ∈ MUS(F )) if F ′ ⊆ F and F ′ ∈ MU.

Example

C1 = x ∨ y C3 = x ∨ ¬y C5 = y ∨ z

C2 = ¬x ∨ y C4 = ¬x ∨ ¬y C6 = y ∨ ¬z

I {C1,C2,C3,C4} ∈ MU.
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Introduction

Minimal Unsatisfiability

I F is minimally unsatisfiable (F ∈ MU), if F ∈ UNSAT and for any
C ∈ F , F \ C ∈ SAT.

I F ′ is minimally unsatisfiable subformula (MUS) of F

(F ′ ∈ MUS(F )) if F ′ ⊆ F and F ′ ∈ MU.

Example

C1 = x ∨ y C3 = x ∨ ¬y C5 = y ∨ z

C2 = ¬x ∨ y C4 = ¬x ∨ ¬y C6 = y ∨ ¬z

I {C1,C2,C3,C4} ∈ MU.

I F = {C1, . . . ,C6} ∈ UNSAT, but /∈ MU.
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Minimal Unsatisfiability

I F is minimally unsatisfiable (F ∈ MU), if F ∈ UNSAT and for any
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I F ′ is minimally unsatisfiable subformula (MUS) of F
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Example
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Introduction

Minimal Unsatisfiability

I F is minimally unsatisfiable (F ∈ MU), if F ∈ UNSAT and for any
C ∈ F , F \ C ∈ SAT.

I F ′ is minimally unsatisfiable subformula (MUS) of F

(F ′ ∈ MUS(F )) if F ′ ⊆ F and F ′ ∈ MU.

Example

C1 = x ∨ y C3 = x ∨ ¬y C5 = y ∨ z

C2 = ¬x ∨ y C4 = ¬x ∨ ¬y C6 = y ∨ ¬z

I {C1,C2,C3,C4} ∈ MU.

I {C3,C4,C5,C6} ∈ MUS(F ).
A. Belov, J. Marques-Silva (UCD, Dublin) Recursive Model Rotation FMCAD 2011 2 / 16



Introduction

Minimal Unsatisfiability

I F is minimally unsatisfiable (F ∈ MU), if F ∈ UNSAT and for any
C ∈ F , F \ C ∈ SAT.

I F ′ is minimally unsatisfiable subformula (MUS) of F

(F ′ ∈ MUS(F )) if F ′ ⊆ F and F ′ ∈ MU.

Applications of MUSes (in formal methods)

I Abstraction refinement frameworks.

I Decision procedures.

I Design debugging.
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Computation of MUSes

I Based on iterative calls to SAT solver (not the only way, but currently
the most effective): for each C ∈ F

I if F \ {C} ∈ UNSAT, then there is an MUS of F that does not contain
C → remove C from F .

I if F \ {C} ∈ SAT (C is necessary for F ), then C is in all MUSes of F
→ keep C .

I SAT solving is the main bottleneck of the computation, hence
reduction in the number of SAT solver calls is the key to efficiency.

I On UNSAT outcomes – clause set refinement : remove C and all
clauses outside the unsatisfiable core of F \ {C}. [Dershowitz et al’06]

I On SAT outcomes – model rotation : detect additional necessary
clauses without SAT solver calls. [Marques-Silva&Lynce’11]

Recursive model rotation (RMR) – very effective improvement of
model rotation. [this paper]
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Impact of RMR

I 500 benchmarks submitted to MUS track of SAT Competition 2011.
I Time limit 1200 sec, memory limit 4 GB.
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I MUS computation without RMR (x-axis) vs with RMR (y -axis)
I Left: number of SAT solver calls (on instances solved in both cases).

I Right: CPU time (sec).
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Computation of MUSes

Use SAT solver to identify necessary (or, transition ) clauses

I C ∈ F is necessary for F , if F ∈ UNSAT and F \ {C} ∈ SAT.

I F ∈ MU iff every clause C ∈ F is necessary for F .

