Proving Invariants by Induction 1C3 Bibliography
0000000000000 000000000000 00000

IC3: Where Monolithic and Incremental Meet

Fabio Somenzi Aaron R. Bradley

Department of Electrical, Computer, and Energy Engineering
University of Colorado at Boulder

FMCAD, 30 October 2011

Proving Invariants by Induction 1C3 Bibliography
0000000000000 000000000000 00000

Outline

@ Proving Invariants by Induction
@ Induction for Transition Systems
@ Strengthening
@ Relative Induction

Q 3

@ Basic Algorithm
@ Examples
o Efficiency

Outline

@ Proving Invariants by Induction
@ Induction for Transition Systems
@ Strengthening
@ Relative Induction

IC3

Basic Algorithm
Examples

Efficiency

DA

Proving Invariants by Induction 1C3
€000000000000 000000000000 00000

Finite-State Transition Systems

IC3 works on a symbolic representation of a system:

S:(i, x, I(x), T(i,x,X))

@ i: primary inputs
@ X: state variables
@ X': next state variables
@ /(X): initial states

e T(i,x,X'): transition relation

Bibliography

Proving Invariants by Induction 1C3 Bibliography
000000000000 000000000000 00000

Invariance Properties

IC3 proves (or refutes) invariants

@ Prove that every reachable state satisfies P(X)
@ P is a propositional formula

@ Checking safety properties is reduced to checking invariance
properties

Proving Invariants by Induction 1C3 Bibliography
00@0000000000 000000000000 00000

Mutual Exclusion for a Simple Arbiter

n _q
DFF

DFF

[p——

Proving Invariants by Induction 1C3
0008000000000 000000000000 00000

Inductive Proofs for Transition Systems

@ Prove initiation (base case)
s I(X) = P(X)
@ All initial states satisfy P
° (&1 A\ &)= (-8 V &)
@ Prove consecution (inductive step)
o P(X)AT(i,%,X') = P(X)
@ All successors of states satisfying P satisfy P
o (m&1V &) A (-g1V —gr) = (—g1 VvV —gy)
o If both pass, all reachable states satisfy the property
e SEP

Bibliography

Proving Invariants by Induction 1C3 Bibliography
0000@00000000 000000000000 00000

Visualizing Inductive Proofs

The inductive assertion (~yellow) contains all initial (blue) states
and no arrow leaves it (it is closed under the transition relation)

Proving Invariants by Induction 1C3 Bibliography
O0000@0000000 000000000000 00000

Counterexamples to Induction: The Troublemakers

Proving Invariants by Induction 1C3 Bibliography
O0000@0000000 000000000000 00000

Counterexamples to Induction: The Troublemakers

Invariant Strengthening

%:; cn!;

Invariant Strengthening

8o

DA

Proving Invariants by Induction 1C3 Bibliography
O000000@00000 000000000000 00000

Strong and Weak Invariants

Induction is not restricted to:
@ the strongest inductive invariant (forward-reachable states)

@ ...or the weakest inductive invariant (complement of the
backward-reachable states)

@ —ixq is simpler than —x; A (—x2 V —x3) (strongest) and
(—x1 V —1x3) (weakest)

Proving Invariants by Induction 1C3
0000000080000 000000000000 00000

Completeness for Finite-State Systems

o CTls are effectively bad states

o If a CTl is reachable so is at least one bad state
@ Remove CTI from P and try again
@ Eventually either:

¢ An inductive strengthening of P results
¢ An initial state is removed from P

@ In the latter case, a counterexample is obtained

Bibliography

Proving Invariants by Induction 1C3 Bibliography
O00000000e000 000000000000 00000

Examples of Strengthening Strategies

@ Removing one CTI at a time is very inefficient!
@ Several strategies in use to avoid that
@ Fixpoint-based invariant checking: if vZ.p A AXZ converges
in n > 0 iterations, then /\0<i<n AXip is an inductive
invariant
o In fact, the weakest inductive invariant

@ k-induction: if all states on length-k paths from the initial
states satisfy p, and k distinct consecutive states satisfying p
are always followed by a state satisfying p, then all states
reachable from the initial states satisfy p.

