A Theory of Abstraction for Arrays

Steven German

IBM T.J. Watson Research Center

October 2011

1 November 10, 2011

The Problem of Verifying Systems with Arrays

e Large arrays are often a barrier to verifying hardware designs
e Many previous approaches to abstracting arrays
e Abstracting arrays over a bounded time interval

— Many approaches, including: Velev et al 1977; Ganai et al 2004 and 2005;
Manolios et al 2006

e Prefer methods that:

— Build unbounded-time sequential models

— Are fully automatic
e Most directly related previous approach by Bjesse [FMCAD 2008|
e Limitations of previous approach

— No reduction when latency from array read to output is unbounded

— Clock gating introduces unbounded latency

2 November 10, 2011

New Results of This Paper

e New mathematical principle for abstraction of arrays

— New principle allows unbounded latency from array read to output
— Based on Small Model Theorem for a word-level logic with arrays

— Previous approaches are based on principle of overapproximating behavior
e Automatic algorithm for constructing abstract models

— Algorithm can build small abstract models for complex industrial designs
e Abstract models are sound and complete for safety properties
e To obtain these results, need to develop mathematical theory

e Details are in a longer version of paper, available from author

3 November 10, 2011

Traditional Abstract Models of Arrays

Modeled Modeled address: Normal array semantics

Unmodeled address: Nondeterministic value

Modeled

1. Replace array with smaller array that overapproximates
e Sound for safety properties

2. Restrict safety property to cases where modeled addresses are read

p = modeled — p

4 November 10, 2011

Unbounded Latency

e Bjesse 2008 shows how to define modeled(k) to mean

“k cycles in past, a modeled address was read”

— Example: modeled(2) N modeled(3) — p

— Solution for bounded latency

e For unbounded latency, not helpful to use

“Array reads at all times in past were to modeled addresses”

— Only true in unabstracted model

e New idea: Define a formula that means

“Output at current time does not depend on reading unmodeled array

addresses at any time in past”

) November 10, 2011

A New Approach to Array Abstraction

e Read, write to modeled addresses have normal semantics

e Choose modeled addresses nondeterministically (as in Bjesse 2008)
e Read to unmodeled addresses returns special value L

e Value L propagates according to semantic rules

e Property p ==$» p+# 1 — p=true

e Sound provided:

At all times, For all inputs,

Number of array addresses p depends on < Number of modeled addresses

e If there is a counterexample to safety property p, some nondeterministic choice

of modeled addresses finds the counterexample

e Goal of talk is to make these ideas more clear

6 November 10, 2011

Steps to Realize New Approach

1. Define mathematical meaning of dependence of a signal on an array address

2. Give automatic method for determining that at all times, for all inputs,
signal p depends on < n array addresses

3. Show that the proof method is sound

e Mathematics is different from traditional approach, where soundness follows

easily from overapproximate behavior on ummodeled addresses

7 November 10, 2011

A Term Logic with Arrays

Two kinds of expressions: signal expressions and array expressions.

e Signal expressions

1. Signal variable
— Represents word level signal

2. op(ey,...,er), where eq, ..., ey are signal expressions
— Represents block of combinational logic

3. mux(control, data;, datays), where control, data;, data, are signal

expressions. Use data forwarding properties in abstract models.

4. aladdr], where a is an array expression and addr is a signal expression.
e Array expressions

1. Array variable

2. write(a, addr, value), where a is an array expression and addr, value are

signal expressions

8 November 10, 2011

Signal and Array Values

e Finite set of signal values (word-level), V

e Bottom value, L &€ V, represents subscripting array out of range
e Extended set of signal values, V™ =V U{L}

e Set of array values, V' — V'

9 November 10, 2011

States

A state o is a function mapping all signal and array variables to values.

e For signal variable s, o(s) € V
e For array variable a, o(a) € (V — V)

e States are used to represent initial conditions of systems

10 November 10, 2011

Semantics of Expressions

The semantics of expressions maps a state and an expression to a value.

e For signal expression se, ofse] € V'

e For array expression ae, ofae] € (V — V)

e Purpose of semantics is to allow reasoning about system with reduced arrays
e Reading an array outside its domain produces bottom value |

e Writing an array to an address in V' outside domain of array, does not change

value of array
e Writing an array with address L causes all elements of array to be L
e Operator expression op(ey, . .., €,) produces output L if any input is L

e Multiplexor mux (e, es, e3) produces output L if control input ey is L or

selected input ey, e3is L

11 November 10, 2011

Operational Semantics

e A system M is defined by state variables and next-state expressions

N (s) is the next-state expression for state variable s

e Define s* to be an expression for state variable s at time &

SOZS

s* is k" expansion of A/(s)

e Value of s at time & in initial state o is o[[s"]

