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Growing number of cores (W. Tichy - Keynote ICST 2011)

AMD Opteron 12 cores Sun Niagara3 16 cores

Intel 8 cores : !
~1.8 Bill. T. on 2x3.46cm?2 ~1 Bill. T. on 3.7cm?
~2.3 Bill. T. on 6.8cm? ll. 1. on £x3.40cm ill. T. on 3.7cm

Intel SCC 48 cores
~1.3 Bill. T. on 5.6cm?

Intel 4 cores
~582 Mio. T. on 2.86cm?2

- verify cores

Intel Research 80 c :venfy ]
~100 Mio. T. on 2.7. llnterconnect 064 64 cores

Intel 2 cores
~167 Mio. T. on 1.1cm?




Networks-on-Chips: Example 1, HERMES

The topology:
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« Two dimensional mesh




Networks-on-Chips: Example 1

The routing function:
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« XY: simple deterministic routing algorithm
» First route to the destination column and then to the correct row
* No cyclic dependencies and thus deadlock-free




Networks-on-Chips: Example 1

The high-level protocol:

req!

walit active

>«

active

rsp?

Master

« Masters send requests and wait for responses
« Slaves produce responses when receiving requests
» Deadlock-free protocol




Networks-on-Chips: Example 1

The high-level protocol:

active

>«

rsp?

Master

 No message dependencies
rsp < req A req L rsp




Networks-on-Chips: Example 1

Network component Deadlock-free?

Topology 8

Routing Function

High-level protocol

Message Dependencies

Deadlockfree system




Networks-on-Chips: Example 1

Core distribution:

Slave Slave Slave
Master . Master Master
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Networks-on-Chips: Example 1

 |Is the system deadlock-free ?
* No if at least four columns, yes otherwise.

Slave Slave Slave
Master . Master Master

Response >
e 6 o o
Request a

Green requests waits
for blue reponses



Networks-on-Chips: Example 1

Network component Cause of deadlock?

Topology
Routing Function

High-level protocol

Message Dependencies

Deadlockfree system




Networks-on-Chips: Example 2, Spidergon from STMElectronics

Topology High-level protocol
: <> req

Routing logic

RelAd = (dest - current ) mod 4 * N
if RelAd = 0 then
stop

elseif 0 < RelAd <= N then
go clockwise

elseif 3*N <= RelAd <= 4*N then
go counter clockwise

Design by STMicroelectronics

Simple shortest path routing algorithm
Regular for an even number of nodes
Packet, circuit, or wormhole switching

else
go across

endif




Networks-on-Chips: Example 2

Network component Cause of deadlock
Routing Function e




Networks-on-Chips: Example 2

 |Is the system deadlock-free ?

Send

Packets
dle cores




Networks-on-Chips: Example 2

 Is the system deadlock-free ?
* Yes ! None of the dependencies in the right upper quarter occur.

Send

Packets
dle cores




Networks-on-Chips: Example 2

 |Is the system deadlock-free ?

Send

Packets
dle cores




Networks-on-Chips: Example 2

Network component

Deadlock-free?

Topology
Routing Function

High-level protocol

Message Dependencies

Core Distribution

Network size
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Deadlockfree system Oe




Networks-on-Chips: Example 3

Network component Deadlock-free?

Topology

00
©

QOO0
00000000

Routing Function
High-level protocol
Message Dependencies
Core Distribution
Network size

Queue sizes

Counter information

Virtual channel allocation

Deadlockfree system




Confusing ...

* We need tools to (quickly) check for deadlocks
— In large systems
— with message dependencies
— with the topology, routing and core behavior in one model
— able to handle parameters such as queue size




Outline

* Intel's micro-architectural description language
— XxMAS language
— Capturing high-level structure and message dependencies

« Deadlock verification for xMAS
— Definition of deadlocks
— Labelled waiting graph
— Feasible logically closed subgraph

« Conclusion and future work




Intel's abstraction for communication fabrics
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xMAS - Executable MicroArchitectural Specifications

I T

source function fork join merge switch

* Fair sinks and sometimes sources
« Diagram is formal model
* Friendly to microarchitects




xMAS example

req,rsp

req




xMAS example
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xMAS example
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xMAS example

req,rsp
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xMAS example

req,rsp
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xMAS example

req,rsp

req




Outline

* Intel's micro-architectural description language
— XxMAS language
— Capturing high-level structure and message dependencies

« Deadlock verification for xMAS
— Definition of deadlocks
— Labelled dependency graph
— Feasible logically closed subgraph

« Conclusion and future work




Formal definition of "deadlock” in xMAS

* Intuition is a "dead" channel
« Formal definition based on Linear Temporal Logic
— Predicate logic