@ fsis algorithm: try to extract an inductive clause from CTI to
exclude multiple CTls

Proving Invariants by Induction 1C3 Bibliography
0000000000800 000000000000 00000

Relative Induction

Suppose the assertion ¢ is a conjunction
e= N\ @
0<j<n

Suppose each ; is inductive relative to the previous assertions and
P. That is, for every 0 < j < n, | = ¢; and

PA /\ oi NT = ¢
0<i<j

Finally, suppose P is inductive relative to ¢; that is, | = P and

PR N oinT=F

0<i<n

Then P is an invariant of S

Proving Invariants by Induction 1C3 Bibliography
0000000000080 000000000000 00000

Relative Induction

p=x13 A (X1 V —\Xz)

Proving Invariants by Induction 1C3 Bibliography
0000000000080 000000000000 00000

Relative Induction

—xq Is not inductive

Proving Invariants by Induction 1C3 Bibliography
0000000000080 000000000000 00000

Relative Induction

x1 V —xp is inductive

Proving Invariants by Induction 1C3 Bibliography
0000000000080 000000000000 00000

Relative Induction

—xq Is inductive relative to x; V —xo

Proving Invariants by Induction 1C3 Bibliography
O00000000000e 000000000000 00000

Shortcoming of Relative Induction

P= (Xl V Xo \/X3) A (—|X1 V —Xxo \/X3)
e =(x1Vx2)A(=x1V-x)

Proving Invariants by Induction 1C3 Bibliography
O00000000000e 000000000000 00000

Shortcoming of Relative Induction

(aVX)APAT % (xqVx5)

Proving Invariants by Induction 1C3 Bibliography
O00000000000e 000000000000 00000

Shortcoming of Relative Induction

(—x1 V=) APAT % (—x1 V —x3)

Proving Invariants by Induction 1C3 Bibliography
00000000000 0e 000000000000 00000

Shortcoming of Relative Induction

(A V) A(=x1 V) APAT = (x1Vxy)A(—xg V—x5)

Proving Invariants by Induction 1C3 Bibliography
00000000000 0e 000000000000 00000

Shortcoming of Relative Induction

(x1 V x2) and (—x1 V —x2)are mutually inductive

0 Proving Invariants by Induction

@ Induction for Transition Systems
@ Strengthening

@ Relative Induction
O IC3

@ Basic Algorithm
@ Examples

o Efficiency

«O>» «4F» «=» 4«

@ Incremental Construction of
@ Inductive Clauses for

@ Indubitable Correctness

«Or «F»

Proving Invariants by Induction 1C3 Bibliography
0000000000000 0@000000000000000

Basic Tenets

@ Approximate reachability assumptions
o F;: contains at least all the states reachable in i steps or less
o If S |= P, F; eventually becomes inductive for some i
@ Approximation is desirable: 1C3 does not attempt to get the
most precise F;'s
@ Stepwise relative induction
@ Learn useful facts via induction relative to reachability
assumptions
o Clausal representation

o Learn clauses from CTls
@ A form of abstract interpretation

Proving Invariants by Induction 1C3

0000000000000 00000000000000000

IC3 Invariants

@ The four main invariants of 1C3.
| = Fo
Fi= Fiq1 0<i<k
F= P 0<i<k
FinT = F 0<i<k

Bibliography

@ Established if there are no counterexamples of length 0 or 1

@ The implicit invariant of the outer loop: no counterexamples

of length k.

Proving Invariants by Induction 1C3 Bibliography
0000000000000 000@0000000000000

Pseudo-Pseudocode

bool 1C3 {
if (I 4 Por INT # P')
return _L;
Fo=1IFi=P; k=1
repeat {

while (there are CTls in Fy) {
either find a counterexample and return L
or refine Fq,..., Fx

}

k ++;

set Fx = P and propagate clauses

if (F; = Fj41 for some 0 < i < k)
return T

Proving Invariants by Induction 1C3
0000000000000 0000@000000000000

Passing Property

No counterexamples of length 0 or 1

8 8“ ()
” - - P=-x1Vx
) (O O

/:>F0
Fi= Fi1 0<i<k
Fi= P 0<i<k

FiNT = F 4 0<i<k

Bibliography

1C3 Bibliography

Proving Invariants by Induction
O000@000000000000

0000000000000

Passing Property

Does F{ A T = P'?

