Specification Based Testing with
QuickCheck

John Hughes
Chalmers University/Quviq AB

QuviQ

<@> ACM SIGPLAN
Most Influential 2000 ICFP Paper

“QuickCheck:
A Lightweight Tool for Random Testing of Haskell Programs”

by

Koen Claessen

John Hughes

What is QuickCheck?

* Alibrary for writing and testing properties of
program code

e Some code: reverse ([]) ->
[1;

reverse ([X|Xs]) ->
reverse (Xs) ++ [X].

* A property:

4
VS‘CS, Y'averse (revevie k?ﬂj)) = XS

Properties as Code

4
Vf“ﬂi, Y'everse (TEJEJIE @L—E}) — S

A test data
A Aumatriodr! génardtor!
prop reverse () ->
?FORALL (Xs, (1nt()),
reverse (reverse (¥Xs)) == Xs).
An ordinary
function A boolean-

definition! valued

RNP RSS!

DEMO

QuickCheck in a Nutshell

ﬁa

Minimal
Test case

QuickCheck Properties:
things with a counterexample

<bool-exp>
?FORALL(<var>,<generator>,<property>)
?IMPLIES(<bool-exp>,<property>)
conjunction, disjunction

?EXISTS(<var>,<generator>,<property>)

QuickCheck Generators

int(), bool(), real()...

choose(<int>,<int>)
{<generator>,<generator>...}
oneof(<list-of-generators>)

?LET(<var>,<generator>,<generator>)

Example: Sorted Lists

sorted list_int() ->
?LET(L,list(int()),
sort(L)).

Benefits

e Less time spent writing test code

— One property replaces many tests

* Better testing

— Lots of combinations you’d never test by hand

* Less time spent on diagnosis

— Failures minimized automagically

An Experiment

8 8 8 8

Unit @ @ @ @ Properties
tests @ @ @ @

O = N W B~ U1 O

How good were the tests at finding
bugs—in other students’ code?

o IIII 11

0 12345 67389 1011

B Unit tests
B QuickCheck

Tests for Base 64 encoding

Expected results

base64 encode (Config) when is__
%% Two pads
<<"QWxhZGRpbjpvcGVuIHN1c2FtZQ==">> =

base64:encode ("Aladdin:open sesame"), m

%% One pad
<<"SGVsbG8gV29ybGQ=">> = base64:encode (<<"Hello World">>),

%% No pad
"QWxhZGRpbjpvcGVuIHN1c2Ft" =
base64:encode to_string("Aladdin:open sesam"),

"MDEyMzQ1Njc40SFAIzBeJi00KTs6PD4sLiBbXXt9" =
base64:encode to_string(
<<"0123456789!'@A#0*&* (), :<>,. [1{}">>),
ok.

Writing a Property

prop base64 () ->
?FORALL (Data,list (choose (0,255)),

baseb64 :encode (Data) == ???) .

Round-trip Properties

prop encode decode() ->
?FORALL (L, list (choose (0,255)),
base64:decode (base64:encode (L))
== list to binary(L)).

-define(DECODE_MAP,
{bad,bad,bad,bad,bad,bad,bad,bad,ws,ws,bad,bad,ws,bad,bad,
bad,bad,bad,bad,bad,bad,bad,bad,bad,bad,bad,bad,bad,bad,bad,bad,
ws,bad,bad,bad,bad,bad,bad,bad,bad,bad,6ach6d,bad,bad,bad,63,
52,53,54,55,56,57,58,59,60,61,bad,bar;bad,eq,bad,bad,
N
,0ad,bad,bad,bad,bad,
NOT caught by the 35 36.37 38 39,40,
test suite 1,bad,bad,bad,bad,bad,
ad,bad,bad,bad,bad,bad,bad,bad,bad,
bad,bad,bad,bad,bad,bad,bad,bad,bad,bad,bad,bad,bad,bad,bad,bad,
bad,bad,bad,bad,bad,bad,bad,bad,bad,bad,bad,bad,bad,bad,bad,bad,

Round-trip Properties

prop encode decode() ->
?FORALL (L, list (choose (0,255)),
base64:decode (base64:encode (L))
== list to binary(L)).

117> eqc:quickcheck(baseb4 eqc:prop _encode_decode()).
................................... Failed! Reason: {'EXIT',{badarg,43}}
After 36 tests.

[204,15,130]

Shrinking...(3 times)
Reason: {'EXIT',{badarg,43}}
[0,0,62]

The table entry we
changed

Round-trip Properties

prop encode decode() ->
?FORALL (L, list (choose (0,255)),
base64:decode (base64:encode (L))
== list to binary(L)).

What does this test?

* NOT a complete test—will not find a
consistent misunderstanding of base64

 WILL find mistakes in encoder or decoder

Simple properties find a lot of bugs!

