
Jonathan Kotker, Dorsa Sadigh, Sanjit Seshia 
University of California, Berkeley 

1 

FMCAD 2011 (Austin, Texas) 



Cyber-Physical = Computation + Physical Processes 
Quantitative analysis of programs is crucial: 

How long does it take?  
How much energy does it consume? 

 

2 

 
Safety-critical 
embedded systems:  
Does the brake-by-
wire software 
always actuate the 
brakes within 1 ms? 
 

Energy-limited sensor nets:  
How much energy must 
the sensor node harvest 
for RSA encryption? 
 



 Worst-case execution time (WCET) estimation 
 Estimating distribution of execution times 
 Threshold property: produce test cases that 

violates program deadline 
 
All three problems can be solved if we could 
predict the execution time of arbitrary program 
paths. 

3 



Current code-level analysis techniques assume 
no interrupts, but practical embedded software 
is interrupt-driven 
 
NASA Toyota Unintended Acceleration Report 
Lack of support in timing analysis tools for interrupt-
driven code 

4 



Why is timing analysis of interrupt-driven 
software a hard problem? 
 
 Path Explosion: Unbounded number of 

interleavings of tasks and interrupt service 
routines (ISRs) 

 Platform Modeling: Interrupts impact 
processor operation 

5 



6 

Program with 
N tasks 

(main + ISRs) 

Hardware 
Platform 

Timing 
Analysis Tool 

Execution time 
of arbitrary 

paths (WCET, 
distribution, 

threshold 
property) 



7 

Program with 
N tasks 

(main + ISRs) 

Hardware 
Platform 

Timing 
Analysis Tool 

Execution time 
of arbitrary 

paths (WCET, 
distribution, 

threshold 
property) 



Priority pre-emptive scheduling 

 Tasks are ordered by priority 

 If a higher-priority task interrupts a lower-
priority task, the lower-priority task cannot later 
interrupt the higher-priority task 

8 

TASK 1 TASK 2 TASK 3 

PRIORITY 



Lower-bound on interrupt inter-arrival time 

9 

TIME 
α1 α2 α3 α4 α5 

There exists an α > 0 such that α < α1, α2, α3, α4, α5, … 

Interrupt! 



Atomicity 
Code should ideally be structured into atomic 
sections, perhaps by disabling and re-enabling 
interrupts* 
 
 
 
 
 
 
* Our approach works with any atomicity model. 

10 



 With these three assumptions, we compute a context 
bound and perform context-bounded analysis 
(Qadeer and Rehof, 2005). 

 
 Number of interleaved paths can still be exponential 

in the context bound 
 Obtaining measurements can be tedious 
 Basis paths drastically reduce number of paths to be 

measured to be polynomial in size of sequential program 
 

 Experiments on a real embedded platform show that 
WCET and execution times of arbitrary paths can be 
predicted accurately 

11 



 Context-Bounded Model Checking of Concurrent Software 
 Shaz Qadeer and Jakob Rehof (2005) 
 Introduces context-bounded analysis 

 Does not address timing analysis 

 
 One Stack to Run Them All: Reducing Concurrent Analysis 

to Sequential Analysis under Priority Scheduling 
 N. Kidd, S. Jagannathan, J. Vitek (2010) 
 Transforms a concurrent program with priority pre-emptive 

scheduling to a sequential program 

 Reduction applies for reachability only 

12 



13 

 Schedulability Analysis 
 Analyzes if a task can meet its deadline despite pre-

emption 
 Treats tasks as primitive objects 
 Does not capture code correlation across tasks 
 

 Deadline Analysis of Interrupt-Driven Software, 
 Dennis Brylow and Jens Palsberg (2004)  
 Assembly-level 
 Threshold property, not WCET analysis 
 Assumes WCET is already given 
 



 Approach 
 Experimental Setup 
 Hardware 
 Results 
 Summary and Future Work 

14 



15 

Compute context bound  

Generate final sequential 
program 

Run timing analysis tool 
(GAMETIME) 

Predict timing properties 
(worst-case, distribution) 

Compile Program 
for Platform 

Measure timing on Test 
Suite 

ANALYSIS PHASE MEASUREMENT AND 
PREDICTION PHASE 

PROGRAM WITH 
n TASKS 

TEST 
SUITE 



16 

Compute context bound  

Generate final sequential 
program 

Run timing analysis tool 
(GAMETIME) 

Predict timing properties 
(worst-case, distribution) 

Compile Program 
for Platform 

Measure timing on Test 
Suite 

ANALYSIS PHASE MEASUREMENT AND 
PREDICTION PHASE 

PROGRAM WITH 
n TASKS 

TEST 
SUITE 



17 

Bound on total number of 
“context switches” between 
tasks 
 
For a context bound of 1, 
the first task can be 
interrupted at most once, at 
either of the two interrupt 
points. 