Fo=1=—-x1N—x

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiNT = F 4 0<i<k

1C3 Bibliography

Proving Invariants by Induction
O000@000000000000

0000000000000

Passing Property

Found CTl s = x1 A xo

Fo=1=—-x1N—x

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiNT = F 4 0<i<k

1C3 Bibliography

Proving Invariants by Induction
O000@000000000000

0000000000000

Passing Property

Is —s inductive relative to F17?

Fo=1=—-x1N—x

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiNT = F 4 0<i<k

1C3 Bibliography

Proving Invariants by Induction
O000@000000000000

0000000000000

Passing Property

No. Is —s inductive relative to Fy?

Fo=1=-x1 N\ —x

/:>F0
Fi= Fi1 0<i<k
Fi= P 0<i<k

FiNT = F 4 0<i<k

1C3 Bibliography

Proving Invariants by Induction
O000@000000000000

0000000000000

Passing Property

Yes. Generalize —s at level 0 (in one of the two possible ways)

Fo=1=—-x1N—x

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiNT = F 4 0<i<k

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O000@000000000000

Passing Property

Update F;

Fo=1=-x1/N—x
F = (—|X1 V X2) A =X

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FNT = F 4 0<i<k

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O000@000000000000

Passing Property

No more CTls in F1. No counterexamples of length 2. Instantiate
Fa

@ @ e Fo=1=-x1N\—x
!!; !!g ” . ” . Fi = (_'X1 \/X2)/\—|x2
U For=P=-x1Vx

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiANT = F 4 0<i<k

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O000@000000000000

Passing Property

Propagate clauses from F; to F;

-8 -0
O (o U =(X1VX2) X2
(—|X1\/X2) —1X2
/:>F0
Fi= Fiq 0<i<k
F=P 0<i<k

FiNT = F 4 0<i<k

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O000@000000000000

Passing Property

F1 and F;, are identical. Property proved

F:/:—!X1/\—\X2

(—|X1 V X2) —1X2

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiNT = F 4 0<i<k

1C3 Bibliography

Proving Invariants by Induction
O000@000000000000

0000000000000

Passing Property

What happens if we generalize —s at level 0 in the other way?

Fo=1=—-x1N—x

/:>F0
Fi= Fii1 0<i<k
Fi=P 0<i<k

FNT = F 4 0<i<k

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O000@000000000000

Passing Property

Update F;

Fo=1=-x1/N—x
F = (—|X1 V X2) A —X1

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FNT = F 4 0<i<k

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O000@000000000000

Passing Property

No more CTls in F1. No counterexamples of length 2. Instantiate
Fa

@ @ e Fo=1=-x1N\—x
!!; !!g ” . ” . Fi = (_'X1 \/X2)/\—|x1
U For=P=-x1Vx

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiANT = F 4 0<i<k

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O000@000000000000

Passing Property

No clauses propagate from F; to F»

@ OFO-@ Acavan
- < - - F= (—|X1 \/X2)/\—|X1
) U For=P=-x1Vx

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiANT = F 4 0<i<k

1C3 Bibliography

Proving Invariants by Induction
O000@000000000000

0000000000000

Passing Property

Remove subsumed clauses

@) (o)
N N

m Fo=1=—-x1N—x

Fi1=-x
Fob=P=-x1Vx

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiANT = F 4 0<i<k

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O000@000000000000

Passing Property

Does Fo A T = P'?

Fo=1=—-x1N—x

>® F1=—x
)) U F;:P;—!X1VX2

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiANT = F 4 0<i<k

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O000@000000000000

Passing Property

Found CTl s = x; A x» (same as before)

Fo=1=—-x1N—x

>® F1=—x
)) U F;:P;—!X1VX2

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiANT = F 4 0<i<k

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O000@000000000000

Passing Property

Is —s inductive relative to F17?

Fo=1=—-x1N—x

>® F1=—x
)) U F;:P;—!X1VX2

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiANT = F 4 0<i<k

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O000@000000000000

Passing Property

No. We know it is inductive at level 0.

