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Agenda

Cover three topics using a real design in a simulation setting

• End-to-end formal

• Abstractions to achieve convergence

• Coverage to measure completeness
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The design



The design: Packet rewrite module (PRM)

PayloadStart End

cell #1 cell #2 cell #N

Stage #1 : Fragmentation; Packet to cells

Stage #2 : Insert/Strip/Replace operations; Modify cell(s)

New payload Payload #2

Stage #3 : CellReformatter: Reformats into cell(s)

Stage #4 : Repacking; Cells to packet

Payload'''Start End

Start EndPayload #2'

cell #2cell #1 cell #M-1 cell #M

Payload #(M–1)''Payload #2''Payload #1Start

New payload

Payload #1 Payload #2Start

Payload #(N-1)' Payload #N'

Payload #N-1 EndPayload #N

cell #1 cell #2

cell #N-1

Payload #1’

EndPayload #M''

cell #N-1 cell #N

Modified cell
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CellReformatter inputs/outputs

CellReformatter

clk

reset

portIdIn

cellIn

cellInAttri

Interface 
to stage 
#2

cellOut

cellOutAttri

Interface 
to stage

#4

portIdOut

validIn validOut

flowCtrlOut

portId
56 concurrent ports

{SOP, EOP, Size}

throttles cells for a 
port
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CellReformatter in action

Payload #1’
SOP = 0, Size = 140, EOP = 0

Start

Payload #2’

SOP = 1, Size = 120, EOP = 0

SOP = 0, Size = 130, EOP = 0

Payload #3’

Payload #1’’Start

SOP = 1, Size = 128, EOP = 0
{ Payload #1’, Payload #2’.bytes[0:7] }

SOP = 0, Size = 128, EOP = 0
{ Payload #2’.bytes[8:135] }

Payload #2’’

SOP = 0, Size = 128, EOP = 0
{ Payload #2’.bytes[136:139], 
Payload #3’.bytes[0:123] }

Payload #3’’

CellReformatter
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Design summary

Attribute Value

Inputs 4,425

Outputs 3,488

Memory bits 948,636

Total flops 1,048,481

• Large data path

• 256 Bytes in one cycle

• 56 concurrent ports

• Interleave data for a given packet

• Multiple partial packets can be outstanding 
for different ports

• RTL stores up to 16 cells

• QOS requirements depending on register 
programming

• Design has to deal with input errors
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Memory architecture
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• 3 FIFOs in the design

• dataFifo: stores the reformatted cells

• statusFifo: stores the attributes of  cells

• stateFifo: stores the read and write address 
pointers of the port

• Bank architecture

• oddBank: determines the memory bank 
and toggles every cycle to avoid bank 
contention

• streamId: determines the memory address 
in a bank

• Each bank is divided into 2 single port 
RAMs: MSB & LSB



Formal in a simulation world



Types of post-silicon flaws
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Verification is the still the largest problem
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Verification market size (2009)*

Simulation
($401.8M)

Formal
($38.3M)
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• Gate-level formal (equivalence checking)
• Then (1993): Chrysalis; Now: Cadence (Verplex), Synopsys

• RTL formal (model checking)
• Then (1994): Averant, IBM; Now: Jasper, Mentor (0-In)

Source:
Gary Smith EDA, 

October 2010

* excluding analog
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Formal tool usage in industry

Formal
($38.3M)

Source: xkcd.com

• Around for 20 years

• Expectations has been set high

• Low effort for constraints

• Tools run fast enough

• Expectations have been set low

• Only verify local assertions

• No End-to-End proofs

• Perception: low !/$

• Training and staffing

• Few places to learn formal 
application

• Single user should not do both 
formal and simulation
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Tradeoffs in design flow
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Resources

Source:
Stuart Oberman, NVIDIA



Achieving verification closure

Plan

Verify

Measure

Apply Abstractions for Verification Convergence

Integrate Formal and Simulation Coverage

Partition Verification between Formal and Simulation
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Where to apply model checking

10/30/2011

“Control”, “Data Transport” designs

• Arbiters of many kinds

• Interrupt controller

• Power management unit

• Credit manager block

• Tag generator

• Schedulers

Multiple, concurrent streams

Hard to completely verify using simulation

“10 bugs per 1000 gates” 

-Ted Scardamalia, IBM

• Bus bridge

• Memory Controller

• DMA controller

• Host bus interface

• Standard interfaces (PCI Express, USB)

• Clock disable unit
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“Data transform” designs
• Floating point unit