— Temporal operators "eventually” (<>) and "globally" (
* Channel cis dead iff

O(cardy A O=ce.trdy)
k

N
N

/

FIFO of size k FIFO of size k




xMAS example

dead channel

___ requests

req

—
req

* Inject two requests in g0
* Fork creates two copies
* One pairis sunk




General approach for deadlock detection in xXMAS networks

« Define Blocking Equations for all components

— Equations capture the reason why a component is idle or
blocking

« Build a labelled waiting graph for each queue
— Labels correspond to the equations

— Graph captures the topology, i.e., the dependencies between
the xXMAS components

« Search for a feasible logically closed subgraph
— Corresponds to a deadlock situation
— Feasibility checked using Linear Programming
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Blocking Equations for a join

« 2 cases
— output is blocked
— the other input is idle

 Block(u) = Idle(v) + Block(w)

requests

—  [esponses

req,rsp —>‘

reqg




Blocking Equations for a join

« 2 cases
— output is blocked
— the other input is idle

We need to know when a channel is idle !

 Block(u) = Idle(v) + Block(w)

requests

—  responses

req,rsp (O1() —>|

reqg




Idle equations for a fork

« Afork output is idle if the input is idle or the other output is blocked

e Idle(w) = Idle(u) + Block(V)

requests

—  responses

req,rsp

reqg




General approach for deadlock detection in xXMAS networks

« Define Blocking Equations for all components

— Equations capture the reason why a component is idle or
blocking

 Build a labelled waiting graph for each queue
— Labels correspond to the equations

— Graph captures the topology, i.e., the dependencies between
the xXMAS components

« Search for a feasible logically closed subgraph
— Corresponds to a deadlock situation
— Feasibility checked using Linear Programming




Step 2 / labelled dependency graph (1)

start

— requests

—  responses
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q1
@_ 17 > 1

Noin

start with a message in g1 and visit the join




Step 2 / labelled dependency graph (2)

start

— requests

—  responses

rterSp b _'>|

req

@ 117 > 1

Block(u) = Idle(v) + Block(w) T~

analyse the join according to its Blocking Equation

we go forward to the merge and backward to the switch




Step 2 / labelled dependency graph (2)
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we assume fair sinks
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Step 2 / labelled dependency graph (2)

start

— requests

—  responses

req,rsp ()]() —+‘

req

Idle(u) = Idle(w)

backwards to the switch




Step 2 / labelled dependency graph (2)

start

— — requests
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backwards to the queue

note that we forgot the Block(w') case




Step 2 / labelled dependency graph (2)
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Step 2 / labelled dependency graph (2)
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Step 2 / labelled dependency graph (2)
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Step 2 / labelled dependency graph (2)
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General approach for deadlock detection in xXMAS networks

« Define Blocking Equations for all components

— Equations capture the reason why a component is idle or
blocking

« Build a labelled waiting graph for each queue
— Labels correspond to the equations

— Graph captures the topology, i.e., the dependencies between
the xXMAS components

» Search for a feasible logically closed subgraph
— Corresponds to a deadlock situation
— Feasibility checked using Linear Programming




Step 2 / logically closed subgraph 1
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Step 2 / logically closed subgraph 1

— requests

—  responses

req,rsp

req

src1 o[0]
@< @ <«

false qo.rsp =0

src2

@< @<

true mrg1




Step 2 / logically closed subgraph 1
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Step 2 / logically closed subgraph 2
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Step 2 / logically closed subgraph 2

— requests

—  responses
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Experimental Results
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With deadlocks: a 14x14 mesh with 3724 components in 6.05 seconds
Without deadlocks: a 14x14 mesh with 3724 components in 1.31 seconds




Experimental Results
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With deadlocks: a 28 ring with 477 components in 0.5 seconds
Without deadlocks: a 28 ring with 477 components in 6.6 seconds




Outline

* Intel's micro-architectural description language
— XMAS definition
— examples

« Deadlock verification for xMAS
— definition of deadlocks
— labelled dependency graph

— feasible logically closed subgraph

 Conclusion and future work




Conclusion and future work

* Tool to detect message dependent deadlocks
— Expressive language for routing, protocol, injection, etc.
— Intricate deadlocks
— Very efficient due to equations
— Necessary and sufficient for structural deadlocks
— Counterexamples

« Future work:
— Still need to be formally proven
— Composition/Hierarchy
» Check sub-networks first and then compose




Thanks !



Deadlock example 3

« Channels with three signals

— data, input ready, target ready
« Transfer cycle

— both input and target are "true"
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Networks-on-Chips: Example 1

Core distribution:
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Networks-on-Chips: Example 1
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* The system is deadlock-free!