I If C is necessary for F then C is necessary for every unsatisfiable
subset of F .

Deletion-based MUS Computation
Input : F — an unsatisfiable CNF formula
M ← F // Inv: M is a superset of some MUS of F
foreach C ∈ F do

if M \ {C} ∈ UNSAT then // is C necessary for M ?

// no - delete it

M ← M \ {C}
// yes - keep it

return M // Every C ∈ M is necessary for M
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Computation of MUSes

Use SAT solver to identify necessary (or, transition ) clauses

I C ∈ F is necessary for F , if F ∈ UNSAT and F \ {C} ∈ SAT.

I F ∈ MU iff every clause C ∈ F is necessary for F .

I If C is necessary for F then C is necessary for every unsatisfiable
subset of F .

Deletion-based MUS Computation
Input : F — an unsatisfiable CNF formula
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Example

F = {C1, . . . ,C6}

M (an overapproximation of some MUS of F ):

C1 = x ∨ y C3 = x ∨ ¬y C5 = y ∨ z

C2 = ¬x ∨ y C4 = ¬x ∨ ¬y C6 = y ∨ ¬z

M = F ∈ UNSAT

I Each clause in F \M costs one SAT solver call.
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Example

F = {C1, . . . ,C6}

M (an overapproximation of some MUS of F ):

C1 = x ∨ y C3 = x ∨ ¬y C5 = y ∨ z

C2 = ¬x ∨ y C4 = ¬x ∨ ¬y C6 = y ∨ ¬z

M = F ∈ UNSAT

M \ {C1} ∈ UNSAT, hence C1 is not necessary

I Each clause in F \M costs one SAT solver call.
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Example

F = {C1, . . . ,C6}

M (an overapproximation of some MUS of F ):

C1 = x ∨ y C3 = x ∨ ¬y C5 = y ∨ z

C2 = ¬x ∨ y C4 = ¬x ∨ ¬y C6 = y ∨ ¬z

M = F ∈ UNSAT

M \ {C1} ∈ UNSAT, hence C1 is not necessary → M = M \ {C1}

I Each clause in F \M costs one SAT solver call.
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Example

F = {C1, . . . ,C6}

M (an overapproximation of some MUS of F ):

C1 = x ∨ y C3 = x ∨ ¬y C5 = y ∨ z

C2 = ¬x ∨ y C4 = ¬x ∨ ¬y C6 = y ∨ ¬z

M = F ∈ UNSAT

M \ {C1} ∈ UNSAT, hence C1 is not necessary → M = M \ {C1}
M \ {C3} ∈ SAT, hence C3 is necessary

I Each clause in F \M costs one SAT solver call.
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Example

F = {C1, . . . ,C6}

M (an overapproximation of some MUS of F ):

C1 = x ∨ y C3 = x ∨ ¬y C5 = y ∨ z

C2 = ¬x ∨ y C4 = ¬x ∨ ¬y C6 = y ∨ ¬z

M = F ∈ UNSAT

M \ {C1} ∈ UNSAT, hence C1 is not necessary → M = M \ {C1}
M \ {C3} ∈ SAT, hence C3 is necessary → keep C3

I Each clause in F \M costs one SAT solver call.
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Example

F = {C1, . . . ,C6}

M (an overapproximation of some MUS of F ):

C1 = x ∨ y C3 = x ∨ ¬y C5 = y ∨ z

C2 = ¬x ∨ y C4 = ¬x ∨ ¬y C6 = y ∨ ¬z

M = F ∈ UNSAT

M \ {C1} ∈ UNSAT, hence C1 is not necessary → M = M \ {C1}
M \ {C3} ∈ SAT, hence C3 is necessary → keep C3

M \ {C5} ∈ SAT, hence C5 is necessary

I Each clause in F \M costs one SAT solver call.
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Example

F = {C1, . . . ,C6}

M (an overapproximation of some MUS of F ):

