
Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Automated Specification Analysis Using an
Interactive Theorem Prover

Harsh Raju Chamarthi and Pete Manolios

Northeastern University

October 31, 2011

1 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Motivation
I Teaching freshmen how to reason

about programs using ACL2s

I Success of QuickCheck
I Combining testing and theorem-proving

(ACL2 2011 Workshop)
I Can we do even better?
I Apply technology behind ACL2 to help

the regular programmer

.

.

.Counte
rexamples!!

2 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Motivation
I Teaching freshmen how to reason

about programs using ACL2s
I Success of QuickCheck

I Combining testing and theorem-proving
(ACL2 2011 Workshop)

I Can we do even better?
I Apply technology behind ACL2 to help

the regular programmer

.

.

.Counte
rexamples!!

3 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Motivation
I Teaching freshmen how to reason

about programs using ACL2s
I Success of QuickCheck
I Combining testing and theorem-proving

(ACL2 2011 Workshop)

I Can we do even better?
I Apply technology behind ACL2 to help

the regular programmer

.

.

.Counte
rexamples!!

4 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Motivation
I Teaching freshmen how to reason

about programs using ACL2s
I Success of QuickCheck
I Combining testing and theorem-proving

(ACL2 2011 Workshop)
I Can we do even better?

I Apply technology behind ACL2 to help
the regular programmer

.

.

.Counte
rexamples!!

5 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Motivation
I Teaching freshmen how to reason

about programs using ACL2s
I Success of QuickCheck
I Combining testing and theorem-proving

(ACL2 2011 Workshop)
I Can we do even better?
I Apply technology behind ACL2 to help

the regular programmer
.

.

.Counte
rexamples!!

6 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Motivation
I Teaching freshmen how to reason

about programs using ACL2s
I Success of QuickCheck
I Combining testing and theorem-proving

(ACL2 2011 Workshop)
I Can we do even better?
I Apply technology behind ACL2 to help

the regular programmer
.

.

.Counte
rexamples!!

.
7 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Overview
Goal
Analyse specifications - Find counterexamples!

The problem
What to do when the Search Procedure
doesnt return an answer?

The main idea
Reduce the search space and guide the
procedure towards a counterexample

.

.QuickCheck

.Decision Procedure

.Constraint Solver

8 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Overview
Goal
Analyse specifications - Find counterexamples!

The problem
What to do when the Search Procedure
doesnt return an answer?

The main idea
Reduce the search space and guide the
procedure towards a counterexample

.

.QuickCheck

.Decision Procedure

.Constraint Solver

9 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Overview
Goal
Analyse specifications - Find counterexamples!

The problem
What to do when the Search Procedure
doesnt return an answer?

The main idea
Reduce the search space and guide the
procedure towards a counterexample

.

.QuickCheck

.Decision Procedure

.Constraint Solver

10 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Overview
Goal
Analyse specifications - Find counterexamples!

The problem
What to do when the Search Procedure
doesnt return an answer?

The main idea
Reduce the search space and guide the
procedure towards a counterexample

.

.QuickCheck

.Decision Procedure

.Constraint Solver

11 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Overview
Goal
Analyse specifications - Find counterexamples!

The problem
What to do when the Search Procedure
doesnt return an answer?

The main idea
Reduce the search space and guide the
procedure towards a counterexample.

.QuickCheck

.Decision Procedure

.Constraint Solver

12 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

The Main Idea

.

.Property P .Is P false?

.Search Proc

.Yes

.

.Dont Know
.

13 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

The Main Idea

.

.Property P .Is P false?

.Search Proc

.Yes

.

.Dont Know
.

14 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

The Main Idea

.

.Property P .Is P false?

.Search Proc

.Yes

.

.Dont Know
.

15 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

The Main Idea

.

.Property P .Is P false?

.Search Proc

.Yes

.

.Dont Know

.

16 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

The Main Idea

.

.Property P .Is P false?

.Search Proc

.Yes

.

.Dont Know
.

17 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

The Main Idea

.

.Property P .Is P false?

.Search Procedure

.Guide

18 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

The Main Idea

.

.Property P

.Is P false?

