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Finite-State Transition Systems

IC3 works on a symbolic representation of a system:

S:(i, x, I(x), T(i,x,X))

@ i: primary inputs
@ X: state variables
@ X': next state variables
@ /(X): initial states

e T(i,x,X'): transition relation

Bibliography
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Invariance Properties

IC3 proves (or refutes) invariants

@ Prove that every reachable state satisfies P(X)
@ P is a propositional formula

@ Checking safety properties is reduced to checking invariance
properties
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Mutual Exclusion for a Simple Arbiter
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Inductive Proofs for Transition Systems

@ Prove initiation (base case)
s I(X) = P(X)
@ All initial states satisfy P
° (&1 A\ &)= (-8 V &)
@ Prove consecution (inductive step)
o P(X)AT(i,%,X') = P(X)
@ All successors of states satisfying P satisfy P
o (m&1V &) A (-g1V —gr) = (—g1 VvV —gy)
o If both pass, all reachable states satisfy the property
e SEP

Bibliography
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Visualizing Inductive Proofs

The inductive assertion (~yellow) contains all initial (blue) states
and no arrow leaves it (it is closed under the transition relation)
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Counterexamples to Induction: The Troublemakers
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Counterexamples to Induction: The Troublemakers




Invariant Strengthening

%:; cn!;



Invariant Strengthening

8o

DA









Proving Invariants by Induction 1C3 Bibliography
O000000@00000 000000000000 00000

Strong and Weak Invariants

Induction is not restricted to:
@ the strongest inductive invariant (forward-reachable states)

@ ...or the weakest inductive invariant (complement of the
backward-reachable states)

@ —ixq is simpler than —x; A (—x2 V —x3) (strongest) and
(—x1 V —1x3) (weakest)
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Completeness for Finite-State Systems

o CTls are effectively bad states

o If a CTl is reachable so is at least one bad state
@ Remove CTI from P and try again
@ Eventually either:

¢ An inductive strengthening of P results
¢ An initial state is removed from P

@ In the latter case, a counterexample is obtained

Bibliography
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Examples of Strengthening Strategies

@ Removing one CTI at a time is very inefficient!
@ Several strategies in use to avoid that
@ Fixpoint-based invariant checking: if vZ.p A AXZ converges
in n > 0 iterations, then /\0<i<n AXip is an inductive
invariant
o In fact, the weakest inductive invariant

@ k-induction: if all states on length-k paths from the initial
states satisfy p, and k distinct consecutive states satisfying p
are always followed by a state satisfying p, then all states
reachable from the initial states satisfy p.

@ fsis algorithm: try to extract an inductive clause from CTI to
exclude multiple CTls
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Relative Induction

Suppose the assertion ¢ is a conjunction
e= N\ @
0<j<n

Suppose each ; is inductive relative to the previous assertions and
P. That is, for every 0 < j < n, | = ¢; and

PA /\ oi NT = ¢
0<i<j

Finally, suppose P is inductive relative to ¢; that is, | = P and

PR N oinT=F

0<i<n

Then P is an invariant of S
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Relative Induction

p=x13 A (X1 V —\Xz)
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Relative Induction

—xq Is not inductive
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Relative Induction

x1 V —xp is inductive



Proving Invariants by Induction 1C3 Bibliography
0000000000080 000000000000 00000

Relative Induction

—xq Is inductive relative to x; V —xo
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Shortcoming of Relative Induction

P= (Xl V Xo \/X3) A (—|X1 V —Xxo \/X3)
e =(x1Vx2)A(=x1V-x)
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Shortcoming of Relative Induction

(aVX)APAT % (xqVx5)
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Shortcoming of Relative Induction

(—x1 V=) APAT % (—x1 V —x3)
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Shortcoming of Relative Induction

(A V) A(=x1 V) APAT = (x1Vxy)A(—xg V—x5)
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Shortcoming of Relative Induction

(x1 V x2) and (—x1 V —x2)are mutually inductive
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Basic Tenets

@ Approximate reachability assumptions
o F;: contains at least all the states reachable in i steps or less
o If S |= P, F; eventually becomes inductive for some i
@ Approximation is desirable: 1C3 does not attempt to get the
most precise F;'s
@ Stepwise relative induction
@ Learn useful facts via induction relative to reachability
assumptions
o Clausal representation

o Learn clauses from CTls
@ A form of abstract interpretation
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IC3 Invariants

@ The four main invariants of 1C3.
| = Fo
Fi= Fiq1 0<i<k
F= P 0<i<k
FinT = F 0<i<k

