
Hunting Deadlocks Eff iciently
in Micro-Architectural Models of

Communication Fabrics

Freek Verbeek and Jul ien Schmaltz

Growing number of cores (W. Tichy - Keynote ICST 2011)

Intel 2 cores
~167 Mio. T. on 1.1cm2

Intel 4 cores
~582 Mio. T. on 2.86cm2

Intel 8 cores
~2.3 Bill. T. on 6.8cm2

AMD Opteron 12 cores
~1.8 Bill. T. on 2x3.46cm2

Sun Niagara3 16 cores
~1 Bill. T. on 3.7cm2

Intel SCC 48 cores
~1.3 Bill. T. on 5.6cm2

Tilera TILEPro64 64 coresIntel Research 80 cores
~100 Mio. T. on 2.75cm2

Usual:
- verify cores
- verify
interconnect

Networks-on-Chips: Example 1, HERMES

The topology:

• Two dimensional mesh

• XY: simple deterministic routing algorithm
• First route to the destination column and then to the correct row
• No cyclic dependencies and thus deadlock-free

The routing function:

Networks-on-Chips: Example 1

• Masters send requests and wait for responses
• Slaves produce responses when receiving requests
• Deadlock-free protocol

Master Slave

req!
active

The high-level protocol:

Networks-on-Chips: Example 1

Networks-on-Chips: Example 1

The high-level protocol:

rsp � req ⇥ req � rsp
• No message dependencies

Master Slave

req!
active

Deadlockfree system
=?

Network component Deadlock-free?
Topology
Routing Function

High-level protocol

Message Dependencies

Networks-on-Chips: Example 1

Master
Slave

Master Master
Slave Slave

Networks-on-Chips: Example 1

Core distribution:

• Masters on the odd/slaves on the even columns

• Is the system deadlock-free ?
• No if at least four columns, yes otherwise.

Master
Slave

Master Master
Slave Slave

Green requests waits
 for blue reponses

Networks-on-Chips: Example 1

Response

Request

Deadlockfree system
=

Network component Cause of deadlock?
Topology
Routing Function

High-level protocol

Message Dependencies

Networks-on-Chips: Example 1

• Design by STMicroelectronics
• Simple shortest path routing algorithm
• Regular for an even number of nodes
• Packet, circuit, or wormhole switching

RelAd = (dest - current) mod 4 * N
if RelAd = 0 then

stop

elseif 0 < RelAd <= N then
go clockwise

elseif 3*N <= RelAd <= 4*N then
go counter clockwise

else
go across

endif

req!

High-level protocol

Routing logic6

5 34

0 1

2

7

Networks-on-Chips: Example 2, Spidergon from STMElectronics

Topology

7

6

5 34

0 1

2

Networks-on-Chips: Example 2

Network component Cause of deadlock
Routing Function

• Is the system deadlock-free ?

Idle cores
7

6

5 34

0 1

2

Send
packets

Networks-on-Chips: Example 2

• Is the system deadlock-free ?
• Yes ! None of the dependencies in the right upper quarter occur.

7

6

5 34

0 1

2

Idle cores

Send
packets

Networks-on-Chips: Example 2

• Is the system deadlock-free ?

14

12 4

6

5

15

3

1 2

10 8

0

13

9 7

11

Idle cores

Send
packets

Networks-on-Chips: Example 2

Network component Deadlock-free?
Topology
Routing Function

High-level protocol

Message Dependencies

Core Distribution

Network size

Deadlockfree system
=

Networks-on-Chips: Example 2

Networks-on-Chips: Example 3

Network component Deadlock-free?
Topology
Routing Function

High-level protocol

Message Dependencies

Core Distribution

Network size

Queue sizes

Counter information

Virtual channel allocation

Deadlockfree system
=?

Confusing . . .

