Hunting Deadlocks Efficiently
in Micro-Architectural Models of
Communication Fabrics

Freek Verbeek and Julien Schmaltz

Open Universiteit

www.ou.nl

. . oo S &
Radboud University Nijmegen g %
;I'OMINefe'c

Growing number of cores (W. Tichy - Keynote ICST 2011)

AMD Opteron 12 cores Sun Niagara3 16 cores

Intel 8 cores : !
~1.8 Bill. T. on 2x3.46cm?2 ~1 Bill. T. on 3.7cm?
~2.3 Bill. T. on 6.8cm? ll. 1. on £x3.40cm ill. T. on 3.7cm

Intel SCC 48 cores
~1.3 Bill. T. on 5.6cm?

Intel 4 cores
~582 Mio. T. on 2.86cm?2

- verify cores

Intel Research 80 c :venfy]
~100 Mio. T. on 2.7. llnterconnect 064 64 cores

Intel 2 cores
~167 Mio. T. on 1.1cm?

Networks-on-Chips: Example 1, HERMES

The topology:

N
i

B

Control
Logic

B

K
S

« Two dimensional mesh

Networks-on-Chips: Example 1

The routing function:

.

F

t

B

« XY: simple deterministic routing algorithm
» First route to the destination column and then to the correct row
* No cyclic dependencies and thus deadlock-free

Networks-on-Chips: Example 1

The high-level protocol:

req!

walit active

>«

active

rsp?

Master

« Masters send requests and wait for responses
« Slaves produce responses when receiving requests
» Deadlock-free protocol

Networks-on-Chips: Example 1

The high-level protocol:

active

>«

rsp?

Master

 No message dependencies
rsp < req A req L rsp

Networks-on-Chips: Example 1

Network component Deadlock-free?

Topology 8

Routing Function

High-level protocol

Message Dependencies

Deadlockfree system

Networks-on-Chips: Example 1

Core distribution:

Slave Slave Slave
Master . Master Master

b O B]

T

=

"=

« Masters on the odd/slaves on the even columns

FETEET

R E

Networks-on-Chips: Example 1

 |Is the system deadlock-free ?
* No if at least four columns, yes otherwise.

Slave Slave Slave
Master . Master Master

Response >
e 6 o o
Request a

Green requests waits
for blue reponses

Networks-on-Chips: Example 1

Network component Cause of deadlock?

Topology
Routing Function

High-level protocol

Message Dependencies

Deadlockfree system

Networks-on-Chips: Example 2, Spidergon from STMElectronics

Topology High-level protocol
: <> req

Routing logic

RelAd = (dest - current) mod 4 * N
if RelAd = 0 then
stop

elseif 0 < RelAd <= N then
go clockwise

elseif 3*N <= RelAd <= 4*N then
go counter clockwise

Design by STMicroelectronics

Simple shortest path routing algorithm
Regular for an even number of nodes
Packet, circuit, or wormhole switching

else
go across

endif

Networks-on-Chips: Example 2

Network component Cause of deadlock
Routing Function e

Networks-on-Chips: Example 2

 |Is the system deadlock-free ?

Send

Packets
dle cores

Networks-on-Chips: Example 2

 Is the system deadlock-free ?
* Yes ! None of the dependencies in the right upper quarter occur.

Send

Packets
dle cores

Networks-on-Chips: Example 2

 |Is the system deadlock-free ?

Send

Packets
dle cores

Networks-on-Chips: Example 2

Network component

Deadlock-free?

Topology
Routing Function

High-level protocol

Message Dependencies

Core Distribution

Network size

;

i,
1%

Deadlockfree system Oe

Networks-on-Chips: Example 3

Network component Deadlock-free?

Topology

00
©

QOO0
00000000

Routing Function
High-level protocol
Message Dependencies
Core Distribution
Network size

Queue sizes

Counter information

Virtual channel allocation

Deadlockfree system

Confusing ...

* We need tools to (quickly) check for deadlocks
— In large systems
— with message dependencies
— with the topology, routing and core behavior in one model
— able to handle parameters such as queue size

Outline

* Intel's micro-architectural description language
— XxMAS language
— Capturing high-level structure and message dependencies

« Deadlock verification for xMAS
— Definition of deadlocks
— Labelled waiting graph
— Feasible logically closed subgraph