.Search Procedure

.Guide

19 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

The Main Idea

.

.Property P .Is P false?

.Guide

.x1, x2, . . . , xn

.P.P

.Select var

.Assign value

.Simplify using ITP

.
Inconsistent?

.Backtrack!!

.Is P' false?
.Search

20 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

The Main Idea

.

.Property P .Is P false?

.Guide

.Select var

.x1, x2, . . . , xn

.P

.Assign value

.Simplify using ITP

.
Inconsistent?

.Backtrack!!

.Is P' false?
.Search

21 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

The Main Idea

.

.Property P .Is P false?

.Guide

.Select var

.Assign value

.x1, 3, . . . , xn

.P

.Simplify using ITP

.
Inconsistent?

.Backtrack!!

.Is P' false?
.Search

22 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

The Main Idea

.

.Property P .Is P false?

.Guide

.Select var

.Assign value

.Simplify using ITP.x1, . . . , xn

.P′

.

.
Inconsistent?

.Backtrack!!

.Is P' false?
.Search

23 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

The Main Idea

.

.Property P .Is P false?

.Guide

.Select var

.Assign value

.Simplify using ITP

.
Inconsistent?

.x1, . . . , xn

.P′

.

.Backtrack!!

.Is P' false?
.Search

24 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

The Main Idea

.

.Property P .Is P false?

.Guide

.Select var

.Assign value

.Simplify using ITP

.
Inconsistent?

.Backtrack!!

.x1, x2, . . . , xn

.P

.Is P' false?
.Search

25 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

The Main Idea

.

.Property P .Is P false?

.Guide

.Select var

.Assign value

.Simplify using ITP

.
Inconsistent?

.Backtrack!!

.Is P' false?
.Search.x1, . . . , xn

.P′

.

26 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

The Main Idea

.

.Is P true?
.ITP

.P

.Yes

.

.Dont Know
.

.p1

.p2

.

...

.pn

.Is P false?
.Search

27 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

The Main Idea

.

.Is P true?
.ITP

.P.Yes

.

.Dont Know
.

.p1

.p2

.

...

.pn

.Is P false?
.Search

28 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

The Main Idea

.

.Is P true?
.ITP

.P.Yes

.

.Dont Know
.

.p1

.p2

.

...

.pn

.Is P false?
.Search

29 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

The Main Idea

.

.Is P true?
.ITP

.P

.Yes

.

.Dont Know

.

.p1

.p2

.

...

.pn

.Is P false?
.Search

30 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

The Main Idea

.

.Is P true?
.ITP

.P

.Yes

.

.Dont Know
.

.p1

.p2

.

...

.pn

.Is P false?
.Search

31 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

The Main Idea

.

.Is P true?
.ITP

.P

.Yes

.

.Dont Know
.

.p1

.p2

.

...

.pn

.Is P false?
.Search

32 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

The Main Idea

.

.Is P true?
.ITP

.P

.Yes

.

.Dont Know
.

.p1

.p2

.

...

.pn

.Is P false?
.Search

33 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Assumptions
I Specification language L

I Multi-sorted first-order logic
I Extensible
I Executable

I Properties of form hyp1 ∧ · · · ∧ hypn ⇒ concl
I No nested quantifiers
I Implicitly universally quantified

I An Interactive Theorem Prover (ITP) that can reason about
specifications in L.

I Smash

takes as input a goal, a formula written in L, and returns
a list of equi-valid subgoals.

I Simplify

takes as input an L-formula, c, and a list of formulas, H,
and returns a simplified formula that is equivalent to c assuming
H are true.

34 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Assumptions
I Specification language L

I Multi-sorted first-order logic
I Extensible
I Executable

I Properties of form hyp1 ∧ · · · ∧ hypn ⇒ concl
I No nested quantifiers
I Implicitly universally quantified

I An Interactive Theorem Prover (ITP) that can reason about
specifications in L.

I Smash

takes as input a goal, a formula written in L, and returns
a list of equi-valid subgoals.

I Simplify

takes as input an L-formula, c, and a list of formulas, H,
and returns a simplified formula that is equivalent to c assuming
H are true.