Back to the tests...
Where did

base64_encode (Config) when is_list(Config) -> B geveta-Weisinalz
%% Two pads
<<"QWxhZGRpbjpvcGVUIHN1Cc2FtZQ==">> = from?
base64:encode ("Aladdin:open sesame"),

%% One pad
<<"SGVsbG8gV29ybGQ=">> = base64:encode (<<"Hello World">>),

%% No pad
"QWxhZGRpbjpvcGVuIHN1c2Ft" =
base64:encode to_string("Aladdin:open sesam"),

"MDEyMzQ1Njc40SFAIzBeJi00KTs6PD4sLiBbXXt9" =
base64:encode to_string(
<<"0123456789!'@A#0*&* (), :<>,. [1{}">>),
ok.

Possibilities

Use the other
* Someone converted the datd S i e

oracle

e Another base64 encoder

Use an old
version (or a
simpler version)
as an oracle

e The same base64 encoder!

— Only tests that changes do
that the result is right

Commuting Diagram Properties

Property Types in Class Examples

* Rex Page: 71 properties in University of
Oklahoma courses in Software Engineering,
Applied Logic (QuickCheck+ACL2)

M Round trip
B Commuting diagram

W Other

Time for some C code...

Testing Stateful Code

@»@»@»@
istcondltlot l
vodel T4 Mol 14

Model
state

Model
state

A list of numbers!

A QuickCheck Property

prop_gq() ->
?FORALL (Cmds , commands (?MODULE) ,

begin
{H,S,Res} = run commands (?MODULE,Cmds) ,
Res == ok)

end) .

Let’s run some tests...

Exercises =2 Practice

Small scale

Property-driven
development

Trivial inputs

=>» Large scale

=» Testing legacy
code

=» Complex inputs

Example: Ericsson Media Proxy

Many, many
parameters, can
be 1—2 pages
per message!

Lots of work
to write
generators

State machine
models fit the
problem well

Ericsson Media Proxy Bug

* Test adding and removing callers from a call

Add —> Add —> Sub —> Add —> Sub —> Add —>

Cal

© sriak

basho

* Relational database "t scale to "Big Data”

A highly scalable,
reliable, available
and low-latency
distributed key-
value store

7

ar alternative

Put and Get

put

0 get

put

0
1

get

Conflicts

4 I
g QuickCheck model: record each

client’s current view of the data; put

0 J replaces that view
(o, 1}t/ TIOK
put
2 get

Example

-

QuickCheck model: client’s view is

fresh or stale: updating a stale view

just adds to the conflicts...
®
N § (@ k out

A vector clock
optimisation...

\

Example

Duplicate value explained

_ 12:43:27

12:43:27

| 12:43:28

Eventual Consistency

* "For any sequence of operations, with any
node or network failures, Riak eventually
reaches a consistent state”

— When is “eventually”?

* For any sequence of operations sent to any
subsets of server nodes (because of failures),
completing all Riak’s repair operations results
In @ consistent state.

AUutoSAR

* Joint project with Quviq, SP, Volvo Cars,
Mentor Graphics...

Is the software in different ECUs
compatible?

First Electronic
Order Control
Supplier Unit
(Tier 1) (ECU)

Second
Order
Supplier
(Tier 2)

Software

AutoSAR Basic Software

f
-
g
o
)
=
=
(=}
A
-
<
(&
=
oZ
<g
v
o
e
—
<<

The Story So Far...

 QuickCheck state-machine models for 3
AutoSAR clusters (Com/PDUR, CAN, FlexRay)

* Used to test software from 3 suppliers

* Bugs revealed in all!

— Plus reinterpretations of the standard

Example: Mixed features

StandardCAN Id ExtendedCAN Id

11 bits 29 bits

Priority: lowest number has highest priority

Example:
Extended Id 113 has higher
priority than standard Id 114

Buffered higher priority
messages should be sent first

Example: Mixed features

StandardCAN Id

11 bits

ExtendedCAN Id

29 bits

uint32

I\

1 extended
0 standard

transmit [1,112,[67],'CAN_OK?1,”

transmit,[2,113,[0],'CAN_BUSY"],

transmit [3,114,[0]'CAN_BUSY’], lgﬁg;;
tx_confirmation,[1,112,[67]]

Check callouts: 112, 114 sent, why?

COM Component

* 500 pages of standard
e 250 pages of C
e 25 pages of QuickCheck

"We know there is a lurking bug somewhere
in the dets code. We have got 'bad object’
and 'premature eof' every other month the
last year. We have not been able to track the
bug down since the dets files is repaired
automatically next time it is opened.”

Tobbe Tornqvist, Klarna, 2007

Application

Mnesia

Dets

File system

pe10]0
What is it? people in
5 years
Wklarna
Invoicing services for web shops

Distributed database:
transactions, distribution,
replication

Tuple storage

O
® Race

conditions?