Bibliography

@ Established if there are no counterexamples of length 0 or 1

@ The implicit invariant of the outer loop: no counterexamples

of length k.
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Pseudo-Pseudocode

bool 1C3 {
if (I 4 Por INT # P')
return _L;
Fo=1IFi=P; k=1
repeat {

while (there are CTls in Fy) {
either find a counterexample and return L
or refine Fq,..., Fx

}

k ++;

set Fx = P and propagate clauses

if (F; = Fj41 for some 0 < i < k)
return T



Proving Invariants by Induction 1C3
0000000000000 0000@000000000000

Passing Property

No counterexamples of length 0 or 1

8 8“ ()
” - - P=-x1Vx
) (O O

/:>F0
Fi= Fi1 0<i<k
Fi= P 0<i<k

FiNT = F 4 0<i<k

Bibliography
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Passing Property

Does F{ A T = P'?

Fo=1=—-x1N—x

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiNT = F 4 0<i<k
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Passing Property

Found CTl s = x1 A xo

Fo=1=—-x1N—x

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiNT = F 4 0<i<k
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Passing Property

Is —s inductive relative to F17?

Fo=1=—-x1N—x

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiNT = F 4 0<i<k
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Passing Property

No. Is —s inductive relative to Fy?

Fo=1=-x1 N\ —x

/:>F0
Fi= Fi1 0<i<k
Fi= P 0<i<k

FiNT = F 4 0<i<k



1C3 Bibliography

Proving Invariants by Induction
O000@000000000000

0000000000000

Passing Property

Yes. Generalize —s at level 0 (in one of the two possible ways)

Fo=1=—-x1N—x

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiNT = F 4 0<i<k
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Passing Property

Update F;

Fo=1=-x1/N—x
F = (—|X1 V X2) A =X

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FNT = F 4 0<i<k
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Passing Property

No more CTls in F1. No counterexamples of length 2. Instantiate
Fa

@ @ e Fo=1=-x1N\—x
!!; !!g ” . ” . Fi = (_'X1 \/X2)/\—|x2
U For=P=-x1Vx

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiANT = F 4 0<i<k
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Passing Property

Propagate clauses from F; to F;

-8 -0
O (o U =(X1VX2) X2
(—|X1\/X2) —1X2
/:>F0
Fi= Fiq 0<i<k
F=P 0<i<k

FiNT = F 4 0<i<k
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Passing Property

F1 and F;, are identical. Property proved

F:/:—!X1/\—\X2

(—|X1 V X2) —1X2

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiNT = F 4 0<i<k
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Passing Property

What happens if we generalize —s at level 0 in the other way?

Fo=1=—-x1N—x

/:>F0
Fi= Fii1 0<i<k
Fi=P 0<i<k

FNT = F 4 0<i<k
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Passing Property

Update F;

Fo=1=-x1/N—x
F = (—|X1 V X2) A —X1

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FNT = F 4 0<i<k
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Passing Property

No more CTls in F1. No counterexamples of length 2. Instantiate
Fa

@ @ e Fo=1=-x1N\—x
!!; !!g ” . ” . Fi = (_'X1 \/X2)/\—|x1
U For=P=-x1Vx

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiANT = F 4 0<i<k
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Passing Property

No clauses propagate from F; to F»

@ OFO-@  Acavan
- < - - F= (—|X1 \/X2)/\—|X1
) U For=P=-x1Vx

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiANT = F 4 0<i<k
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Passing Property

Remove subsumed clauses

@) (o)
N N

m Fo=1=—-x1N—x

Fi1=-x
Fob=P=-x1Vx

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiANT = F 4 0<i<k
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Passing Property

Does Fo A T = P'?

Fo=1=—-x1N—x

>® F1=—x
) ) U F;:P;—!X1VX2

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiANT = F 4 0<i<k
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Passing Property

Found CTl s = x; A x» (same as before)

Fo=1=—-x1N—x

>® F1=—x
) ) U F;:P;—!X1VX2

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiANT = F 4 0<i<k
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Passing Property

Is —s inductive relative to F17?

Fo=1=—-x1N—x

>® F1=—x
) ) U F;:P;—!X1VX2

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiANT = F 4 0<i<k
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Passing Property

No. We know it is inductive at level 0.