« Conclusion and future work

Intel's abstraction for communication fabrics

A 4 A 4

H «

cX2

[—] 2 fabric

k f] K
iq2 cc2

agent Q

X > rsp
\\

xMAS - Executable MicroArchitectural Specifications

I T

source function fork join merge switch

* Fair sinks and sometimes sources
« Diagram is formal model
* Friendly to microarchitects

xMAS example

req,rsp

req

xMAS example

P

req,rsp

req

xMAS example

req,rsp

req

xMAS example

req,rsp

req

xMAS example

req,rsp

req

xMAS example

req,rsp

req

Outline

* Intel's micro-architectural description language
— XxMAS language
— Capturing high-level structure and message dependencies

« Deadlock verification for xMAS
— Definition of deadlocks
— Labelled dependency graph
— Feasible logically closed subgraph

« Conclusion and future work

Formal definition of "deadlock” in xMAS

* Intuition is a "dead" channel
« Formal definition based on Linear Temporal Logic
— Predicate logic

— Temporal operators "eventually” (<>) and "globally" (
* Channel cis dead iff

O(cardy A O=ce.trdy)
k

N
N

/

FIFO of size k FIFO of size k

xMAS example

dead channel

___ requests

req

—
req

* Inject two requests in g0
* Fork creates two copies
* One pairis sunk

General approach for deadlock detection in xXMAS networks

« Define Blocking Equations for all components

— Equations capture the reason why a component is idle or
blocking

« Build a labelled waiting graph for each queue
— Labels correspond to the equations

— Graph captures the topology, i.e., the dependencies between
the xXMAS components

« Search for a feasible logically closed subgraph
— Corresponds to a deadlock situation
— Feasibility checked using Linear Programming

General approach for deadlock detection in xXMAS networks

» Define Blocking Equations for all components

— Equations capture the reason why a component is idle or
blocking

« Build a labelled waiting graph for each queue
— Labels correspond to the equations

— Graph captures the topology, i.e., the dependencies between
the xXMAS components

« Search for a feasible logically closed subgraph
— Corresponds to a deadlock situation
— Feasibility checked using Linear Programming

Blocking Equations for a join

« 2 cases
— output is blocked
— the other input is idle

 Block(u) = Idle(v) + Block(w)

requests

— [esponses

req,rsp —>‘

reqg

Blocking Equations for a join

« 2 cases
— output is blocked
— the other input is idle

We need to know when a channel is idle !

 Block(u) = Idle(v) + Block(w)

requests

— responses

req,rsp (O1() —>|

reqg

Idle equations for a fork

« Afork output is idle if the input is idle or the other output is blocked

e Idle(w) = Idle(u) + Block(V)

requests

— responses

req,rsp

reqg

General approach for deadlock detection in xXMAS networks

« Define Blocking Equations for all components

— Equations capture the reason why a component is idle or
blocking

 Build a labelled waiting graph for each queue
— Labels correspond to the equations

— Graph captures the topology, i.e., the dependencies between
the xXMAS components

« Search for a feasible logically closed subgraph
— Corresponds to a deadlock situation
— Feasibility checked using Linear Programming

Step 2 / labelled dependency graph (1)

start

— requests

— responses

)

req

q1
@_ 17 > 1

Noin

start with a message in g1 and visit the join

Step 2 / labelled dependency graph (2)

start

— requests

— responses

rterSp b _'>|

req

@ 117 > 1

Block(u) = Idle(v) + Block(w) T~

analyse the join according to its Blocking Equation

we go forward to the merge and backward to the switch

Step 2 / labelled dependency graph (2)

rterSp b _'>|

start

join
_

req

Block(u) = Block(w)

)
4{
—

ﬁ‘

—{X|X}— requests

—{()|()}— responses
"4

T
4

req

SwW

q1
@ 117 > 1

\‘join

forwards to the switch - then the sink can never be blocked

we assume fair sinks

—
mrg?2

Step 2 / labelled dependency graph (2)

start

— requests

— responses

req,rsp ()]() —+‘

req

Idle(u) = Idle(w)

backwards to the switch

Step 2 / labelled dependency graph (2)

start

— — requests

qV join —0
] —

XX +\
— “Fp

U pr——

ﬁ _q

— responses

—

req q; req mrg2

req,rsp U —-»{

SwW

q1
@ 117 > 1

Idle(u) = Idle(w) . Empty(g2) \‘J:n
+\‘ g

backwards to the queue

note that we forgot the Block(w') case

Step 2 / labelled dependency graph (2)

start

join
—_—

req,rsp U —-»{

)
4{
u ’

ﬂ"

req

Idle(w) = Idle(u) . Idle(v)

backwards to the merge and branch

note branching is bad for us 0 <

mrg1

— — requests
\—(i

ﬂ

— responses

—

req

mrg?2

Step 2 / labelled dependency graph (2)

start

join
—_—

req,rsp

)
{
u ’

ﬁ

req

Idle(u) = Block(v) + Idle(w)

backwards to the merge and branch
to the source - idle if no type produced
to the fork

@< @<

true mrg1

— — requests
\—(i

ﬂ

— responses

—

req

mrg?2

Step 2 / labelled dependency graph (2)

start

join
—_—

req,rsp

)
4{
u ’

ﬁ

req

Idle(u) = Idle(w) . Empty(q0)

backwards to g0 and the source

src1 o[0]
@< @ <« o

false qo-rsp =0 frk

src2

@< @<

true mrg1

— — requests
\—?