Fo=1=—-x1N—x

>® F1=—x
)) U F;:P;—!X1VX2

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiANT = F 4 0<i<k

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O000@000000000000

Passing Property

If generalization produces —x; again, the CTI is not eliminated

Fo=1=—-x1N—x

>® F1=—x
)) U F;:P;—!X1VX2

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiANT = F 4 0<i<k

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O000@000000000000

Passing Property

Find predecessor t of CTlin F1 \ Fo

Fo=1=—-x1N—x

>® F1=—x
)) U F;:P;—!X1VX2

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiANT = F 4 0<i<k

Proving Invariants by Induction
0000000000000

Passing Property

Found t = —x1 A xo

A0 (o)1)
N N

O

/:>F0

Fi= Fixa

F,':>P
FinT = Fiq

1C3
O000@000000000000

Fo=1=—-x1N—x
F1=—-x1
Fob=P=-x1Vx
0<i<k

0<i<k

0<i<k

Bibliography

1C3 Bibliography

Proving Invariants by Induction
O000@000000000000

0000000000000

Passing Property

The clause —t is inductive at all levels

() (o)
N N

m Fo=1=—-x1N—x

Fi1=-x
Fob=P=-x1Vx

/:>F0
Fi= Fi1 0<i<k
Fi= P 0<i<k

FiANT = F 4 0<i<k

Proving Invariants by Induction
0000000000000

Passing Property

Generalization of —t produces —x

(o) ~@

/:>F0

Fi= Fixa

F,':>P
FinT = Fiq

O000@000000000000

Fo=1=—-x1N—x
Fi1=-x
Fob=P=-x1Vx

0<i<k
0<i<k
0<i<k

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O000@000000000000

Passing Property

Update F; and F»

Fo=1=-x1N\—x
Fi=-x1/N\—x
i

= (—|X1 V X2) A —Xo

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiNT = F 4 0<i<k

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O000@000000000000

Passing Property

F1 and F, are equivalent. Property (almost) proved

Fo=1=-x1N\—x
Fi=-x1/N\—x
i

= (—|X1 V X2) A —Xo

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiNT = F 4 0<i<k

Proving Invariants by Induction 1C3

Bibliography
0000000000000 O0000@00000000000

Failing Property

No counterexamples of length 0 or 1

| = —x3 A —x3 A\ —x3
P=-=-x1V-xV-x3

I = Fy
Fi= Fi1 0<i<k
Fi=P 0<i<k

FiNT = F 4 0<i<k

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O0000@00000000000

Failing Property

Does F{ A T = P'?

Fo=1=-x1 A—=x3/\—x3

Fi=P=-x1V-xV-x3

I = Fy
Fi= Fi1 0<i<k
Fi=P 0<i<k

FiNT = F 4 0<i<k

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O0000@00000000000

Failing Property

Found CTl s = =x1y A xo A x3

Fo=1=-x1 A—=x3/\—x3

Fi=P=-x1V-xV-x3

I = Fy
Fi= Fi1 0<i<k
Fi=P 0<i<k

FiNT = F 4 0<i<k

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O0000@00000000000

Failing Property

The clause —s generalizes to —x, at level 0

Fo=1=-x1 A—=x3/\—x3

F= (—|X1 V —=xo V —|X3) A\ X2

I = Fy
Fi= Fi1 0<i<k
F=P 0<i<k

FiNT = F 4 0<i<k

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O0000@00000000000

Failing Property
No CTI left: no counterexample of length 2. F, instantiated, but