Fo=1=—-x1N—x

>® F1=—x
) ) U F;:P;—!X1VX2

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiANT = F 4 0<i<k
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Passing Property

If generalization produces —x; again, the CTI is not eliminated

Fo=1=—-x1N—x

>® F1=—x
) ) U F;:P;—!X1VX2

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiANT = F 4 0<i<k
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Passing Property

Find predecessor t of CTlin F1 \ Fo

Fo=1=—-x1N—x

>® F1=—x
) ) U F;:P;—!X1VX2

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiANT = F 4 0<i<k
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Passing Property

Found t = —x1 A xo

A0 (o)1)
N N

O

/:>F0

Fi= Fixa

F,':>P
FinT = Fiq

1C3
O000@000000000000

Fo=1=—-x1N—x
F1=—-x1
Fob=P=-x1Vx
0<i<k

0<i<k

0<i<k

Bibliography
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Passing Property

The clause —t is inductive at all levels

() (o)
N N

m Fo=1=—-x1N—x

Fi1=-x
Fob=P=-x1Vx

/:>F0
Fi= Fi1 0<i<k
Fi= P 0<i<k

FiANT = F 4 0<i<k
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Passing Property

Generalization of —t produces —x

(o) ~@

/:>F0

Fi= Fixa

F,':>P
FinT = Fiq

O000@000000000000

Fo=1=—-x1N—x
Fi1=-x
Fob=P=-x1Vx

0<i<k
0<i<k
0<i<k
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Passing Property

Update F; and F»

Fo=1=-x1N\—x
Fi=-x1/N\—x
i

= (—|X1 V X2) A —Xo

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiNT = F 4 0<i<k
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Passing Property

F1 and F, are equivalent. Property (almost) proved

Fo=1=-x1N\—x
Fi=-x1/N\—x
i

= (—|X1 V X2) A —Xo

/:>F0
Fi= Fi1 0<i<k
FF=P 0<i<k

FiNT = F 4 0<i<k
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Failing Property

No counterexamples of length 0 or 1

| = —x3 A —x3 A\ —x3
P=-=-x1V-xV-x3

I = Fy
Fi= Fi1 0<i<k
Fi=P 0<i<k

FiNT = F 4 0<i<k
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Failing Property

Does F{ A T = P'?

Fo=1=-x1 A—=x3/\—x3

Fi=P=-x1V-xV-x3

I = Fy
Fi= Fi1 0<i<k
Fi=P 0<i<k

FiNT = F 4 0<i<k
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Failing Property

Found CTl s = =x1y A xo A x3

Fo=1=-x1 A—=x3/\—x3

Fi=P=-x1V-xV-x3

I = Fy
Fi= Fi1 0<i<k
Fi=P 0<i<k

FiNT = F 4 0<i<k
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Failing Property

The clause —s generalizes to —x, at level 0

Fo=1=-x1 A—=x3/\—x3

F= (—|X1 V —=xo V —|X3) A\ X2

I = Fy
Fi= Fi1 0<i<k
F=P 0<i<k

FiNT = F 4 0<i<k
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Failing Property
No CTI left: no counterexample of length 2. F, instantiated, but

no clause propagated

=[] =-x31 A —-x3/\—x3

—|X2

P=-x1V-xV-x3

I = Fy
Fi= Fi1 0<i<k
Fi=P 0<i<k

FiNT = F 4 0<i<k
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Failing Property

The clause —s generalizes again to —x at level 0

=[] =-x31 A —-x3/\—x3

—|X2

P=-x1V-xV-x3

I = Fy
Fi= Fi1 0<i<k
F=P 0<i<k

FiNT = F 4 0<i<k
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Failing Property

Suppose IC3 recurs on t = —=x3 A =xa A xz in F1\ Fo

=[] =-x31 A —-x3/\—x3

—|X2

P=-x1V-xV-x3

I = Fy
Fi= Fi1 0<i<k
Fi=P 0<i<k

FiNT = F 4 0<i<k
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Failing Property

Clause —t is not inductive at level 0: the property fails

=[] =-x31 A —-x3/\—x3

—|X2

P=-x1V-xV-x3

I = Fy
Fi= Fi1 0<i<k
F,=P 0<i<k

FiNT = F 4 0<i<k
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Failing Property

Suppose now IC3 recurs on t = x3 A =xp A x3 in F1\ Fo

Fo=1=-x1 A—=x3/\—x3

F1=-x

Fopr=P=-x1V-xV-x3

I = Fy
Fi= Fi1 0<i<k
F=P 0<i<k

FiNT = F 4 0<i<k
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Failing Property

Clause —t is inductive at level 1

=[] =-x31 A —-x3/\—x3

—|X2

P=-x1V-xV-x3

I = Fy
Fi= Fi1 0<i<k
F,=P 0<i<k

FiNT = F 4 0<i<k
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Failing Property

