
Parameterized Verification of Deadlock Freedom in
Symmetric Cache Coherence Protocols

Brad Bingham1 Jesse Bingham2 Mark Greenstreet1

1University of British Columbia, Canada

2Intel Corporation, U.S.A.

November 2, 2011

FMCAD

Outline

1 What is Deadlock-Freedom?

2 Mixed Abstractions for Parameterized Systems

3 Tightening Mixed Abstractions

4 Results

Bingham, Bingham, Greenstreet (UBC, Intel) Parameterized Deadlock Freedom November 2011 2 / 20

The Problem: Deadlock-Freedom

reachable

quiescent

init

“Is it deadlock-free?” ≡ “Is there a path from each reachable state to
a quiescent state?”

“quiescent” ≡ “nothing is pending”
In CTL: AGEFq (more generally, AG (p → EFq))
Cheap to model check; rules out some liveness bugs; avoids fairness

Bingham, Bingham, Greenstreet (UBC, Intel) Parameterized Deadlock Freedom November 2011 3 / 20

Overview: Parameterized Systems

A system S = (S , I ,T) is a tuple of states S , initial states I and
transitions T

A parameterized system is a mapping from the naturals to systems.
S(N) = (S(N), I (N),T (N)).

In cache coherence protocols, the parameter might correspond to
“number of caches”, “number of address”, “length of some buffer”,
etc. In our examples, it’s “number of caches”.

Verifying a safety property of S(N) for all N is algorithmically
undecidable.

Previous work addresses this problem. One promising approach is
based on compositional reasoning (CEGAR + Human Ingenuity).

[McMillan99], [Chou+04], [O’Leary+09]

Bingham, Bingham, Greenstreet (UBC, Intel) Parameterized Deadlock Freedom November 2011 4 / 20

Parameterized Cache

cache 2 cache N

Interconnect

Symmetric

directory

cache 1

Bingham, Bingham, Greenstreet (UBC, Intel) Parameterized Deadlock Freedom November 2011 5 / 20

Parameterized Cache Abstraction

cache 2

Interconnect

"Others"

directory

cache 1

Overapproximates
behavior of caches
3, ..., N;
no local state

Finite-state, overapproximate abstraction of S(N) for all N > 2

Suitable for model checking

Bingham, Bingham, Greenstreet (UBC, Intel) Parameterized Deadlock Freedom November 2011 6 / 20

Abstraction Relation

Reachable states: Reachable states:

Abstract System AConcrete System S(N)

Bingham, Bingham, Greenstreet (UBC, Intel) Parameterized Deadlock Freedom November 2011 7 / 20

Abstraction Relation

concretization

Reachable states: Reachable states:

Concrete System S(N) Abstract System A

Overapproximation:

X Abstraction allows us to infer concrete safety properties ,

Bingham, Bingham, Greenstreet (UBC, Intel) Parameterized Deadlock Freedom November 2011 7 / 20

Abstraction Relation

1

1

2

3
2

3

concretization

Reachable states:

Quiescent states:

Reachable states:

Quiescent states:

Concrete System S(N) Abstract System A

Overapproximation:

X Abstraction allows us to infer concrete safety properties ,
× Cannot infer concrete deadlock-freedom properties /

Paths don’t (necessarily) concretize

Bingham, Bingham, Greenstreet (UBC, Intel) Parameterized Deadlock Freedom November 2011 7 / 20

Underapproximate Transitions

Suppose (s, s ′) is an abstract transition where every reachable state in the
concretization of state s has a path to some state in the concretization of
state s ′.
This transition is called underapproximate.

Reachable states: Reachable states:

Concrete System S(N) Abstract System A

underapprox

concretization

concretization

s s
′

Overapproximation:

Bingham, Bingham, Greenstreet (UBC, Intel) Parameterized Deadlock Freedom November 2011 8 / 20

Mixed Abstraction

A Mixed Abstraction[LT88][Dams+97] is like an abstract transition
system, but has two sets of transitions: overapproximate (O) and
underapproximate (U).

Model checking AG(p → EF q) in mixed abstraction M: for each
O-reachable p-state, find a U-path to some q-state.

U s’O O

U−path

O

O−path

Us

initial state p−state q−state

Theorem

If M |= AG(p → EF q), then S(N) |= AG(p → EF q).

Bingham, Bingham, Greenstreet (UBC, Intel) Parameterized Deadlock Freedom November 2011 9 / 20

Insufficiency

What if model checking fails?