• We need tools to (quickly) check for deadlocks
– in large systems
– with message dependencies
– with the topology, routing and core behavior in one model
– able to handle parameters such as queue size

Outline

• Intel's micro-architectural description language
– xMAS language
– Capturing high-level structure and message dependencies

• Deadlock verification for xMAS
– Definition of deadlocks
– Labelled waiting graph
– Feasible logically closed subgraph

• Conclusion and future work

Intel 's abstraction for communication fabrics

xMAS - Executable MicroArchitectural Specif ications

• Fair sinks and sometimes sources
• Diagram is formal model
• Friendly to microarchitects

xMAS example

req,rsp

req

q0
q1

q2

rsp

req

xMAS example

req,rsp

req

q0
q1

q2

rsp

req

P

xMAS example

req,rsp

req

q0
q1

q2

rsp

req

P

xMAS example

req,rsp

req

q0
q1

q2

rsp

req
P

P

xMAS example

req,rsp

req

q0
q1

q2

rsp

req
P

P

xMAS example

req,rsp

req

q0
q1

q2

rsp

req

P

Outline

• Intel's micro-architectural description language
– xMAS language
– Capturing high-level structure and message dependencies

• Deadlock verification for xMAS
– Definition of deadlocks
– Labelled dependency graph
– Feasible logically closed subgraph

• Conclusion and future work

• Intuition is a "dead" channel
• Formal definition based on Linear Temporal Logic

– Predicate logic
– Temporal operators "eventually" () and "globally" ()

• Channel c is dead iff
�

Formal definit ion of "deadlock" in xMAS

⇥(c.irdy ⇥�¬c.trdy)

�

• Inject two requests in q0
• Fork creates two copies
• One pair is sunk

req,rsp

req

q0
q1

q2

rsp

req

requests

xMAS example

dead channel

General approach for deadlock detection in xMAS networks

• Define Blocking Equations for all components
– Equations capture the reason why a component is idle or

blocking

• Build a labelled waiting graph for each queue
– Labels correspond to the equations
– Graph captures the topology, i.e., the dependencies between

the xMAS components

• Search for a feasible logically closed subgraph
– Corresponds to a deadlock situation
– Feasibility checked using Linear Programming

General approach for deadlock detection in xMAS networks

• Define Blocking Equations for all components
– Equations capture the reason why a component is idle or

blocking

• Build a labelled waiting graph for each queue
– Labels correspond to the equations
– Graph captures the topology, i.e., the dependencies between

the xMAS components

• Search for a feasible logically closed subgraph
– Corresponds to a deadlock situation
– Feasibility checked using Linear Programming

Blocking Equations for a join

• 2 cases
– output is blocked
– the other input is idle

• Block(u) = Idle(v) + Block(w)

u

v
w

req

Blocking Equations for a join

• 2 cases
– output is blocked
– the other input is idle

• Block(u) = Idle(v) + Block(w)

u

v
w

We need to know when a channel is idle !

req

Idle equations for a fork

• A fork output is idle if the input is idle or the other output is blocked

• Idle(w) = Idle(u) + Block(v)

u
v

w

req

General approach for deadlock detection in xMAS networks

• Define Blocking Equations for all components
– Equations capture the reason why a component is idle or

blocking

• Build a labelled waiting graph for each queue
– Labels correspond to the equations
– Graph captures the topology, i.e., the dependencies between

the xMAS components

• Search for a feasible logically closed subgraph
– Corresponds to a deadlock situation
– Feasibility checked using Linear Programming

Step 2 / labelled dependency graph (1)

q1
q1.req � 1

join

start

join

start with a message in q1 and visit the join

req

Step 2 / labelled dependency graph (2)

q1
q1.req � 1

join

start

join
u

v
w

analyse the join according to its Blocking Equation

Block(u) = Idle(v) + Block(w)
mrg2

sw

+

mrg2

sw

we go forward to the merge and backward to the switch

req

Step 2 / labelled dependency graph (2)

q1
q1.req � 1

join

start

join

u

v
w

forwards to the switch - then the sink can never be blocked

Block(u) = Block(w)
mrg2

sw

+

mrg2

sw

we assume fair sinks

sink

false

req

Step 2 / labelled dependency graph (2)

q1
q1.req � 1

join

start

join

u
v

w

backwards to the switch

Idle(u) = Idle(w)
mrg2

sw

+

mrg2

sw

sink

false

req

Step 2 / labelled dependency graph (2)

q1
q1.req � 1

join

start

join

uw

backwards to the queue

Idle(u) = Idle(w) . Empty(q2)
mrg2

sw

+

mrg2

sw

sink

false

q2.rsp = 0
q2

note that we forgot the Block(w') case

req

Step 2 / labelled dependency graph (2)

q1
q1.req � 1

join

start

join

uw

backwards to the merge and branch

Idle(w) = Idle(u) . Idle(v)
mrg2

sw

+

mrg2

sw

sink

false

q2.rsp = 0
q2mrg1

u
v

note branching is bad for us

req

true

Step 2 / labelled dependency graph (2)

q1
q1.req � 1

join

start

join

u

w

Idle(u) = Block(v) + Idle(w)

mrg2

sw

+

mrg2

sw

sink

false

q2.rsp = 0
q2mrg1

u
v

frk

src2 .