no clause propagated

=[] =-x31 A —-x3/\—x3

—|X2

P=-x1V-xV-x3

I = Fy
Fi= Fi1 0<i<k
Fi=P 0<i<k

FiNT = F 4 0<i<k

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O0000@00000000000

Failing Property

The clause —s generalizes again to —x at level 0

=[] =-x31 A —-x3/\—x3

—|X2

P=-x1V-xV-x3

I = Fy
Fi= Fi1 0<i<k
F=P 0<i<k

FiNT = F 4 0<i<k

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O0000@00000000000

Failing Property

Suppose IC3 recurs on t = —=x3 A =xa A xz in F1\ Fo

=[] =-x31 A —-x3/\—x3

—|X2

P=-x1V-xV-x3

I = Fy
Fi= Fi1 0<i<k
Fi=P 0<i<k

FiNT = F 4 0<i<k

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O0000@00000000000

Failing Property

Clause —t is not inductive at level 0: the property fails

=[] =-x31 A —-x3/\—x3

—|X2

P=-x1V-xV-x3

I = Fy
Fi= Fi1 0<i<k
F,=P 0<i<k

FiNT = F 4 0<i<k

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O0000@00000000000

Failing Property

Suppose now IC3 recurs on t = x3 A =xp A x3 in F1\ Fo

Fo=1=-x1 A—=x3/\—x3

F1=-x

Fopr=P=-x1V-xV-x3

I = Fy
Fi= Fi1 0<i<k
F=P 0<i<k

FiNT = F 4 0<i<k

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O0000@00000000000

Failing Property

Clause —t is inductive at level 1

=[] =-x31 A —-x3/\—x3

—|X2

P=-x1V-xV-x3

I = Fy
Fi= Fi1 0<i<k
F,=P 0<i<k

FiNT = F 4 0<i<k

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O0000@00000000000

Failing Property

Generalization of =t adds —x; to F; and F>

=[] =-x31 A —-x3/\—x3

—1xp A\ =Xy

(—\Xl V —=xo V —\X3) N —x

I = Fy
Fi= Fi1 0<i<k
F=P 0<i<k

FiNT = F 4 0<i<k

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O0000@00000000000

Failing Property

Only t = =x3 A =x2 A x3 remains in F1 \ Fo

I = Fy
Fi= Fi1 0<i<k
Fi=P 0<i<k

FiNT = F 4 0<i<k

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O0000@00000000000

Failing Property

The same counterexample as before is found

I = Fy
Fi= Fi1 0<i<k
Fi=P 0<i<k

FiNT = F 4 0<i<k

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O00000e0000000000

Reverse 1C3

Build reachability assumptions around the target

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O00000e0000000000

Reverse 1C3

Equivalent to reversing all transitions

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O000000e000000000

Clause Generalization

@ A CTlis a cube
9 eg,s=x1/N\x2AX3

@ The negation of a CTl is a clause
8 eg., s =-x1 VXV x3

@ Conjoining —s to a reachability assumption F; excludes the
CTI from it

@ Generalization extracts a subclause from —s that excludes
more states that are “like the CTI”
¢ e.g., —x3 may be a subclause of —s that excludes states that,
like the CTI, are not reachable in i steps
o Every literal dropped doubles the number of states excluded by
a clause
o Generalization is time-consuming, but critical to performance

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O0000000e00000000

Generalization

(4]

Crucial for efficiency

(]

Generalization in 1C3 produces a minimal inductive clause

(MIC)
The MIC algorithm is based on DOWN and UP.
DOWN extracts the (unique) maximal subclause

UP finds a small, but not necessarily minimal subclause

e © ¢ ¢

MIC recurs on subclauses of the result of UP

Minimal Inductive Clause

Minimal Inductive Clause

Minimal Inductive Clause

Minimal Inductive Clause

Minimal Inductive Clause

—x1 VX2 V —x3

O <G>

X1 V X Vi s

A

(AN

X2 \Vi —x3

Maximal Inductive Subclause (DOWN)

X2

Do

Proving Invariants by Induction 1C3 Bibliography
0000000000000 000000000008 00000

Use of UNSAT Cores

@ sANF,ANT = —sifandonly if =sANF; AT AS"is
unsatisfiable

@ The literals of s’ are (unit) clauses in the SAT query

o If the implication holds, the SAT solver returns an
unsatisfiable core

@ Any literal of s’ not in the core can be removed from s’
because it does not contribute to the implication . ..