C1 = x ∨ y C3 = x ∨ ¬y C5 = y ∨ z

C2 = ¬x ∨ y C4 = ¬x ∨ ¬y C6 = y ∨ ¬z

M = F ∈ UNSAT

M \ {C1} ∈ UNSAT, hence C1 is not necessary → M = M \ {C1}
M \ {C3} ∈ SAT, hence C3 is necessary → keep C3

M \ {C5} ∈ SAT, hence C5 is necessary → keep C5

I Each clause in F \M costs one SAT solver call.
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Example

F = {C1, . . . ,C6}

M (an overapproximation of some MUS of F ):

C1 = x ∨ y C3 = x ∨ ¬y C5 = y ∨ z

C2 = ¬x ∨ y C4 = ¬x ∨ ¬y C6 = y ∨ ¬z

M = F ∈ UNSAT

M \ {C1} ∈ UNSAT, hence C1 is not necessary → M = M \ {C1}
M \ {C3} ∈ SAT, hence C3 is necessary → keep C3

M \ {C5} ∈ SAT, hence C5 is necessary → keep C5

M \ {C2} ∈ UNSAT, hence C2 is not necessary

I Each clause in F \M costs one SAT solver call.
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Example

F = {C1, . . . ,C6}

M (an overapproximation of some MUS of F ):

C1 = x ∨ y C3 = x ∨ ¬y C5 = y ∨ z

C2 = ¬x ∨ y C4 = ¬x ∨ ¬y C6 = y ∨ ¬z

M = F ∈ UNSAT

M \ {C1} ∈ UNSAT, hence C1 is not necessary → M = M \ {C1}
M \ {C3} ∈ SAT, hence C3 is necessary → keep C3

M \ {C5} ∈ SAT, hence C5 is necessary → keep C5

M \ {C2} ∈ UNSAT, hence C2 is not necessary → M = M \ {C2}

I Each clause in F \M costs one SAT solver call.
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Example

F = {C1, . . . ,C6}

M (an overapproximation of some MUS of F ):

C1 = x ∨ y C3 = x ∨ ¬y C5 = y ∨ z

C2 = ¬x ∨ y C4 = ¬x ∨ ¬y C6 = y ∨ ¬z

M = F ∈ UNSAT

M \ {C1} ∈ UNSAT, hence C1 is not necessary → M = M \ {C1}
M \ {C3} ∈ SAT, hence C3 is necessary → keep C3

M \ {C5} ∈ SAT, hence C5 is necessary → keep C5

M \ {C2} ∈ UNSAT, hence C2 is not necessary → M = M \ {C2}
M \ {C4} ∈ SAT, hence C4 is necessary

I Each clause in F \M costs one SAT solver call.
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Example

F = {C1, . . . ,C6}

M (an overapproximation of some MUS of F ):

C1 = x ∨ y C3 = x ∨ ¬y C5 = y ∨ z

C2 = ¬x ∨ y C4 = ¬x ∨ ¬y C6 = y ∨ ¬z

M = F ∈ UNSAT

M \ {C1} ∈ UNSAT, hence C1 is not necessary → M = M \ {C1}
M \ {C3} ∈ SAT, hence C3 is necessary → keep C3

M \ {C5} ∈ SAT, hence C5 is necessary → keep C5

M \ {C2} ∈ UNSAT, hence C2 is not necessary → M = M \ {C2}
M \ {C4} ∈ SAT, hence C4 is necessary → keep C4

I Each clause in F \M costs one SAT solver call.
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Example

F = {C1, . . . ,C6}

M (an overapproximation of some MUS of F ):

C1 = x ∨ y C3 = x ∨ ¬y C5 = y ∨ z

C2 = ¬x ∨ y C4 = ¬x ∨ ¬y C6 = y ∨ ¬z

M = F ∈ UNSAT

M \ {C1} ∈ UNSAT, hence C1 is not necessary → M = M \ {C1}
M \ {C3} ∈ SAT, hence C3 is necessary → keep C3