backwards to the merge and branch

to the source - idle if no type produced

to the fork

req

Step 2 / labelled dependency graph (2)

q1
q1.req � 1

join

start

join

u

w

Idle(u) = Idle(w) . Empty(q0)

mrg2

sw

+

mrg2

sw

sink

false

q2.rsp = 0
q2mrg1

u

frk

src2 .

backwards to q0 and the source

q0.rsp = 0false

src1 q0

true

req

Step 2 / labelled dependency graph (2)

q1
q1.req � 1

join

start

join

Block(u) = Block(w) . Full(q1)

mrg2

sw

+

mrg2

sw

sink

false

q2.rsp = 0
q2mrg1

u

frk

src2 .

forwards back to q1 and stop expansion

q0.rsp = 0false

src1 q0 q1 = q1.size
+

w

true

req

General approach for deadlock detection in xMAS networks

• Define Blocking Equations for all components
– Equations capture the reason why a component is idle or

blocking

• Build a labelled waiting graph for each queue
– Labels correspond to the equations
– Graph captures the topology, i.e., the dependencies between

the xMAS components

• Search for a feasible logically closed subgraph
– Corresponds to a deadlock situation
– Feasibility checked using Linear Programming

q1.req � 1

q2.rsp = 0

q0.rsp = 0

q1 = q1.size

false

Step 2 / logically closed subgraph 1

q1

join

mrg2 sink

sw

q2mrg1

frk

src1

src2 .

+
q0

false+

true

req

q1.req � 1

q2.rsp = 0

q0.rsp = 0

q1 = q1.size

false

Step 2 / logically closed subgraph 1

q1

join

mrg2 sink

sw

q2mrg1

frk

src1

src2 .

+
q0

false+

true

req

q1.req � 1

q2.rsp = 0

q0.rsp = 0

q1 = q1.size

false

Step 2 / logically closed subgraph 1

q1

join

mrg2 sink

sw

q2mrg1

frk

src1

src2 .

+
q0

false

not feasible

+

true

req

q1.req � 1

q2.rsp = 0

q0.rsp = 0

q1 = q1.size

false

Step 2 / logically closed subgraph 2

q1

join

mrg2 sink

sw

q2mrg1

frk

src1

src2 .

+
q0

false+

true

req

q1.req � 1

q2.rsp = 0

q0.rsp = 0

q1 = q1.size

false

Step 2 / logically closed subgraph 2

q1

join

mrg2 sink

sw

q2mrg1

frk

src1

src2 .

+
q0

false+

true

req

Experimental Results

h.y ≠
Y

h.x = X

h.x ≠ X

h.y = Y

h.x > X

h.x <
X

h.y < Y

h.y > Y

L

N

S

E

W

N

S
E

W

(dst,src,req)
 (src, _ ,rsp)

req

rsp

With deadlocks: a 14x14 mesh with 3724 components in 6.05 seconds
Without deadlocks: a 14x14 mesh with 3724 components in 1.31 seconds

Experimental Results

With deadlocks: a 28 ring with 477 components in 0.5 seconds
Without deadlocks: a 28 ring with 477 components in 6.6 seconds

Outline

• Intel's micro-architectural description language
– xMAS definition
– examples

• Deadlock verification for xMAS
– definition of deadlocks
– labelled dependency graph
– feasible logically closed subgraph

• Conclusion and future work

Conclusion and future work

• Tool to detect message dependent deadlocks
– Expressive language for routing, protocol, injection, etc.
– Intricate deadlocks
– Very efficient due to equations
– Necessary and sufficient for structural deadlocks
– Counterexamples

• Future work:
– Still need to be formally proven
– Composition/Hierarchy

• Check sub-networks first and then compose

Thanks !

Deadlock example 3

• Channels with three signals
– data, input ready, target ready

• Transfer cycle
– both input and target are "true"

Master Slave

Networks-on-Chips: Example 1

Core distribution:

• Masters on the right/slaves on the left

Master Slave

Response

Request

Networks-on-Chips: Example 1

• The system is deadlock-free!