35 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Assumptions
I Specification language L

I Multi-sorted first-order logic
I Extensible -- can introduce new function and predicate symbols

using well-founded recursive definitions
I Executable

I Properties of form hyp1 ∧ · · · ∧ hypn ⇒ concl
I No nested quantifiers
I Implicitly universally quantified

I An Interactive Theorem Prover (ITP) that can reason about
specifications in L.

I Smash

takes as input a goal, a formula written in L, and returns
a list of equi-valid subgoals.

I Simplify

takes as input an L-formula, c, and a list of formulas, H,
and returns a simplified formula that is equivalent to c assuming
H are true.

36 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Assumptions
I Specification language L

I Multi-sorted first-order logic
I Extensible
I Executable

I Properties of form hyp1 ∧ · · · ∧ hypn ⇒ concl
I No nested quantifiers
I Implicitly universally quantified

I An Interactive Theorem Prover (ITP) that can reason about
specifications in L.

I Smash

takes as input a goal, a formula written in L, and returns
a list of equi-valid subgoals.

I Simplify

takes as input an L-formula, c, and a list of formulas, H,
and returns a simplified formula that is equivalent to c assuming
H are true.

37 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Assumptions
I Specification language L

I Multi-sorted first-order logic
I Extensible
I Executable

I Properties of form hyp1 ∧ · · · ∧ hypn ⇒ concl
I No nested quantifiers
I Implicitly universally quantified

I An Interactive Theorem Prover (ITP) that can reason about
specifications in L.

I Smash

takes as input a goal, a formula written in L, and returns
a list of equi-valid subgoals.

I Simplify

takes as input an L-formula, c, and a list of formulas, H,
and returns a simplified formula that is equivalent to c assuming
H are true.

38 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Assumptions
I Specification language L

I Multi-sorted first-order logic
I Extensible
I Executable

I Properties of form hyp1 ∧ · · · ∧ hypn ⇒ concl
I No nested quantifiers
I Implicitly universally quantified

I An Interactive Theorem Prover (ITP) that can reason about
specifications in L.

I Smash

takes as input a goal, a formula written in L, and returns
a list of equi-valid subgoals.

I Simplify

takes as input an L-formula, c, and a list of formulas, H,
and returns a simplified formula that is equivalent to c assuming
H are true.

39 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Assumptions
I Specification language L

I Multi-sorted first-order logic
I Extensible
I Executable

I Properties of form hyp1 ∧ · · · ∧ hypn ⇒ concl
I No nested quantifiers
I Implicitly universally quantified

I An Interactive Theorem Prover (ITP) that can reason about
specifications in L.

I Smash

takes as input a goal, a formula written in L, and returns
a list of equi-valid subgoals.

I Simplify

takes as input an L-formula, c, and a list of formulas, H,
and returns a simplified formula that is equivalent to c assuming
H are true.

40 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Assumptions
I Specification language L

I Multi-sorted first-order logic
I Extensible
I Executable

I Properties of form hyp1 ∧ · · · ∧ hypn ⇒ concl
I No nested quantifiers
I Implicitly universally quantified

I An Interactive Theorem Prover (ITP) that can reason about
specifications in L.

I Smash takes as input a goal, a formula written in L, and returns
a list of equi-valid subgoals.

I Simplify

takes as input an L-formula, c, and a list of formulas, H,
and returns a simplified formula that is equivalent to c assuming
H are true.

41 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Assumptions
I Specification language L

I Multi-sorted first-order logic
I Extensible
I Executable

I Properties of form hyp1 ∧ · · · ∧ hypn ⇒ concl
I No nested quantifiers
I Implicitly universally quantified

I An Interactive Theorem Prover (ITP) that can reason about
specifications in L.

I Smash takes as input a goal, a formula written in L, and returns
a list of equi-valid subgoals.

I Simplify takes as input an L-formula, c, and a list of formulas, H,
and returns a simplified formula that is equivalent to c assuming
H are true.

42 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Example

.

.

Property

x = hash(y)
y = hash(z)
x+ y 6= v2

z > 10

w < min(x, y)
⇒w < z

.P

.Select ?