• Graphics shading unit

• Inverse quantization

• Convolution unit in a DSP chip

• MPEG decoder

• Classification search algorithm

• Instruction decode

Where not to apply model checking
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Single, sequential functional streams

“2 bugs per 1000 gates” 

-Ted Scardamalia, IBM
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Simulation

Formal (MC)
MAC

AXI-AHB
BRIDGE

RF

DEC SCH EXEC

LSUINT ARM

MC

USB
C

BB
USB 
PHY

GPIO I2CTIMR

Formal (SEC) DMAC

Formal (MC, SEC*) and simulation strengths

* SEC = Sequential Equivalence Checking (RTL vs C model)



How perfect does formal have to be?
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Graphic: MacGregor
Marketing• Not all bugs need to found/fixed

• Formal does not need to find the last bug

• Usually bounded proofs are good enough
(if bound is good enough!)

• Formal has to be more cost-effective than the alternative



Verification manager’s dashboard
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Coverage tracking

Bug tracking

Runtime status



Design Under Test
(DUT)

A formal testbench

Constraints

Checkers
(Scoreboard)

Coverage
(code and 
functional)

Abstraction Models
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Three Cs of Formal

• Checkers

• Constraints

• Complexity

• (using Abstraction Models)

• … and Coverage (to measure completeness of formal)
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End-to-End formal



Different kinds of Checkers

• Internal assertions

• Interface assertions

• End-to-end checkers
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RTL

Internal assertions

AXI4
AVIP

DDR2
AVIP

Interface
assertions

End-to-End
Checker



Internal assertions

• Relate a few design signals

• Can be written completely in SVA

• Usually embedded in RTL, and written by designers

• e.g. state machine “sm[7:0]” is one-hot encoded

• Useful for bug hunting

• Not for finding all/most bugs, or as replacement for simulation effort

• Complexity

• Can be small, if proof core is small

24 10/30/2011



Interface assertions

• Relate input and output signals on a given interface

• May require a small amount of modeling code

• E.g. valid-ack protocol
(validOut && (!ackIn)) |-> ##1 (dataOut == $past(dataOut));

• Protocol interfaces kits, e.g. AMBA AHB/AXI3, DDR/DDR2

• Useful for bug hunting

• Not for finding all/most bugs, or as replacement for simulation effort

• Complexity

• Often harder to prove than internal assertions
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End-to-End Checkers

• Require a reference model to implement Checker

• Can replace simulation effort for that design, mostly or 
completely

• Usually needs a plan to avoid complexity barrier

• Often abstractions are necessary to overcome complexity

• For each search step

• Reduce the diameter of search

• Example of end-to-end checkers

• Number of bytes coming out equals number of bytes going in

• Output cell sizes and SOP/EOP corresponds to input data

• Output data values match predicted values
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End-to-End Checkers

• For End-to-End formal verification, less than 5% of Checker code is 
SVA; rest is SV or Verilog

• (Synthesizable) Reference model is typically as big an effort as the RTL

27

Memory
Controller (MC)

RTL

D  D  R  2   i/f

A  X  I  4   i/f

MC Checker

FSM

FIFO

Counters

MC Reference Model

SVA Assertions
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PRM Checkers

• Model reformatting function

• Model sizes and data of cells in flight

• Predict output cell sizes and data value

PRM

PRM Checker

FSM

FIFO

Counters

PRM Reference Model

SVA Assertions
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• Interface checkers

• For a port, between 2 cells of SOP as 1 there should be cell with EOP as 1

• For a port, between 2 cells of EOP as 1 there should be cell with SOP as 1

• For a port, the next valid cell after an EOP as 1 must have SOP as 1

• Output cell should have Size > 0

• Output cell with EOP as 0 should have Size =128

• End-to-end checkers

• For a port, the valid output (validOut) can be 1 only if there are outstanding 
cells in flight that have not been sent out

• For a port, payload of a cell at the output should correspond to payload of 
expected cell in the reference model

PRM Checkers

29 10/30/2011



Abstractions to overcome 
complexity



Source of Complexity

input a;
reg b;
reg [1:0] st;

always @(posedge clk or negedge rst)
if (~rst) st <= 2’b00;
else case( st )

2’b00:  if (~a) st <= 2’b01;
2’b01:  st <= 2’b10;
2’b10:  if (a) st <= 2’b00;
endcase

always @(posedge clk or negedge rst)
if (~rst) b <= 1’b0;
else if (~a | b) b <= 1’b0;
else b <= 1’b1;