ﬂ

— responses

—

req

mrg?2

Step 2 / labelled dependency graph (2)

start

— — requests

join —0
—_—
w)\ —
req,rsp | 4{ |
- —

req mrg?2

— responses

req

SwW

Block(u) = Block(w) . Full(g1)

forwards back to g1 and stop expansion :
q
® qi1.req > 1

+ .
join
SFC'I qO /.\ ql _ ql.s?;ze\

[
< < :
o false L A Fri \mrgz sink
4 [> @
false

src2) SW
o< @< =0

true mrg1

General approach for deadlock detection in xXMAS networks

« Define Blocking Equations for all components

— Equations capture the reason why a component is idle or
blocking

« Build a labelled waiting graph for each queue
— Labels correspond to the equations

— Graph captures the topology, i.e., the dependencies between
the xXMAS components

» Search for a feasible logically closed subgraph
— Corresponds to a deadlock situation
— Feasibility checked using Linear Programming

Step 2 / logically closed subgraph 1

— requests

— responses

req,rsp U —-»{

req

q1
@ 117 > 1

+ o
join
SFC'] qO /.\ ql _ qlus?:ze\

@< @ <

false Go-rsp =0 frk

src2

@< @<

true mrg1

Step 2 / logically closed subgraph 1

— requests

— responses

req,rsp

req

src1 o[0]
@< @ <«

false qo.rsp =0

src2

@< @<

true mrg1

Step 2 / logically closed subgraph 1

— requests

— responses

req,rsp U —->| |
——| I

req

+ @ —11-7¢d > 1
src o[0) / '\Oln
@< @ < /.\ e ® -
false qo.Tsp =0 frk ‘\, 2 sink

+ ® false >®

src2) SW
o~ L 2 Omp =0 not feasible

true mrg1 92

Step 2 / logically closed subgraph 2

— requests

— responses

req,rsp U —-»{

req

q1
@ 117 > 1

+ o
join
SFC'] qO /.\ ql _ qlus?:ze\

@< @ <

false Go-rsp =0 frk

src2

@< @<

true mrg1

Step 2 / logically closed subgraph 2

— requests

— responses

req,rsp

req

src1 o[0]
@< @ <«

false qo.rsp =0

q1 = q1.S12€

src2

@<

true mrg1

Experimental Results

req,

[dst,s(c(,req)
5 (src, _ ,rsp)

—r

I_
| 5
Y
| 5

—>

—>

|||—my|(__

With deadlocks: a 14x14 mesh with 3724 components in 6.05 seconds
Without deadlocks: a 14x14 mesh with 3724 components in 1.31 seconds

Experimental Results

' 8k-1 :

T

e

credit_rsp

dit
credit req ., ¢

»>

A N

——

A

relAd =0

relAd €N

relAd < 3N |ACR

>
relAd 20

e— >
IrelAd > N S 3N T cow

With deadlocks: a 28 ring with 477 components in 0.5 seconds
Without deadlocks: a 28 ring with 477 components in 6.6 seconds

Outline

* Intel's micro-architectural description language
— XMAS definition
— examples

« Deadlock verification for xMAS
— definition of deadlocks
— labelled dependency graph

— feasible logically closed subgraph

 Conclusion and future work

Conclusion and future work

* Tool to detect message dependent deadlocks
— Expressive language for routing, protocol, injection, etc.
— Intricate deadlocks
— Very efficient due to equations
— Necessary and sufficient for structural deadlocks
— Counterexamples

« Future work:
— Still need to be formally proven
— Composition/Hierarchy
» Check sub-networks first and then compose

Thanks !

Deadlock example 3

« Channels with three signals

— data, input ready, target ready
« Transfer cycle

— both input and target are "true"

K

QZ —
—

Networks-on-Chips: Example 1

Core distribution:

Ay /M any
|
.' (4 (L 4
| | |]
[
[]
[]
[]
[J

Masters on the right/slaves on the left

Networks-on-Chips: Example 1

Response)
e 6 o o
Request a

1

%o

|—

1.

e
1 .

® 6 6 6 o o o o
—

<

* The system is deadlock-free!