..A

43 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Example

.

.

Property

x = hash(y)
y = hash(z)
x+ y 6= v2

z > 10

w < min(x, y)
⇒w < z

.P
.W

.V

.Y

.Z

.X

.Equality dependency Graph

.Select ?

..A

44 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Example

.

.

Property

x = hash(y)
y = hash(z)
x+ y 6= v2

z > 10

w < min(x, y)
⇒w < z

.P
.W

.V

.Y

.Z

.X

.Equality dependency Graph

.W

.Z
.V

.Rest dependency G

.Select ?

..A

45 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Example

.

.

Property

x = hash(y)
y = hash(z)
x+ y 6= v2

z > 10

w < min(x, y)
⇒w < z

.P
.W

.V

.Y

.Z

.X

.Equality dependency Graph

.W

.Z
.V

.Rest dependency G

.Select z

..A

46 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Example

. .W

.V

.Y

.Z

.X

.Equality dependency Graph

.W

.Z
.V

.Rest dependency G.

Property

x = hash(y)
y = hash(z)
x+ y 6= v2

z > 10

w < min(x, y)
⇒w < z

.P

.Assign ?

..A

47 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Example

.

.Assign z = 34 (decision)

..A
.

Property

x = hash(y)
y = hash(34)
x+ y 6= v2

w < min(x, y)
⇒w < 34

.P'

48 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Example

.

.

Property

x = hash(y)
y = hash(34)
x+ y 6= v2

w < min(x, y)
⇒w < 34

.P'

.Propagate with Simplify

..A

49 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Example

.

.Propagate with Simplify

..A

.

Property

x = 3623878690

y = 268959709

x+ 268959709 6= v2

if(x < 268959709)

w < x
w < 268959709

⇒w < 34

.P'

50 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Example

.

..A

.

Property

x = 3623878690

y = 268959709

x+ 268959709 6= v2

if(x < 268959709)

w < x
w < 268959709

⇒w < 34

.P'

.Inconsistent?

51 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Example

.

..A

.

Property

x = 3623878690

y = 268959709

x+ 268959709 6= v2

if(x < 268959709)

w < x
w < 268959709

⇒w < 34

.P'

.Update Assignment

.z = 34.A

52 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Top-level Analyze algorithm

.

.

Input: Property P, Summary summary
Output: Status, Summary of the analysis of P

if P is closed then return AnalyzeConst(P)
initialize
Search till ...
if StopCond(summary) then return (done, summary)
Decompose P into subgoals using ITP
If progress then Recurse on each subgoal
return (not-done, summary)

53 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Top-level Analyze algorithm

.

.

Input: Property P, Summary summary
Output: Status, Summary of the analysis of P

if P is closed then return AnalyzeConst(P)
initialize
Search till ...
if StopCond(summary) then return (done, summary)
Decompose P into subgoals using ITP
If progress then Recurse on each subgoal
return (not-done, summary)

54 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Top-level Analyze algorithm

.

.

Input: Property P, Summary summary
Output: Status, Summary of the analysis of P

if P is closed then return AnalyzeConst(P)
n, status := 0, not-done
Search till ...
if StopCond(summary) then return (done, summary)
Decompose P into subgoals using ITP
If progress then Recurse on each subgoal
return (not-done, summary)

55 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Top-level Analyze algorithm

.

.

Input: Property P, Summary summary
Output: Status, Summary of the analysis of P

if P is closed then return AnalyzeConst(P)
initialize
Search till ...
if StopCond(summary) then return (done, summary)
Decompose P into subgoals using ITP
If progress then Recurse on each subgoal
return (not-done, summary)

56 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Top-level Analyze algorithm

.

.

Input: Property P, Summary summary
Output: Status, Summary of the analysis of P

if P is closed then return AnalyzeConst(P)
initialize
while ¬StopCond(summary) ∧ n ≤ slimit do

A, n := Search(P), n+ 1
summary := updateA(summary, P,A)

if StopCond(summary) then return (done, summary)
Decompose P into subgoals using ITP
If progress then Recurse on each subgoal
return (not-done, summary)

57 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Top-level Analyze algorithm

.