@ and from —s because strengthening the antecedent preserves
the implication

Proving Invariants by Induction 1C3 Bibliography
0000000000000 000000000000 e0000

Use of UNSAT Core Example
@ sAFg AT = —s with

—s = —x1 V xo
Fo=—-x1 A%
T:(—|X1/\—|X2/\—|X]/_/_'Xé)\/"'

@ The SAT query, after some simplification, is
/ / / /
—ixy A xo A xyp A xo A X A\ Xp
@ Two UNSAT cores are

—x1 A X

—xp A\ X

from which the two generalizations we saw before follow

Proving Invariants by Induction 1C3 Bibliography
0000000000000 000000000000 0e000

Clause Clean-Up

@ As IC3 proceeds, clauses may be added to some F;s that
subsume other clauses

@ The weaker, subsumed clauses no longer contribute to the
definition of F;

@ However, a weaker clause may propagate to F;; when the
stronger clause does not

@ Weak clauses are eliminated by subsumption only between
major iterations and after propagation

Proving Invariants by Induction 1C3
0000000000000 0000000000000 0e00

More Efficiency-Related Issues

(]

State encoding determines what clauses are derived
Incremental vs. monolithic

(]

¢ Reachability assumptions carry global information
@ ...but are built incrementally

(]

Semantic vs. syntactic approach
o Generalization “jumps over large distances”

(]

Long counterexamples at low k

o Typically more efficient than increasing k
@ Consequences of no unrolling

@ Many cheap (incremental) SAT calls
Ability to parallelize

o Clauses are easy to exchange

Bibliography

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O00000000000000e0

IC3 and Interpolation

@ An interesting analysis to be presented on Tuesday by Een,
Mishchenko, and Brayton
@ In the tutorial paper:

o Both methods address the failure of consecution from an
over-approximating /-step set.

@ Interpolation unrolls to produce an (interpolant-based)
abstract post operator. When consecution fails, a greater
unrolling refines the abstract post operator, yielding more
refined over-approximating stepwise sets.

o IC3 uses the CTI from the failure to direct the refinement of F;
(and Fl, ey F,'_l).

¢ In other words, they focus on refining different parts of
consecution.

@ IC3 is more incremental and does not require unrolling the
transition relation.

Proving Invariants by Induction 1C3 Bibliography
0000000000000 O000000000000000e

Applications

Checking all w-regular properties
@ Cycle detection reduced to several reachability queries

@ Inductive proofs of unreachability refine partition of state
space into SCC-closed regions

Incremental verification

@ A proof from one revision of a circuit provides a starting point
for the proof of the next revision

@ Same for counterexample
@ Some “patching” may be needed

More coming

Proving Invariants by Induction 1C3 Bibliography
0000000000000 000000000000 00000

Bibliography |

@ A. R. Bradley, k-step relative inductive generalization,” CU
Boulder, Tech. Rep., March 2010,
http://arxiv.org/abs/1003.3649.

@ A. R. Bradley, "SAT-based model checking without unrolling,”
in Verification, Model Checking, and Abstract Interpretation
(VMCAI'11), Austin, TX, 2011, pp. 70-87, LNCS 6538.

@ Z. Manna and A. Pnueli, Temporal Verification of Reactive
Systems: Safety. Springer-Verlag, 1995.

@ A. R. Bradley and Z. Manna, “Checking safety by inductive
generalization of counterexamples to induction,” in Formal
Methods in Computer Aided Design (FMCAD'07), Austin,
TX, 2007, pp. 173-180.

http://arxiv.org/abs/1003.3649

Proving Invariants by Induction 1C3 Bibliography
0000000000000 000000000000 00000

Bibliography Il (Fresh from the Oven)

@ N. Een, A. Mishchenko, and R. K. Brayton, “Efficient
Implementation of Property Directed Reachability,” in Formal
Methods in Computer Aided Design (FMCAD'11), Austin,
TX, 2011.

@ H. Chockler, A. lvrii, A. Matsliah, S. Moran, and Z. Nevo,
“Incremental Formal Verification of Hardware,” in Formal
Methods in Computer Aided Design (FMCAD'11), Austin,
TX, 2011.

@ A. R. Bradley, F. Somenzi, Z. Hassan, and Y. Zhang, “An
incremental approach to model checking progress properties,”
in Formal Methods in Computer Aided Design (FMCAD'11),
Austin, TX, 2011.

	Proving Invariants by Induction
	Induction for Transition Systems
	Strengthening
	Relative Induction

	IC3
	Basic Algorithm
	Examples
	Efficiency

	Bibliography