Generalization of =t adds —x; to F; and F>

=[] =-x31 A —-x3/\—x3

—1xp A\ =Xy

(—\Xl V —=xo V —\X3) N —x

I = Fy
Fi= Fi1 0<i<k
F=P 0<i<k

FiNT = F 4 0<i<k
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Failing Property

Only t = =x3 A =x2 A x3 remains in F1 \ Fo

I = Fy
Fi= Fi1 0<i<k
Fi=P 0<i<k

FiNT = F 4 0<i<k
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Failing Property

The same counterexample as before is found

I = Fy
Fi= Fi1 0<i<k
Fi=P 0<i<k

FiNT = F 4 0<i<k
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Reverse 1C3

Build reachability assumptions around the target
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Reverse 1C3

Equivalent to reversing all transitions
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Clause Generalization

@ A CTlis a cube
9 eg,s=x1/N\x2AX3

@ The negation of a CTl is a clause
8 eg., s =-x1 VXV x3

@ Conjoining —s to a reachability assumption F; excludes the
CTI from it

@ Generalization extracts a subclause from —s that excludes
more states that are “like the CTI”
¢ e.g., —x3 may be a subclause of —s that excludes states that,
like the CTI, are not reachable in i steps
o Every literal dropped doubles the number of states excluded by
a clause
o Generalization is time-consuming, but critical to performance
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Generalization

(4]

Crucial for efficiency

(]

Generalization in 1C3 produces a minimal inductive clause

(MIC)
The MIC algorithm is based on DOWN and UP.
DOWN extracts the (unique) maximal subclause

UP finds a small, but not necessarily minimal subclause

e © ¢ ¢

MIC recurs on subclauses of the result of UP



Minimal Inductive Clause




Minimal Inductive Clause




Minimal Inductive Clause




Minimal Inductive Clause




Minimal Inductive Clause




—x1 VX2 V —x3

O <G>




X1 V X Vi s

A



(AN

X2 \Vi —x3




Maximal Inductive Subclause (DOWN)



X2

Do
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Use of UNSAT Cores

@ sANF,ANT = —sifandonly if =sANF; AT AS"is
unsatisfiable

@ The literals of s’ are (unit) clauses in the SAT query

o If the implication holds, the SAT solver returns an
unsatisfiable core

@ Any literal of s’ not in the core can be removed from s’
because it does not contribute to the implication . ..

@ and from —s because strengthening the antecedent preserves
the implication
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Use of UNSAT Core Example
@ sAFg AT = —s with

—s = —x1 V xo
Fo=—-x1 A%
T:(—|X1/\—|X2/\—|X]/_/\_'Xé)\/"'

@ The SAT query, after some simplification, is
/ / / /
—ixy A xo A xyp A xo A X A\ Xp
@ Two UNSAT cores are

—x1 A X

—xp A\ X

from which the two generalizations we saw before follow
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Clause Clean-Up

@ As IC3 proceeds, clauses may be added to some F;s that
subsume other clauses

@ The weaker, subsumed clauses no longer contribute to the
definition of F;

@ However, a weaker clause may propagate to F;; when the
stronger clause does not

@ Weak clauses are eliminated by subsumption only between
major iterations and after propagation
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More Efficiency-Related Issues

(]

State encoding determines what clauses are derived
Incremental vs. monolithic

(]

¢ Reachability assumptions carry global information
@ ...but are built incrementally

(]

Semantic vs. syntactic approach
o Generalization “jumps over large distances”

(]

Long counterexamples at low k

o Typically more efficient than increasing k
@ Consequences of no unrolling

@ Many cheap (incremental) SAT calls
Ability to parallelize

o Clauses are easy to exchange

Bibliography
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IC3 and Interpolation

@ An interesting analysis to be presented on Tuesday by Een,
Mishchenko, and Brayton
@ In the tutorial paper:

o Both methods address the failure of consecution from an
over-approximating /-step set.

@ Interpolation unrolls to produce an (interpolant-based)
abstract post operator. When consecution fails, a greater
unrolling refines the abstract post operator, yielding more
refined over-approximating stepwise sets.

o IC3 uses the CTI from the failure to direct the refinement of F;
(and Fl, ey F,'_l).

¢ In other words, they focus on refining different parts of
consecution.

@ IC3 is more incremental and does not require unrolling the
transition relation.
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Applications

Checking all w-regular properties
@ Cycle detection reduced to several reachability queries

@ Inductive proofs of unreachability refine partition of state
space into SCC-closed regions

Incremental verification

@ A proof from one revision of a circuit provides a starting point
for the proof of the next revision

@ Same for counterexample
@ Some “patching” may be needed

More coming
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