.

Input: Property P, Summary summary
Output: Status, Summary of the analysis of P

if P is closed then return AnalyzeConst(P)
initialize
Search till ...
if StopCond(summary) then return (done, summary)
Decompose P into subgoals using ITP
If progress then Recurse on each subgoal
return (not-done, summary)

58 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Top-level Analyze algorithm

.

.

Input: Property P, Summary summary
Output: Status, Summary of the analysis of P

if P is closed then return AnalyzeConst(P)
initialize
Search till ...
if StopCond(summary) then return (done, summary)
Decompose P into subgoals using ITP
If progress then Recurse on each subgoal
return (not-done, summary)

59 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Top-level Analyze algorithm

.

.

Input: Property P, Summary summary
Output: Status, Summary of the analysis of P

if P is closed then return AnalyzeConst(P)
initialize
Search till ...
if StopCond(summary) then return (done, summary)
S := Smash(P)
summary := updateS(summary, P, S)
If progress then Recurse on each subgoal
return (not-done, summary)

60 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Top-level Analyze algorithm

.

.

Input: Property P, Summary summary
Output: Status, Summary of the analysis of P

if P is closed then return AnalyzeConst(P)
initialize
Search till ...
if StopCond(summary) then return (done, summary)
Decompose P into subgoals ...
If progress then Recurse on each subgoal
return (not-done, summary)

61 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Top-level Analyze algorithm

.

.

Input: Property P, Summary summary
Output: Status, Summary of the analysis of P

if P is closed then return AnalyzeConst(P)
initialize
Search till ...
if StopCond(summary) then return (done, summary)
Decompose P into subgoals ...
if S 6= {P} then

for all p ∈ S do
status, summary := Analyze(p, summary)
if status = done then return (done, summary)

return (not-done, summary)

62 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Top-level Analyze algorithm

.

.

Input: Property P, Summary summary
Output: Status, Summary of the analysis of P

if P is closed then return AnalyzeConst(P)
initialize
Search till ...
if StopCond(summary) then return (done, summary)
Decompose P into subgoals ...
If progress then Recurse on each subgoal ...
return (not-done, summary)

63 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Search Algorithm

.

.

Input: Property P with at least one free variable
Output: A counterexample (assignment) or fail

local Stack A of (var, val, # assigns, type, property)
Initialize and Select first variable
Iteratively construct counterexample or fail

while true do
v, t := Assign(x, P)
P′ := Propagate(x, v, P)
if ¬inconsistent(P′) then

Extend A, continue search if not done
else if A 6= [] then

backtrack
fail if ...

64 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Search Algorithm

.

.

Input: Property P with at least one free variable
Output: A counterexample (assignment) or fail

local Stack A of (var, val, # assigns, type, property)
Initialize and Select first variable
Iteratively construct counterexample or fail

while true do
v, t := Assign(x, P)
P′ := Propagate(x, v, P)
if ¬inconsistent(P′) then

Extend A, continue search if not done
else if A 6= [] then

backtrack
fail if ...

65 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Search Algorithm

.

.

Input: Property P with at least one free variable
Output: A counterexample (assignment) or fail

local Stack A of (var, val, # assigns, type, property)
A, i, x := [], 0,Select(P)
Iteratively construct counterexample or fail

while true do
v, t := Assign(x, P)
P′ := Propagate(x, v, P)
if ¬inconsistent(P′) then

Extend A, continue search if not done
else if A 6= [] then

backtrack
fail if ...

66 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Search Algorithm

.

.

Input: Property P with at least one free variable
Output: A counterexample (assignment) or fail

local Stack A of (var, val, # assigns, type, property)
A, i, x := [], 0,Select(P)
Iteratively construct counterexample or fail

while true do
v, t := Assign(x, P)
P′ := Propagate(x, v, P)
if ¬inconsistent(P′) then

Extend A, continue search if not done
else if A 6= [] then

backtrack
fail if ...

67 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Search Algorithm

.

.