Imagine Testing This...

dispenser:take_ticket()

dispenser:reset()

A Unit Test in Erlang

test dispenser() ->
ok = reset(),
1 = take ticket(),

2 = take ticket(),
3 = take ticket(),
ok = reset(),

1 = take ticket().

Expected

results

A Parallel Unit Test
-

* Three possible correct
outcomes!

Another Para

A killer app
for
properties!

e 42 possible correct outcomes!

Modelling the dispenser
©-0-0-0
¢ 8 1 1
0-0-0-0

The Model

 State transitions

next state(S, V,{call, ,reset, }) ->
0;

next state(S, V,{call, ,take ticket, }) ->
S+1.

 Postconditions

postcondition (S, {call, ,take ticket, },Res) ->
Res == S+1;

Parallel Test Cases

=

e
ok g
2.8

Generate parallel
test cases

prop parallel() ->
?FORALL (Cmds ,parallel commands (?MODULE) ,
begin
start (),
{H,Par,Res} =
run parallel commands (?MODULE,Cmds),
Res == ok)
end)) .

Run tests, check for a

matching serialization

DEMO

take ticket() ->

: N = read()
Prefix: ’
ret write(N+1),
Parallel: MR

1. take_ticket() --> 1
2. take ticket() --> 1

Result: no_possible_interleaving

dets

* Tuple store:
{Key, Valuel, Value2...}

* Operations:
— insert(Table,ListOfTuples)
— delete(Table,Key)
— insert_new(Table,ListOfTuples)

 Model:
— List of tuples (almost)

QuickCheck SpeC|f|ct|on

File Edit Options Buffers Tools
QuickCheck Erlang Help

Deldx 0E s
¥ BERE XY

> 6,000
LOC

DEMO

Bug #1

insert_new(Name, Objects) -> Bool

Prefix: . TVpESZ
open file (det:
- Name = name()
Objects = object() | [object()]

Parallel: Bool = b00|()

1. insert(dets t:
2. insert new(dets table,[]) --> ok

Result: no possible interleaving

Bug #2

Prefix:
open file(dets_ table, [{type,set}]) --> dets table

Parallel:
l. insert(dets table, {0,0}) --> ok

2. insert new(dets table, {0,0}) --> ..time out..

=ERROR REPORT====4-0ct-2010::17:08:21 ===
** dets: Bug was found when accessing table dets_table

Bug #3

Prefix:
open file(dets table, [{type,set}]) --> dets table

Parallel:
l. open file(dets table, [{type,set}]) --> dets table

2. insert(dets_table, {0,0}) --> ok
get contents(dets_table) --> []

Result: no possible interleaving

What’s going on?

Reordering and
concurrency!

Is the file corrupt?

Bug #4

Prefix:
open file(dets table, [{type,bag}]) --> dets table
close (dets table) --> ok
open file(dets table, [{type,bag}]) --> dets_ table

Parallel:
1. lookup(dets table,0) --> []

2. insert(dets_table, {0,0}) --> ok
3. insert(dets_table, {0,0}) --> ok

Result: ok

premature eof

Bug #5

Prefix:
open file(dets table, [{type,set}]) --> dets table
insert (dets table, [{1,0}]) --> ok

Parallel:
1. lookup(dets table,0) --> []
delete (dets_table,l) --> ok
2. open file(dets table,[{type,set}]) --> dets table

Result: ok
false

bad object

"We know there is a lurking bug somewhere
in the dets code. We have got 'bad object’
and '‘premature eof' every other month the

Each bug fixed the day
after reporting the

failing case

How come?

* The bugs weren’t found earlier?
— despite > 6 weeks of work

* Hypotheses
— ...files of over 1GB?
— ...rehashing could be the problem?
— Diagnosing races in production is hopeless

 The bugs weren’t found in testing?

— Unit tests for races are hard to write...so people
don’t!

— Races=feature interaction =» impractically many
tests

Race conditions should be
found by unit testing with
generated tests

Reflections

The Initial Phases

* Lots of work to develop specification

— Understanding and generating test inputs

* Many errors to fix in the specification, due to...
— New code is buggy
— Misunderstandings of the informal spec
— Undocumented features of the system
— Undocumented limitations of the system

* “happy case” programming

Making Progress

* QuickCheck tends to find the same problem in
every run

— There is a "most likely bug”
— Other bugs usually shrink to the most likely one

* To make progress, the most likely bug must be
excluded

— Bug preconditions document the limitations of the
system

The Payoff

* Once the spec is corrected, and limitations
accounted for, real bugs start to appear

e Each extension to the spec yields a non-linear
improvement in the variety of tests

 The same spec can find many, many bugs

QuickCheck...

...1Is very widely applicable
...almost always finds bugs in real systems!

...Is particularly good at spotting interactions
that conventional test cases miss

...makes diagnosis simple by shrinking

...makes testing more intellectually challenging
and fun!!