U

no U transitions out of s’
NOT a q−state;

s’O O

U−path

O

O−path

initial state

s

p−state

U

1 Perhaps O is too weak

State s has no reachable concretization in S(N)
Remedied by strengthening O (covered by previous literature in
parameterized safety)

2 Perhaps U is too strong

A U-path from s gets “stuck” before a q-state is reached
Proving that transitions are underapproximate is not addressed by
extensive previous work; this is our focus

Bingham, Bingham, Greenstreet (UBC, Intel) Parameterized Deadlock Freedom November 2011 10 / 20

Strategy

Assume a symmetric, parameterized system S(N) expressed with
guarded commands (or “rules”); assume an overapproximate
abstraction of S(N)

Some restrictions to syntactic form

Use the abstraction as a starting point for the mixed abstraction

Approach: Use syntactic analysis to find “trivially” underapproximate
transitions U

Then: Prove selected guarded commands of O are in fact
underapproximate by leveraging symmetry and model checking the
mixed abstraction.

The approach depends on the syntactic form of the rule
All of our methods rely on “path symmetry”

Bingham, Bingham, Greenstreet (UBC, Intel) Parameterized Deadlock Freedom November 2011 11 / 20

Concrete States

global boolean variables

ranging over {T, F}×

×

×

×

L[N]

×

L[1]

L[2]

×

G

P

L[3]
L[i] symmetric local variables

ranging over {T, F}

parametric variables, ranging over

{1, 2, ..., N}

Bingham, Bingham, Greenstreet (UBC, Intel) Parameterized Deadlock Freedom November 2011 12 / 20

Abstract States

HIDDEN

global boolean variables

ranging over {T, F}×

×

×

×

L[N]

×

L[1]

L[2]

×

G

P

L[3]
L[i] symmetric local variables

ranging over {T, F}

parametric variables, ranging over

{1,2,Other}{1, 2, ..., N}

Bingham, Bingham, Greenstreet (UBC, Intel) Parameterized Deadlock Freedom November 2011 13 / 20

(Symmetric) Guarded Commands

×

×

×

×

×

L[2]

L[3]

L[N]

×

G ∈ A

L[1] ∈ B

ptr = 1

⇒ CommandGuard

×

×

×

×

×

L[2]

L[3] ∈ B

L[N]

×

G ∈ A

L[1]

ptr = 3

×

×

×

×

×

L[2]

L[N]

×

G′

ptr = 3

rule r3 fires

L[1]

L′[3]

×

×

×

×

×

L[2]

L[3]

L[N]

×

G′

L′[1]

ptr = 1

rule r1 fires

Bingham, Bingham, Greenstreet (UBC, Intel) Parameterized Deadlock Freedom November 2011 14 / 20

(Symmetric) Guarded Commands

HIDDEN BY ABSTRACTION

×

×

×

×

×

L[2]

L[3]

L[N]

×

G ∈ A

L[1] ∈ B

ptr = 1

×

×

×

×

×

L[2]

L[N]

×

G′

L[1]

L′[3]

×

×

×

×

×

L[2]

L[3] ∈ B

L[N]

×

L[1]

ptr = 3 ptr = 3

×

×

×

×

×

L[2]

L[3]

L[N]

×

G′

L′[1]

ptr = 1

rule r3 fires

G ∈ A

rule r1 fires

underapprox! not sure...

Bingham, Bingham, Greenstreet (UBC, Intel) Parameterized Deadlock Freedom November 2011 14 / 20

Abstracted Local State: L[ptr] ∈ B ∧ G ∈ A

×

×

×

×

×

L[2]

L[3] ∈ B

L[N]

×

L[1]

G ∈ A

×

×

×

×

×

L[2]

L[N]

×

G′

L[1]

L′[3]

ptr = 3 ptr = 3

rule r3 fires

Bingham, Bingham, Greenstreet (UBC, Intel) Parameterized Deadlock Freedom November 2011 15 / 20

Abstracted Local State: L[ptr] ∈ B ∧ G ∈ A

HIDDEN BY ABSTRACTION

×

×

×

×

×

L[2]

L[3] ∈ B

L[N]

×

L[1]

G ∈ A

×

×

×

×

×

L[2]

L[N]

×

G′

L[1]

L′[3]

ptr = 3 ptr = 3

×

×

×

×

×

L[2]

L[N]

L[1]

G ∈ A

×

ptr = 3

L[3] /∈ B

indistinguishable in abstraction rule r3 fires

Bingham, Bingham, Greenstreet (UBC, Intel) Parameterized Deadlock Freedom November 2011 15 / 20

Abstracted Local State: L[ptr] ∈ B ∧ G ∈ A

HIDDEN BY ABSTRACTION

×

×

×

×

×

L[2]

L[3] ∈ B

L[N]

×

L[1]

G ∈ A

×

×

×

×

×

L[2]

L[N]

×

G′

L[1]

L′[3]

ptr = 3 ptr = 3

×

×

×

×

×

L[2]

L[N]

L[1]

G ∈ A

×

ptr = 3 ptr = 1 ptr = 1

L[3] /∈ B

path symmetry

×

×

×

×

G ∈ A

×

L[2]

L[3]

L[N]