Input: Property P with at least one free variable
Output: A counterexample (assignment) or fail

local Stack A of (var, val, # assigns, type, property)
A, i, x := [], 0,Select(P)
while true do

v, t := Assign(x, P)
P′ := Propagate(x, v, P)
if ¬inconsistent(P′) then

Extend A, continue search if not done
else if A 6= [] then

backtrack
fail if ...

68 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Search Algorithm

.

.

Input: Property P with at least one free variable
Output: A counterexample (assignment) or fail

local Stack A of (var, val, # assigns, type, property)
A, i, x := [], 0,Select(P)
while true do

v, t := Assign(x, P)
P′ := Propagate(x, v, P)
if ¬inconsistent(P′) then

Extend A, continue search if not done
else if A 6= [] then

backtrack
fail if ...

69 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Search Algorithm

.

.

Input: Property P with at least one free variable
Output: A counterexample (assignment) or fail

local Stack A of (var, val, # assigns, type, property)
A, i, x := [], 0,Select(P)
while true do

v, t := Assign(x, P)
P′ := Propagate(x, v, P)
if ¬inconsistent(P′) then

Extend A, continue search if not done
else if A 6= [] then

backtrack
fail if ...

70 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Search Algorithm

.

.

Input: Property P with at least one free variable
Output: A counterexample (assignment) or fail

local Stack A of (var, val, # assigns, type, property)
A, i, x := [], 0,Select(P)
while true do

v, t := Assign(x, P)
P′ := Propagate(x, v, P)
if ¬inconsistent(P′) then

Extend A, continue search if not done
else if A 6= [] then

backtrack
fail if ...

71 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Search Algorithm

.

.

Input: Property P with at least one free variable
Output: A counterexample (assignment) or fail

local Stack A of (var, val, # assigns, type, property)
A, i, x := [], 0,Select(P)
while true do

v, t := Assign(x, P)
P′ := Propagate(x, v, P)
if ¬inconsistent(P′) then

if t = ``decision" then i := i+ 1

A := push((x, v, i, t, P),A)
if A is complete then return A
i, P, x := 0, P′,Select(P′)

else if A 6= [] then
backtrack

fail if ...

72 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Search Algorithm

.

.

Input: Property P with at least one free variable
Output: A counterexample (assignment) or fail

local Stack A of (var, val, # assigns, type, property)
A, i, x := [], 0,Select(P)
while true do

v, t := Assign(x, P)
P′ := Propagate(x, v, P)
if ¬inconsistent(P′) then

Extend A, continue search if not done
else if A 6= [] then

backtrack
fail if ...

73 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Search Algorithm

.

.

Input: Property P with at least one free variable
Output: A counterexample (assignment) or fail

local Stack A of (var, val, # assigns, type, property)
A, i, x := [], 0,Select(P)
while true do

v, t := Assign(x, P)
P′ := Propagate(x, v, P)
if ¬inconsistent(P′) then

Extend A, continue search if not done
else if A 6= [] then

repeat
(x, , i, t, P) := head(A)
A := pop(A)

until (t = ``decision" ∧ i ≤ blimit) ∨ A = []

fail if ...

74 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Search Algorithm

.

.

Input: Property P with at least one free variable
Output: A counterexample (assignment) or fail

local Stack A of (var, val, # assigns, type, property)
A, i, x := [], 0,Select(P)
while true do

v, t := Assign(x, P)
P′ := Propagate(x, v, P)
if ¬inconsistent(P′) then

Extend A, continue search if not done
else if A 6= [] then

backtrack
fail if ...

75 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Search Algorithm

.

.

Input: Property P with at least one free variable
Output: A counterexample (assignment) or fail

local Stack A of (var, val, # assigns, type, property)
A, i, x := [], 0,Select(P)
while true do

v, t := Assign(x, P)
P′ := Propagate(x, v, P)
if ¬inconsistent(P′) then

Extend A, continue search if not done
else if A 6= [] then

backtrack
if A = [] ∧ (t = ``implied" ∨ i > blimit) then

return fail

76 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Select Algorithm

.

.
Input: Property P with at least one free variable
Output: A free variable in P

if ∃h ∈ hyps(P) of form x = c then return x

77 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Select Algorithm

.