Checker:  (st == 2’b01) => ~b

a
st[0]

st[1]

b

RTL
Internal netlist

State Transition
Graph (STG)
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23 = 8
210 = 1,024
220 = 1,048,576
230 = 1,073,741,824



Irrelevant
Logic

Cone-of-
Influence

Design
Block

Checker

Complexity – function of Cone-of-Influence

• One coarse measure of Complexity

• number of flops/memory bits in the Cone-of-Influence of the Checker
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State space complexity

33
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Abstractions (to manage complexity)

• An “Abstraction” of a design models a superset of the 
design behavior

• Useful to overcome complexity barriers

• Smaller Cone-of-Influence

• Shallower search space

• Ability to skip long initialization sequences

• Cannot give a false positive

• Can give a false negative (Fail), but…

• you get a trace to determine the reason for the negative
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Complexity (and Abstractions)

35
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• Effect of abstractions:

• Reduce per-cycle 
search time

• Reduces state space

• Adds state transitions

• Adds Reset states
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Overcoming complexity with Abstractions
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DESIGN SIZE

Without Abstractions

With Abstractions

Realistic design sizes
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CellReformatter memory abstraction
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Size

SOP

EOP
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3
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Checker:
(rtl.validOut |-> 
(rtl.cellOut = ref.cellOut))
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CellReformatter memory abstraction
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Abstraction:
Watch index B (variable)
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CellReformatter memory abstraction
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2

00
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3
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Checker:
(rtl.validOut && 
(rtl.cellOutAttri.Size > C)) |-> 
(rtl.cellOut[C] = ref.cellOut[C]))

1 03 2
initial(C) <= B
if (rtl.validOut)
next(C) <= (C – rtl.cellOutAttri.Size) % 4;

C3 3 1–2

B

Abstraction:
Watch index B (variable)
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Deploying memory abstraction

CellReformatter

Input 
interface

RTL memory

Abstract memory

Output 
interface

Bind inputs of RTL 
memory and abstract 
memory 

Add constraints to connect 
output interface to output of 
abstract memory

D

Cut-point

MSB LSB

MSBLSB
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module rtl_memory (
input clk, input we,
input [3:0] addr,
input [127:0] wd,
output [127:0] rd);

reg [127:0] mem [15:0];

always @(posedge clk)
if (we) mem[addr] <= wd;

wire rd = mem[addr];

endmodule

RTL memory

41 10/30/2011

Abstraction for RTL memory

module abs_memory (
input clk, input we,
input [3:0] addr,
input [127:0] wd,
input [6:0] B );

reg mem [15:0];

always @(posedge clk)
if (we) mem[addr] <= wd[B];

wire rd = mem[addr];

endmodule

Abstract memory

• Bind abs_memory to same inputs as rtl_memory
• Bind input B to variable B
• Blackbox rtl_memory
• Assume (rtl_memory.rd[B] == abs_memory.rd)



Abstraction for RTL memory

• Without the abstraction:

• Entire memory (128 * 16 = 2,048 bits) is in the COI for the checker:

• Checker: (rtl.validOut |-> (rtl.cellOut[C] = ref.cell Out[C]))

• Run-time: 0 cycles in 20min

• With the memory abstraction:

• Only one bit per line; total of 16 bits

• Run-time: 30 cycles in 20min

• Can implement a more aggressive abstraction:

• Check only one symbolic bit per run

• Use random input that becomes one for exactly one bit 

• Modeling C is a bit more complex
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Other abstractions for PRM

• Port number is a fixed variable

• 0 <= P <= 55

• Byte number is a fixed variable

• 0 <= I <= 7

• Wolper’s data independence abstraction is used to verify 
data corruption

• Replace input sequence by 0*110ω

• Verify that the output sequence equals 0*110ω
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Abstractions

• Other example of abstractions:

• Localization

• Datapath

• Memory

• Sequence

• Counter

• Floating pulse

• Without abstractions:

• On most interesting designs, formal tools do not search far enough
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Coverage to measure 
completeness



1. reg p;
2. always @(*) begin
3.   if (a || (b && c))
4.     p = d;
5.   else
6.     p = e;
7. end

Coverage on RTL designs

a

RTL (Verilog)

Gate-level
netlist
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1. reg w, p;
2. always @(*) begin
3. w = a || (b && c);
4. end
5. always @ (*) begin
6. p = (w && d) || ((!w) && e);
7. end