M \ {C5} ∈ SAT, hence C5 is necessary → keep C5

M \ {C2} ∈ UNSAT, hence C2 is not necessary → M = M \ {C2}
M \ {C4} ∈ SAT, hence C4 is necessary → keep C4

M \ {C6} ∈ SAT, hence C6 is necessary

I Each clause in F \M costs one SAT solver call.
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Example

F = {C1, . . . ,C6}

M (an overapproximation of some MUS of F ):

C1 = x ∨ y C3 = x ∨ ¬y C5 = y ∨ z

C2 = ¬x ∨ y C4 = ¬x ∨ ¬y C6 = y ∨ ¬z

M = F ∈ UNSAT

M \ {C1} ∈ UNSAT, hence C1 is not necessary → M = M \ {C1}
M \ {C3} ∈ SAT, hence C3 is necessary → keep C3

M \ {C5} ∈ SAT, hence C5 is necessary → keep C5

M \ {C2} ∈ UNSAT, hence C2 is not necessary → M = M \ {C2}
M \ {C4} ∈ SAT, hence C4 is necessary → keep C4

M \ {C6} ∈ SAT, hence C6 is necessary → keep C6

I Each clause in F \M costs one SAT solver call.
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Example

F = {C1, . . . ,C6}

M (an overapproximation of some MUS of F ):

C1 = x ∨ y C3 = x ∨ ¬y C5 = y ∨ z

C2 = ¬x ∨ y C4 = ¬x ∨ ¬y C6 = y ∨ ¬z

M = {C3,C4,C5,C6} is an MUS of F .

I Each clause in F \M costs one SAT solver call.
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Example

F = {C1, . . . ,C6}

M (an overapproximation of some MUS of F ):

C1 = x ∨ y C3 = x ∨ ¬y C5 = y ∨ z

C2 = ¬x ∨ y C4 = ¬x ∨ ¬y C6 = y ∨ ¬z

M = {C3,C4,C5,C6} is an MUS of F .

I Each clause in F \M costs ≤ 1 SAT solver call – clause set
refinement.
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C2 = ¬x ∨ y C4 = ¬x ∨ ¬y C6 = y ∨ ¬z
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Model Rotation [Marques-Silva&Lynce, SAT’11]

I Fact: C is necessary for F iff F ∈ UNSAT and ∃τ such that

Unsat(F , τ) = {C}. τ is a witness (of necessity) for C .

I During MUS extraction: when M \ {C} ∈ SAT, the assignment τ
found by the SAT solver is a witness for C .

I Model rotation: given a witness τ for C , try to modify it into a
witness τ ′ for another clause C ′. How ?

A. Belov, J. Marques-Silva (UCD, Dublin) Recursive Model Rotation FMCAD 2011 7 / 16



Model Rotation [Marques-Silva&Lynce, SAT’11]

I Fact: C is necessary for F iff F ∈ UNSAT and ∃τ such that

Unsat(F , τ) = {C}. τ is a witness (of necessity) for C .

I During MUS extraction: when M \ {C} ∈ SAT, the assignment τ
found by the SAT solver is a witness for C .

I Model rotation: given a witness τ for C , try to modify it into a
witness τ ′ for another clause C ′. How ?
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Example

F = {C1, . . . ,C6}

M (the overapproximation of some MUS of F ):

C1 = x ∨ y C3 = x ∨ ¬y C5 = y ∨ z

C2 = ¬x ∨ y C4 = ¬x ∨ ¬y C6 = y ∨ ¬z

M \ {C3} ∈ SAT, hence C3 is necessary.
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Flip x in τ ′: back to τ . C3 is already known to be necessary.
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Example

F = {C1, . . . ,C6}

M (the overapproximation of some MUS of F ):

C1 = x ∨ y C3 = x ∨ ¬y C5 = y ∨ z

C2 = ¬x ∨ y C4 = ¬x ∨ ¬y C6 = y ∨ ¬z

M \ {C3} ∈ SAT, hence C3 is necessary.