.
Input: Property P with at least one free variable
Output: A free variable in P

if ∃h ∈ hyps(P) of form x = c then return x

78 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Select Algorithm

.

.

Input: Property P with at least one free variable
Output: A free variable in P

if ∃h ∈ hyps(P) of form x = c then return x
G= := EqualityDependencyGraph(P, vars(P))

.

1. Case: x = y. Add x ↔ y.
2. Case: x = fterm

y ∈ freeVars(fterm) and
x /∈ freeVars(fterm)
add x → y

79 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Select Algorithm

.

.

Input: Property P with at least one free variable
Output: A free variable in P

if ∃h ∈ hyps(P) of form x = c then return x
G= := EqualityDependencyGraph(P, vars(P))
Do SCC on G=, collect the leaf components in L
leaves= := pick x from each l ∈ L

80 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Select Algorithm

.

.

Input: Property P with at least one free variable
Output: A free variable in P

if ∃h ∈ hyps(P) of form x = c then return x
G= := EqualityDependencyGraph(P, vars(P))
SCC on G=
G./ := RestDependencyGraph(P, leaves=)

.

1. x ./ y where ./ ∈ {<,≤, >,≥}: No edge
2. x ./ fterm such that ./ is a binary relation,

y ∈ freeVars(fterm) and x /∈ freeVars(fterm):
Add x → y

3. R(term1, term2, . . ., termn), such that
x ∈ freeVars(termi), y ∈ freeVars(termj), i 6= j,
n ≥ 2 and R is an arbitrary n-ary relation: Add
x ↔ y.

81 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Select Algorithm

.

.

Input: Property P with at least one free variable
Output: A free variable in P

if ∃h ∈ hyps(P) of form x = c then return x
G= := EqualityDependencyGraph(P, vars(P))
SCC on G=
G./ := RestDependencyGraph(P, leaves=)
Do SCC on G./ to get dag D./

82 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Select Algorithm

.

.

Input: Property P with at least one free variable
Output: A free variable in P

if ∃h ∈ hyps(P) of form x = c then return x
G= := EqualityDependencyGraph(P, vars(P))
SCC on G=
G./ := RestDependencyGraph(P, leaves=)
Do SCC on G./ to get dag D./
X := the leaf in D./ with maximum i= value
return X

.
i=(x) denotes number of nodes that can
reach it in G=
i=(X) denotes max value of i= among
nodes ∈ X

83 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Hardware: Finding hazards in a pipeline

Analysing a 3-stage Pipeline

1. Fetch
2. Read
3. Execute/Write-back

84 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Hardware: Finding hazards in a pipeline

Analysing a 3-stage Pipeline

1. Fetch
2. Read
3. Execute/Write-back

Primary Concern
Avoid resource conflicts (Data/Control hazards)

85 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Hardware: Finding hazards in a pipeline

Analysing a 3-stage Pipeline

1. Fetch
2. Read
3. Execute/Write-back

Primary Concern
Avoid resource conflicts (Data/Control hazards)

Correctness
Show all behaviors of MA are observationally equivalent to
behaviors of ISA

86 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Hardware: Finding hazards in a pipeline

Primary Concern
Avoid resource conflicts (Data/Control hazards)

Correctness
Show all behaviors of MA are observationally equivalent to
behaviors of ISA

Can we find design errors that lead to hazards?

1. Assuming designer has modelled both ISA and MA
2. Formalize above correctness condition
3. Analyze it using our method (demo)

87 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Hardware: Finding hazards in a pipeline

Primary Concern
Avoid resource conflicts (Data/Control hazards)

Correctness
Show all behaviors of MA are observationally equivalent to
behaviors of ISA

Can we find design errors that lead to hazards?

Observations
1. No assertions were written
2. No lemmas were specified
3. No manual tests or test driver given.

88 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Software: Comparison with Alloy

Alloy

I Alloy is a declarative modeling language based on sets and
relations (relational logic with transitive closure)

I Used for describing and analyzing high-level specifications and
designs.

