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Cyber-Physical = Computation + Physical Processes 
Quantitative analysis of programs is crucial: 

How long does it take?  
How much energy does it consume? 
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Safety-critical 
embedded systems:  
Does the brake-by-
wire software 
always actuate the 
brakes within 1 ms? 
 

Energy-limited sensor nets:  
How much energy must 
the sensor node harvest 
for RSA encryption? 
 



 Worst-case execution time (WCET) estimation 
 Estimating distribution of execution times 
 Threshold property: produce test cases that 

violates program deadline 
 
All three problems can be solved if we could 
predict the execution time of arbitrary program 
paths. 
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Current code-level analysis techniques assume 
no interrupts, but practical embedded software 
is interrupt-driven 
 
NASA Toyota Unintended Acceleration Report 
Lack of support in timing analysis tools for interrupt-
driven code 
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Why is timing analysis of interrupt-driven 
software a hard problem? 
 
 Path Explosion: Unbounded number of 

interleavings of tasks and interrupt service 
routines (ISRs) 

 Platform Modeling: Interrupts impact 
processor operation 
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Priority pre-emptive scheduling 

 Tasks are ordered by priority 

 If a higher-priority task interrupts a lower-
priority task, the lower-priority task cannot later 
interrupt the higher-priority task 
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TASK 1 TASK 2 TASK 3 

PRIORITY 



Lower-bound on interrupt inter-arrival time 
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TIME 
α1 α2 α3 α4 α5 

There exists an α > 0 such that α < α1, α2, α3, α4, α5, … 

Interrupt! 



Atomicity 
Code should ideally be structured into atomic 
sections, perhaps by disabling and re-enabling 
interrupts* 
 
 
 
 
 
 
* Our approach works with any atomicity model. 

10 



 With these three assumptions, we compute a context 
bound and perform context-bounded analysis 
(Qadeer and Rehof, 2005). 

 
 Number of interleaved paths can still be exponential 

in the context bound 
 Obtaining measurements can be tedious 
 Basis paths drastically reduce number of paths to be 

measured to be polynomial in size of sequential program 
 

 Experiments on a real embedded platform show that 
WCET and execution times of arbitrary paths can be 
predicted accurately 
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 Context-Bounded Model Checking of Concurrent Software 
 Shaz Qadeer and Jakob Rehof (2005) 
 Introduces context-bounded analysis 

 Does not address timing analysis 

 
 One Stack to Run Them All: Reducing Concurrent Analysis 

to Sequential Analysis under Priority Scheduling 
 N. Kidd, S. Jagannathan, J. Vitek (2010) 
 Transforms a concurrent program with priority pre-emptive 

scheduling to a sequential program 

 Reduction applies for reachability only 
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 Schedulability Analysis 
 Analyzes if a task can meet its deadline despite pre-

emption 
 Treats tasks as primitive objects 
 Does not capture code correlation across tasks 
 

 Deadline Analysis of Interrupt-Driven Software, 
 Dennis Brylow and Jens Palsberg (2004)  
 Assembly-level 
 Threshold property, not WCET analysis 
 Assumes WCET is already given 
 



 Approach 
 Experimental Setup 
 Hardware 
 Results 
 Summary and Future Work 
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Bound on total number of 
“context switches” between 
tasks 
 
For a context bound of 1, 
the first task can be 
interrupted at most once, at 
either of the two interrupt 
points. 

TASK 1 

Potential 
interrupt 

point 

TASK 2 
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Set A = α, CB = 1 

Lower bound on interrupt inter-arrival time: α 

Compute sequential 
program 

Compute Tw (WCET)  

Tw < A? 
YES 

Context 
bound = CB 

NO 
CB++; 

A = CB∙α  

Loop terminates if ISR services the interrupt in time less than α 
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Model occurrence of 
interrupt points as 

“function calls” and 
bound the number of 
these “function calls” 

(using a global counter) 

TASK ISR 
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 Common operation in cryptography, used for 
public-key encryption and decryption. 

 
 “What is ?” 
 
 Exponentiation is performed using square-

and-multiply, where the exponent is 
progressively divided by two, while the base 
is progressively squared. 
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(b) Basis paths 
x1, x2, x3 
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(c) Additional 
path x4 

x1 = (1, 1, 0, 0, 1, 1, 0, 0, 1) 

x2 = (1, 0, 1, 1, 1, 1, 0, 0, 1) 

x3 = (1, 1, 0, 0, 1, 0, 1, 1, 1) 

 

x4 = (1, 0, 1, 1, 1, 0, 1, 1, 1) 

(d) Vector 
representations 

Edge labels indicate 
Edge IDs and positions 
in vector representation 

x4 = x2 + x3 – x1  



x is O(b max) 

μmax bounds mean 
perturbation to basic 
block timing based on 
which path it lies on 

TRUE DISTRIBUTION 

PREDICTED DISTRIBUTION 

Execution time 
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 LM3S8962 
 32 Bit ARM 

Cortex M3 
 5 stage pipeline 

 UART interface 
to iRobot Create 

 No cache 
 No OS 
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 ADXL-322 
accelerometer 

 iRobot sensors 
 Buttons 

 Bumpers 

 Cliff sensors 
 Use ISRs for 

accelerometer and 
sensor 
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Buttons 

Accelerometer 

Bumpers 

Luminary Micro 
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 Test suite are test cases that drive the 
program along basis paths in sequential code 

 Each test case describes initial values for 
variables and the points where an interrupt 
should happen 
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Hardware Interrupt 

Can be modeled by 
setting a GPIO pin to 

high voltage, and wiring 
that high voltage to 
another GPIO pin. 



 

Software Interrupt 
 Can be modeled by 

embedding the ARM 
assembly instruction, 

, in the code. 
 Modify the interrupt 

vector table to include our 
interrupt handler. 
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Vector Table in Startup.s 



We forced interrupts through software. 
 
 Overhead for the  call will add to context 

switch overhead. 
 Programs timed with  

Timer wraps around after 16,777,261 cycles 
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Upper bound 
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 With measurements, assign weights to edges 
in control-flow graph of sequential code 

 Use weights to predict runtimes for other 
arbitrary inputs and interleavings 
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Name Lines of 
Code 

Nodes in 
CFG 

Edges in 
CFG 

Total 
number 
of paths 

Number 
of basis 

paths 

Context 
Bound 

Interrupt 
Inter-
arrival 
Time 

modexp 60 60 70 500 12 1 1ms 

iRobot-1 210 55 60 33 5 1 1ms 

iRobot-2 230 141 160 3362 17 1 1ms 

iRobot-3 230 97 108 1281 10 2 50μs 

iRobot-4 280 213 244 33728 30 1 1ms 

iRobot-5 250 179 206 65088 27 1 1ms 
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 Under a certain set of reasonable 
assumptions, GAMETIME can be used to 
predict times for interrupt-driven programs. 

 Ongoing/Future work 

 Extend to other scheduling strategies. 

 Expand evaluation to larger benchmarks with 
several ISRs. 

 Analysis of energy consumption. 
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