×

L[1]

×

×

×

×

G ∈ A

L[2]

L[3]

L[N]

×

L[1] ∈ B

×

Model Checking Mixed Abstraction

indistinguishable in abstraction

implied path

rule r3 fires

Bingham, Bingham, Greenstreet (UBC, Intel) Parameterized Deadlock Freedom November 2011 15 / 20

Abstracted Universal Quantifier: G ∈ A ∧ ∀i. L[i] ∈ B

×

×

×

×

G ∈ A

×

L[2] ∈ B

L[3] ∈ B

L[N] ∈ B

×

P

L[1] ∈ B

r1 fires

×

×

×

×

G′

×

L[2]

L[1]

L[N]

×

P

L[3]

Bingham, Bingham, Greenstreet (UBC, Intel) Parameterized Deadlock Freedom November 2011 16 / 20

Abstracted Universal Quantifier: G ∈ A ∧ ∀i. L[i] ∈ B

HIDDEN BY ABSTRACTION

×

×

×

×

G ∈ A

×

L[2] ∈ B

×

×

×

×

×

G ∈ A

×

L[2] ∈ B

L[3] ∈ B

L[N] ∈ B

×

P

L[1] ∈ B

r1 fires

L[1] ∈ B

P

×

×

×

×

G′

×

L[2]

L[1]

L[N]

×

P

L[3]

L[N] /∈ B

L[3] /∈ B

indistinguishable in abstraction

Bingham, Bingham, Greenstreet (UBC, Intel) Parameterized Deadlock Freedom November 2011 16 / 20

Abstracted Universal Quantifier: G ∈ A ∧ ∀i. L[i] ∈ B

HIDDEN BY ABSTRACTION

×

×

×

×

G ∈ A

×

L[2] ∈ B

×

×

×

×

×

G ∈ A

×

L[2] ∈ B

L[3] ∈ B

L[N] ∈ B

×

P

L[1] ∈ B

r1 fires

L[1] ∈ B

P

×

×

×

×

G′

×

L[2]

L[1]

L[N]

×

P

L[3]

×

×

×

×

G ∈ A

×

L[2]

L[3]

L[N]

×

P

L[1]

×

×

×

×

G ∈ A

L[2]

L[3]

L[N]

×

P

L′[1] ∈ B

×

L[N] /∈ B

L[3] /∈ B

indistinguishable in abstraction
Model Checking Mixed Abstraction

path symmetry

implied path

Bingham, Bingham, Greenstreet (UBC, Intel) Parameterized Deadlock Freedom November 2011 16 / 20

Case Studies

German and Flash cache coherence protocols

Proved “For any number of caches, the system can always clear the
communication channels and directory is not in a waiting state”

Overapproximate transitions from Murϕ models of strengthened
abstractions borrowed from [Chou+04]

Underapproximate transitions proven “on-demand”

Some transitions are trivially underapproximate by syntactic analysis
Others are proven underapproximate with our methods, when the model
checker indicates a rule will help, i.e., enabled transitions of O at s ′

U

no U transitions out of s’
NOT a q−state;

s’O O

U−path

O

O−path

initial state

s

p−state

U

Bingham, Bingham, Greenstreet (UBC, Intel) Parameterized Deadlock Freedom November 2011 17 / 20

Automation?

Can this process be automated?

YES: Detection of a “useful” rule to prove underapproximate

YES: Application of model checking for the appropriate reasoning
(depends on the form of the guard)

UNSURE: What to do if our tricks fail

HOWEVER: When our tricks don’t work, it’s a sign that the rule may
NOT be underapproximate.

WHAT THEN?: Perform some manual strengthening similar to
previous work!

Bingham, Bingham, Greenstreet (UBC, Intel) Parameterized Deadlock Freedom November 2011 18 / 20

Future Work

Automation: As mentioned, in a theorem proving environment.

Automatically extract from O the weakest U supported by our methods

Other Problems: Parameterize over addresses? (OpenSPARC)

Still symmetric, but guards of rules take different syntactic form

Other Properties: Consider request req and response resp:

Prove “When req is outstanding, there exists a path to resp”
AG(req-pend → EF resp)

Bingham, Bingham, Greenstreet (UBC, Intel) Parameterized Deadlock Freedom November 2011 19 / 20

Wrap-Up

Presented a tractible method for proving parameterized
deadlock-freedom

Builds directly on previous work in parameterized safety
([McMillan99,Chou+04])

Expectation: Method offers low-hanging deadlock-freedom result
following application of these methods, leveraging a tight
overapproximation

Thank-you! Questions?

Bingham, Bingham, Greenstreet (UBC, Intel) Parameterized Deadlock Freedom November 2011 20 / 20

	What is Deadlock-Freedom?
	Mixed Abstractions for Parameterized Systems
	Tightening Mixed Abstractions
	Results