TASK 1 

Potential 
interrupt 

point 

TASK 2 



18 

Set A = α, CB = 1 

Lower bound on interrupt inter-arrival time: α 

Compute sequential 
program 

Compute Tw (WCET)  

Tw < A? 
YES 

Context 
bound = CB 

NO 
CB++; 

A = CB∙α  

Loop terminates if ISR services the interrupt in time less than α 



19 

Compute context bound  

Generate final sequential 
program 

Run timing analysis tool 
(GAMETIME) 

Predict timing properties 
(worst-case, distribution) 

Compile Program 
for Platform 

Measure timing on Test 
Suite 

ANALYSIS PHASE MEASUREMENT AND 
PREDICTION PHASE 

PROGRAM WITH 
n TASKS 

TEST 
SUITE 



20 

Compute context bound  

Generate final sequential 
program 

Run timing analysis tool 
(GAMETIME) 

Predict timing properties 
(worst-case, distribution) 

Compile Program 
for Platform 

Measure timing on Test 
Suite 

ANALYSIS PHASE MEASUREMENT AND 
PREDICTION PHASE 

PROGRAM WITH 
n TASKS 

TEST 
SUITE 



21 

Model occurrence of 
interrupt points as 

“function calls” and 
bound the number of 
these “function calls” 

(using a global counter) 

TASK ISR 



22 

Compute context bound  

Generate final sequential 
program 

Run timing analysis tool 
(GAMETIME) 

Predict timing properties 
(worst-case, distribution) 

Compile Program 
for Platform 

Measure timing on Test 
Suite 

ANALYSIS PHASE MEASUREMENT AND 
PREDICTION PHASE 

PROGRAM WITH 
n TASKS 

TEST 
SUITE 



23 

Compute context bound  

Generate final sequential 
program 

Run timing analysis tool 
(GAMETIME) 

Predict timing properties 
(worst-case, distribution) 

Compile Program 
for Platform 

Measure timing on Test 
Suite 

ANALYSIS PHASE MEASUREMENT AND 
PREDICTION PHASE 

PROGRAM WITH 
n TASKS 

TEST 
SUITE 



 Common operation in cryptography, used for 
public-key encryption and decryption. 

 
 “What is ?” 
 
 Exponentiation is performed using square-

and-multiply, where the exponent is 
progressively divided by two, while the base 
is progressively squared. 

24 



25 



26 

(a) CFG 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 

2 

5 

6 

9 

1 

3 

4 

5 

6 

9 

1 

2 

5 

7 

8 

9 

(b) Basis paths 
x1, x2, x3 

1 

3 

4 

5 

7 

8 

9 

(c) Additional 
path x4 

x1 = (1, 1, 0, 0, 1, 1, 0, 0, 1) 

x2 = (1, 0, 1, 1, 1, 1, 0, 0, 1) 

x3 = (1, 1, 0, 0, 1, 0, 1, 1, 1) 

 

x4 = (1, 0, 1, 1, 1, 0, 1, 1, 1) 

(d) Vector 
representations 

Edge labels indicate 
Edge IDs and positions 
in vector representation 

x4 = x2 + x3 – x1  



x is O(b max) 

μmax bounds mean 
perturbation to basic 
block timing based on 
which path it lies on 

TRUE DISTRIBUTION 

PREDICTED DISTRIBUTION 

Execution time 



29 

Compute context bound  

Generate final sequential 
program 

Run timing analysis tool 
(GAMETIME) 

Predict timing properties 
(worst-case, distribution) 

Compile Program 
for Platform 

Measure timing on Test 
Suite 

ANALYSIS PHASE MEASUREMENT AND 
PREDICTION PHASE 

PROGRAM WITH 
n TASKS 

TEST 
SUITE 



30 

Compute context bound  

Generate final sequential 
program 

Run timing analysis tool 
(GAMETIME) 