12 November 10, 2011

Checking Safety Properties

e System M

e Safety property represented by output signal p (p = 1 iff property is true)
e Let 7 be a set of states

e Safety property p holds over all initial states in 7 iff
Vo e T,VE>0: op’] =1
e This check corresponds to model checking the design on arrays of original size
— Construct circuit representation of o[[p*] using the next-state expressions

e We will show how to check safety properties over arrays of a smaller size

13 November 10, 2011

Essential Array Indices

Depending on the state, some indices of an array do not need to be evaluated
e Example: Let E be the expression write(write(a, el, a[l]), €2, al2]) |f]
It ollf] = ole2] = {/, 2}
it ollf] # ole2l Aol f] = olel] = {f, 1}
It ol f] # ole2] Nolf] # olel] = {f}

In every state, set of needed index expressions is an element of the set

S = {{f}7 {f7 1}7 {f7 2}}

For general case, we can define a function

e Essential Indices, eindx(ezp, o, array variable) — {array indices} CV

— Array indices that must be read from array_variable to evaluate exp in o

e Ildea of Small Model Theorem
For any state o, no matter how large the array a in o, there exists a state o’

where a has size 2, and ¢'[E] = o[E]

14 November 10, 2011

Small Model Using Essential Indices

The semantics oexp] and the function eindx(exp, o, a) have the following

relationship:

Lemma. For all exp, o, a, there exists a state ¢’ such that
e 0/ <o

e For all array variables a, dom(c'(a)) = eindx(exp, o, a)

o o'lexp| = olexp|

e The state ¢’ is a small model for the value of expression exp in state o

Definition. A state o’ is called a substate of o, written ¢’ < o iff

e For all signal variables s, 0/(s) = o(s), and

e For all array variables a, ¢'(a) C o(a)

15 November 10, 2011

Checking Safety Properties with Small Arrays

e Let 7 be a set of states and a an array variable such that a has size n for all
states in 7

o Let m be

- k
— <
m = max max leindx(p”, 0, a)|] < n

Vo € T, Vk > 0, there is a state o’ where a has size m and o'[p*] = o[p"]

o Let 7' be the set of substates of states in 7 where a has size m
e Assume for all initial states in 7, that p is evaluated without subscript errors

e Then, (p=1) is always true in executions from initial states in 7°

iff (p =1V p= 1) is always true in executions from initial states in 7'
e Model where array a has size m is sound and complete for safety property p

e See conference paper for proof

16 November 10, 2011

Size of the Abstract Model

e The function Max max leindx(p”, o, a)| is difficult to compute!
> o

for a fixed k

e Case splitting overapproximates max |eindx(p”, o, a)
o

e Example: Let E be the expression write(write(a, el, a[l]), €2, al2]) |f]
It olf] = ole2] = {f, 2}
it ollf] # ole2l Aol f] = olel] = {f, 1}
it ollf] # ole2] Aol f] # olel] = {/}
In every state, set of index expressions is an element of the two-level set

S = {{f}7 {f7 1}7 {fv 2}}

e The set S overapproximates eindx Vo ds € S : eindx(F, o, a) C o(s)

e Recursive algorithm constructs the two-level set for any expression

e A fixed point computation can find a set of expressions that overapproximates

the largest set of index expressions over the sequence p°, p', p?, ...

17 November 10, 2011

Industrial Examples

e Implementation is in development

e Preliminary results with algorithm show reduction in cases that could not be

reduced by previous methods

e Set of 255 examples not solvable in 24 hours by other methods

— Reduced some arrays in 85 examples (33%)

— Completely solved 33 examples in < 2 hours

18 November 10, 2011

Sequential Equivalence of Systems with Arrays

e Due to physical limits, designers may split large array into smaller arrays
e In simple cases, new design has arrays with same number of rows, fewer columns

e Harder case is when new design has array with different number of rows

19 November 10, 2011

Original
Model

|

|

Reduced
Model

|

16

Original
Array
1024
16 64 64
1t 1t
1
1.
1

Original Model: 32912 registers

Reduced Model:

401 reqisters

Summary

e New theory of array abstraction based on Small Model Theorem
e Reduced size of arrays is computed automatically by static analysis
e Early experimental results are encouraging

e Planned Improvements
— Improve the accuracy of the array size estimate

e Longer version of paper is available

21 November 10, 2011

Extra Slides

22 November 10, 2011

Automatic Array Abstraction [Bjesse 2008]

e Define modeled (k) to mean

"k clock cycles ago, a modeled address read was read from array”
e Use abstraction-refinement to decide values of £ needed to prove property p

e The modeled addresses are chosen nondeterministically at start of each run

1
1

modeled(3) — p

e Limitations

— Many designs have unbounded latency from array read to output

— Abstraction-refinement uses long runtimes in many examples

23 November 10, 2011

Semantics

1. o[v] = o(v), where v is a signal variable.

where OP is the interpretation of op
1L if for some i, oe;]| =

{ OP(clei],...,colen]), if olle;] # L, fori=1,...,n,

O'[[@Q]] if o €1

=1
3. o[muzx (e, es e3)] = { oles] if 0%61] =

| if o 61]%{071}
(lal)(ole]) if ofe] € D(a, o)
4. olale]] = { n if ole] & D(a, o)

5. ola] = o(a), where a is an array variable.

6. o|write(a, ey, es)] =

(ola]) [oe1] < oes]] if ofei] € D(a, o)
olla] if olei] € V —D(a, o)
bottom(a, o) if ofer] = L

24 November 10, 2011

Substates

Definition. A state o’ is called a substate of o, written ¢’ < o iff

e For all signal variables s, 0/(s) = o(s), and

e For all array variables a, ¢’(a) C o(a)

25 November 10, 2011

Systems

A system M has the form (S,Z, N, O, &)

e S set of state variables

e 7 set of input variables

o N next-state expressions N:S— eTPTressions
e () set of output variables

e £ output expressions

26 November 10, 2011

Approximating Over All States

e Want to compute an overapproximate value for max, |eindx(e, o, a)|

e Define a function ¢(expression, array variable) — {sq,...,s,},

where the s; are sets of expressions.
e We call S ={s1,...,5s,} atwo-level set.
e Each s; € ¢(e,a) is a set of possible expressions for the values of eindx(e, o, a)
e For all o, ds; € ¢(e,a) : eindx(e,0,a) C o(s;)

e Vo : |eindx(e,0,a)| < ||o(e, a)

where |[{s1, ..., s, }|| = max; |s;|, maximum size of element in {sy,...,s,}

27 November 10, 2011

Definition of ¢

Define X WY ={zUy |z e X,y Y}

¢(v,a) = {0}, if v is a signal variable or an array variable

¢(c,a) = {0}, if ¢ is a constant

[ob,a)Wole,a) W {{e}} if root(b) = a
Plel, a) = { ¢(b,a) W ¢(e,a) otherwise

olopler, ... en),a) = ¢le,a)W...do(e,,a)
gb(mux(el? €2, 63)? a) — <¢<617 CL) S gb(e?v CL)) U (¢<€17 CL) S ¢<€37 CL))
¢<wmt6<bv €1, €2>7 CL) - <¢<€17 CL) & ¢<€27 a’)) U <¢<€17 CL) & ¢<b7 a))

28 November 10, 2011

Building Abstract Model

e Original design over word-level values V' == Design over V U { L}

e Add boolean v field to each signal

val ue

val ue = v

e v = true represents values in V; v = false represents |

e Concern about adding many bits to model
— Work with word level values

e Replace blocks of combinational logic and muz with versions over V U {1}
— Abstract models do not need to have _L version of each gate

e Safety property p
p — p.v — p.value

29 November 10, 2011

Abstract Arrays

e Each row of abstract array has address field and v field

val ue
val ue addr ess “L“ val ue
val ue ‘ val ue
val ue addr ess IT“ val ue
val ue

e Address field is set nondeterministically in initial state

e Read and write operations search the address field

30 November 10, 2011

Early Results on Industrial Examples

e Reductions on 401 industrial examples.

e Algorithm reduced arrays in 187 examples.

e Implementation in development — some examples not fully processed.

Reduced Number of Rows
Original Rows| 1| 2 3| 4/6| 8|> 8
21144
8 1 1
16| 14| 13|55
321 371 125
39| 24
48 | 24
64| 46| 29 20|18
128| 411581423111
256 3| 40/10
1024 | 3 10 2

31

November 10, 2011

Reconfigured Arrays Example

e Reconfigured large array into two smaller arrays

e Problem is to verify sequential equivalence

e Original design has array with 1024 rows X 16 columns

e New design has two arrays, each 128 rows x 64 columns

e Array addressing, data alignment and staging logic substantially redesigned

e Design uses clock gating, so method of Bjesse does not reduce arrays

32 November 10, 2011