I Automatic Analysis
Given a bound on # model elements, called scope, Alloy models (and
its specifications) translated into Boolean formulas and shipped to
off-the-shelf SAT solvers.

89 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Software: Comparison with Alloy

Alloy Analyzer Our method
Property Scope Time Result Time Result

delUndoesAdd 25 26.41 -- 0.07 QED
addIdempotent 25 37.76 -- 0.19 QED

addLocal 3 0.08 CE 1.35 CE
lookupYields 3 0.05 CE 0.83 CE
writeRead 34 99.69 -- 0.02 QED

writeIdempotent 33 44.13 -- 0.01 QED
hidePreservesInv 61 24.91 -- 0.26 QED

cutPaste 3 0.20 CE 0.49 CE
pasteCut 3 0.20 CE 1.38 CE

pasteAffectsHidden 27 117.63 -- 0.42 QED
markSweepSound 8 47.34 -- 0.28 QED

markSweepComplete 7 58.12 -- 0.34 QED

Table: Comparison with Alloy Analyzer (AA)

90 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Software: Comparison with Alloy
Alloy Analyzer Our method

Property Scope Time Result Time Result
delUndoesAdd 25 26.41 -- 0.07 QED
addIdempotent 25 37.76 -- 0.19 QED

addLocal 3 0.08 CE 1.35 CE
lookupYields 3 0.05 CE 0.83 CE
writeRead 34 99.69 -- 0.02 QED

writeIdempotent 33 44.13 -- 0.01 QED
hidePreservesInv 61 24.91 -- 0.26 QED

cutPaste 3 0.20 CE 0.49 CE
pasteCut 3 0.20 CE 1.38 CE

pasteAffectsHidden 27 117.63 -- 0.42 QED
markSweepSound 8 47.34 -- 0.28 QED

markSweepComplete 7 58.12 -- 0.34 QED

Table: Comparison with Alloy Analyzer (AA)

1
1Ghazi and Taghdiri. Relational Reasoning by SMT Solving. In FM 2011

91 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Software: Comparison with Alloy

Methodology
Modeled above examples in ACL2, mimicking original formulation in
Alloy.
Used set types and map types i.e., binary relations, provided by our
data definition framework.

92 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Software: Comparison with Alloy

Observations
1. The ordered sets and records library in ACL2 distribution,

powerful enough to prove all the properties that Alloy posits
are true

2. No intermediate lemmas provided, no hint or guidance offered
to the theorem prover

3. Highlights effectiveness of powerful libraries by the tool-writer
put to use by the choice of right abstractions by the
programmer

93 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Discussion on the advantages of using ITP

I Prune away huge subspaces
I Extensible
I Domain-specific lemma libraries→ powerful domain-specific

reasoning
I User can also help formalize facts/insight

.

.

94 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Discussion on the advantages of using ITP

I Prune away huge subspaces
I Extensible
I Domain-specific lemma libraries→ powerful domain-specific

reasoning
I User can also help formalize facts/insight

. .

95 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Discussion on the advantages of using ITP

I Prune away huge subspaces
I Extensible
I Domain-specific lemma libraries→ powerful domain-specific

reasoning
I User can also help formalize facts/insight

. .

96 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Discussion on the advantages of using ITP

I Prune away huge subspaces
I Extensible
I Domain-specific lemma libraries→ powerful domain-specific

reasoning
I User can also help formalize facts/insight

. .

97 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Discussion on the advantages of using ITP

I Prune away huge subspaces
I Extensible
I Domain-specific lemma libraries→ powerful domain-specific

reasoning
I User can also help formalize facts/insight

. .

98 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

Conclusions

I Automatically analyze properties, interleaving ITP and testing
in a fine-grained fashion

I Search algorithm guides testing when it is stuck (Decision
Procedures can also benefit)

I Select algorithm can be used as a starting point by concolic
testing

I Combining automated methods with ITP technology results in a
more powerful, yet automated method.

I Better interactive theorem proving experience

99 / 101



Introduction Algorithm Experimental Evaluation Discussion and Conclusions

The End

Thank you

100 / 101


	Introduction
	Algorithm
	Experimental Evaluation
	Discussion and Conclusions