Predict timing properties 
(worst-case, distribution) 

Compile Program 
for Platform 

Measure timing on Test 
Suite 

ANALYSIS PHASE MEASUREMENT AND 
PREDICTION PHASE 

PROGRAM WITH 
n TASKS 

TEST 
SUITE 



 

 LM3S8962 
 32 Bit ARM 

Cortex M3 
 5 stage pipeline 

 UART interface 
to iRobot Create 

 No cache 
 No OS 

31 



 ADXL-322 
accelerometer 

 iRobot sensors 
 Buttons 

 Bumpers 

 Cliff sensors 
 Use ISRs for 

accelerometer and 
sensor 

32 

Buttons 

Accelerometer 

Bumpers 

Luminary Micro 



33 

Compute context bound  

Generate final sequential 
program 

Run timing analysis tool 
(GAMETIME) 

Predict timing properties 
(worst-case, distribution) 

Compile Program 
for Platform 

Measure timing on Test 
Suite 

ANALYSIS PHASE MEASUREMENT AND 
PREDICTION PHASE 

PROGRAM WITH 
n TASKS 

TEST 
SUITE 



34 

Compute context bound  

Generate final sequential 
program 

Run timing analysis tool 
(GAMETIME) 

Predict timing properties 
(worst-case, distribution) 

Compile Program 
for Platform 

Measure timing on Test 
Suite 

ANALYSIS PHASE MEASUREMENT AND 
PREDICTION PHASE 

PROGRAM WITH 
n TASKS 

TEST 
SUITE 



 Test suite are test cases that drive the 
program along basis paths in sequential code 

 Each test case describes initial values for 
variables and the points where an interrupt 
should happen 

 

35 



36 

 
Hardware Interrupt 

Can be modeled by 
setting a GPIO pin to 

high voltage, and wiring 
that high voltage to 
another GPIO pin. 



 

Software Interrupt 
 Can be modeled by 

embedding the ARM 
assembly instruction, 

, in the code. 
 Modify the interrupt 

vector table to include our 
interrupt handler. 

37 

 

Vector Table in Startup.s 



We forced interrupts through software. 
 
 Overhead for the  call will add to context 

switch overhead. 
 Programs timed with  

Timer wraps around after 16,777,261 cycles 

38 

Upper bound 
on program 

execution time 



39 

Compute context bound  

Generate final sequential 
program 

Run timing analysis tool 
(GAMETIME) 

Predict timing properties 
(worst-case, distribution) 

Compile Program 
for Platform 

Measure timing on Test 
Suite 

ANALYSIS PHASE MEASUREMENT AND 
PREDICTION PHASE 

PROGRAM WITH 
n TASKS 

TEST 
SUITE 



40 

Compute context bound  

Generate final sequential 
program 

Run timing analysis tool 
(GAMETIME) 

Predict timing properties 
(worst-case, distribution) 

Compile Program 
for Platform 

Measure timing on Test 
Suite 

ANALYSIS PHASE MEASUREMENT AND 
PREDICTION PHASE 

PROGRAM WITH 
n TASKS 

TEST 
SUITE 



 With measurements, assign weights to edges 
in control-flow graph of sequential code 

 Use weights to predict runtimes for other 
arbitrary inputs and interleavings 
 

 

41 



42 

Name Lines of 
Code 

Nodes in 
CFG 

Edges in 
CFG 

Total 
number 
of paths 

Number 
of basis 

paths 

Context 
Bound 

Interrupt 
Inter-
arrival 
Time 

modexp 60 60 70 500 12 1 1ms 

iRobot-1 210 55 60 33 5 1 1ms 

iRobot-2 230 141 160 3362 17 1 1ms 

iRobot-3 230 97 108 1281 10 2 50μs 

iRobot-4 280 213 244 33728 30 1 1ms 

iRobot-5 250 179 206 65088 27 1 1ms 



43 

 

 

 

 

 
 

 

   



44 



45 



46 



47 



48 



 Under a certain set of reasonable 
assumptions, GAMETIME can be used to 
predict times for interrupt-driven programs. 

 Ongoing/Future work 

 Extend to other scheduling strategies. 

 Expand evaluation to larger benchmarks with 
several ISRs. 

 Analysis of energy consumption. 

49 



50 