SAT solver returns τ = {¬x , y , z}, Unsat(M, τ) = {C3}.
Flip x in τ : τ ′ = {x , y , z}, Unsat(M, τ ′) = {C4} → C4 is necessary.

Flip x in τ ′: back to τ . C3 is already known to be necessary.

Flip y in τ ′: τ ′′ = {x ,¬y , z}, Unsat(M, τ ′′) = {C2,C6}.
C4 is necessary, without SAT solver call.
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Recursive Model Rotation (RMR) [this paper]

I Simple idea: when model rotation stops, backtrack to a necessary
clause detected earlier and flip another variable.

I Fact: let τ be a witness for C in F , that is Unsat(F , τ) = {C}.
Then, the sets Unsat(F , τ |¬x) for x ∈ Var(C ) are pairwise disjoint.

I By flipping different variables we are likely to detect new necessary
clauses.
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Example

F = {C1, . . . ,C6}

M (the overapproximation of some MUS of F ):

C1 = x ∨ y C3 = x ∨ ¬y C5 = y ∨ z

C2 = ¬x ∨ y C4 = ¬x ∨ ¬y C6 = y ∨ ¬z

M \ {C3} ∈ SAT, hence C3 is necessary.

SAT solver returns τ = {¬x , y , z}, Unsat(M, τ) = {C3}.
Flip x in τ : τ ′ = {x , y , z}, Unsat(M, τ ′) = {C4} → C4 is necessary.

Flip x in τ ′: back to τ . C3 is already known to be necessary.

Flip y in τ ′: τ ′′ = {x ,¬y , z}, Unsat(M, τ ′′) = {C2,C6}.
Tried all variables in C4 — /////stop go back to C3 and τ .

A. Belov, J. Marques-Silva (UCD, Dublin) Recursive Model Rotation FMCAD 2011 10 / 16



Example

F = {C1, . . . ,C6}

M (the overapproximation of some MUS of F ):

C1 = x ∨ y C3 = x ∨ ¬y C5 = y ∨ z

C2 = ¬x ∨ y C4 = ¬x ∨ ¬y C6 = y ∨ ¬z

M \ {C3} ∈ SAT, hence C3 is necessary.

SAT solver returns τ = {¬x , y , z}, Unsat(M, τ) = {C3}.
Flip x in τ : τ ′ = {x , y , z}, Unsat(M, τ ′) = {C4} → C4 is necessary.

A. Belov, J. Marques-Silva (UCD, Dublin) Recursive Model Rotation FMCAD 2011 10 / 16



Example

F = {C1, . . . ,C6}

M (the overapproximation of some MUS of F ):

C1 = x ∨ y C3 = x ∨ ¬y C5 = y ∨ z

C2 = ¬x ∨ y C4 = ¬x ∨ ¬y C6 = y ∨ ¬z

M \ {C3} ∈ SAT, hence C3 is necessary.

SAT solver returns τ = {¬x , y , z}, Unsat(M, τ) = {C3}.
Flip x in τ : τ ′ = {x , y , z}, Unsat(M, τ ′) = {C4} → C4 is necessary.

Flip y in τ : τ ′ = {¬x ,¬y , z}

A. Belov, J. Marques-Silva (UCD, Dublin) Recursive Model Rotation FMCAD 2011 10 / 16



Example

F = {C1, . . . ,C6}

M (the overapproximation of some MUS of F ):

C1 = x ∨ y C3 = x ∨ ¬y C5 = y ∨ z

C2 = ¬x ∨ y C4 = ¬x ∨ ¬y C6 = y ∨ ¬z

M \ {C3} ∈ SAT, hence C3 is necessary.

SAT solver returns τ = {¬x , y , z}, Unsat(M, τ) = {C3}.
Flip x in τ : τ ′ = {x , y , z}, Unsat(M, τ ′) = {C4} → C4 is necessary.

Flip y in τ : τ ′ = {¬x ,¬y , z}, Unsat(M, τ ′) = {C6} → C6 is necessary.

A. Belov, J. Marques-Silva (UCD, Dublin) Recursive Model Rotation FMCAD 2011 10 / 16



Example

F = {C1, . . . ,C6}

M (the overapproximation of some MUS of F ):

C1 = x ∨ y C3 = x ∨ ¬y C5 = y ∨ z

C2 = ¬x ∨ y C4 = ¬x ∨ ¬y C6 = y ∨ ¬z

M \ {C3} ∈ SAT, hence C3 is necessary.

SAT solver returns τ = {¬x , y , z}, Unsat(M, τ) = {C3}.
Flip x in τ : τ ′ = {x , y , z}, Unsat(M, τ ′) = {C4} → C4 is necessary.

Flip y in τ : τ ′ = {¬x ,¬y , z}, Unsat(M, τ ′) = {C6} → C6 is necessary.

Flip z in τ ′: τ ′′ = {¬x ,¬y ,¬z}

A. Belov, J. Marques-Silva (UCD, Dublin) Recursive Model Rotation FMCAD 2011 10 / 16



Example

F = {C1, . . . ,C6}

M (the overapproximation of some MUS of F ):

C1 = x ∨ y C3 = x ∨ ¬y C5 = y ∨ z

C2 = ¬x ∨ y C4 = ¬x ∨ ¬y C6 = y ∨ ¬z
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Example

F = {C1, . . . ,C6}

M (the overapproximation of some MUS of F ):
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Flip x in τ : τ ′ = {x , y , z}, Unsat(M, τ ′) = {C4} → C4 is necessary.

Flip y in τ : τ ′ = {¬x ,¬y , z}, Unsat(M, τ ′) = {C6} → C6 is necessary.

Flip z in τ ′: τ ′′ = {¬x ,¬y ,¬z}, Unsat(M, τ ′′) = {C5} → C5 is necessary.

C4, C5, C6 are necessary, without SAT solver call.
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Recursive Model Rotation (RMR)

Input: M — an over-approximation of an MUS
: C — a clause necessary for M
: τ — a witness for C (i.e. Unsat(M, τ) = {C})

foreach x ∈ Var(C ) do
τ ′ ← τ |¬x // flip x
if Unsat(M, τ ′) = {C ′} and C ′ is not known to be necessary for M
then

mark C ′ as necessary
RMR(M,C ′,τ ′)

I The second condition of if keeps the number of the recursive calls
linear in the size of computed MUS.
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Recursive Model Rotation (RMR)

I 500 benchmarks submitted to MUS track of SAT Competition 2011.
I Time limit 1200 sec, memory limit 4 GB.
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I Left: model rotation (x-axis) vs. RMR (y -axis), CPU time (sec).

I Right: % of clauses in the computed MUS detected by RMR (red)
and by (non-recursive) model rotation (blue).
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MUSer2 — MUS extractor with RMR

I 295 benchmarks used in the MUS track of SAT Competition 2011.
I Time limit 1800 sec, memory limit 4 GB.
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Summary

I Recursive Model Rotation (RMR) — simple but powerful technique
for acceleration of MUS extraction.

I Clause reordering (see the paper) — gives a slight performance edge.

I MUSer2 — state-of-the-art MUS extractor
I Download at http://logos.ucd.ie/wiki/doku.php?id=muser

Thank you for your attention !
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Impact of RMR

I 295 benchmarks used in the MUS track of SAT Competition 2011.
I Time limit 1800 sec, memory limit 4 GB.
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Model Rotation [Marques-Silva&Lynce, SAT’11]

I 500 benchmarks submitted to MUS track of SAT Competition 2011.

I Time limit 1200 sec, memory limit 4 GB.
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I Left: no model rotation (x-axis) vs. model rotation (y -axis).

I Right: % of clauses in computed MUS detected by model rotation.

A. Belov, J. Marques-Silva (UCD, Dublin) Recursive Model Rotation FMCAD 2011 16 / 16