Equivalent RTL

b

d

c

e
p

Synthesis



1. reg p;
2. always @(*) begin
3.   if (a || (b && c))
4.     p = d;
5.   else
6.     p = e;
7. end

Input Coverage: line/expression coverage

10/30/2011

a b c p

0 0 0 e

0 0 1 e

0 1 0 e

0 1 1 d

1 0 0 d

1 0 1 d

1 1 0 d

1 1 1 d

a b c p

0 0 0 e

0 0 1 e

0 1 0 e

0 1 1 d

1 0 0 d

1 0 1 d

1 1 0 d

1 1 1 d

target #1

target #2

#1

#2

#3

#4

Line
coverage

Expression
coverage
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Code coverage vs STG coverage
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input a;
reg b;
reg [1:0] st;

always @(posedge clk or negedge rst)
if (~rst) st <= 2’b00;
else case( st )

2’b00:  if (~a) st <= 2’b01;
2’b01:  st <= 2’b10;
2’b10:  if (a) st <= 2’b00;
endcase

always @(posedge clk or negedge rst)
if (~rst) b <= 1’b0;
else if (~a | b) b <= 1’b0;
else b <= 1’b1;



Simulation coverage (a = 0)
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input a;
reg b;
reg [1:0] st;

always @(posedge clk or negedge rst)
if (~rst) st <= 2’b00;
else case( st )

2’b00:  if (~a) st <= 2’b01;
2’b01:  st <= 2’b10;
2’b10:  if (a) st <= 2’b00;
endcase

always @(posedge clk or negedge rst)
if (~rst) b <= 1’b0;
else if (~a | b) b <= 1’b0;
else b <= 1’b1;



Coverage reporting
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Coverage reporting
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Coverage-driven simulation methodology

BFMs

RTL
Verification

Plan
Spec

Checker

Coverage
ModelTests

Coverage
Analysis

More tests

Constraint and bias refinement

TestsTests
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Waiver
List



Coverage for hardware designs

• Trivial to get to 60-70% code coverage

• 100% line/expression coverage often required for tapeouts

• Manual waivers are allowed

• NVIDIA SNUG 2011 paper

• 270 man weeks to do waiver analysis for one design

• 180 man weeks to write missing tests
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• Two questions determine completeness:

• “Have I verified enough input sequences” (input coverage)

• “Is my set of checkers complete enough” (observable coverage)

• Same two notions apply for both simulation AND formal

• Bounded model checking is a practical formal technique

• 100% coverage does not mean design is bug-free

• But, coverage is useful to

• manage verification progress

• highlight missed verification holes

Coverage (input vs observable)
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Is my formal complete?

• Are my Checkers complete?

• Are my Constraints weak enough?

• Is my Complexity strategy complete?
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Formal coverage (depth = 1)
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input a;
reg b;
reg [1:0] st;

always @(posedge clk or negedge rst)
if (~rst) st <= 2’b00;
else case( st )

2’b00:  if (~a) st <= 2’b01;
2’b01:  st <= 2’b10;
2’b10:  if (a) st <= 2’b00;
endcase

always @(posedge clk or negedge rst)
if (~rst) b <= 1’b0;
else if (~a | b) b <= 1’b0;
else b <= 1’b1;



Formal (input) coverage 

• Constraints: Environment may be over-constrained

• Intentional: avoided some hard to model or verify input 
combinations

• Unintentional: bugs in constraints; forgot to remove intentional 
over-constraints

• Complexity: All checkers are verified up to proof depth N

• Any target, not reachable in N clocks, is not covered

• Checkers: does not verify completeness of Checkers

• No different than simulation!
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AXI
BFM

PCIe
BFM

Transaction
Layer

Data Link
Layer

Physical
Layer

AXI-PCIe bridge checker

Coverage CoverageCoverage

Testlist
#2

+
Coverage

DB #1
Coverage

DB #2
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Coverage database collection



AXI
constraints

TL
constraints

Transaction
Layer

AXI
asserts

Coverage

internal
asserts

End-to-end
checkers

Formal
Coverage

DB
Coverage

DB #1 + +
Coverage

DB #2

Formal coverage integrated with simulation
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Formal code coverage methodology

Implement Checkers
and Constraints

Run formal verification
and collect Coverage

Are
Coverage goals

met?

Add Abstractions
and/or fix Constraints

Design is formally
verified
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PRM coverage (with abstractions)

61

Proof depth Line
coverage

Expression 
coverage

7 96.5% 100.0%

15 99.5% 100.0%

63 99.7% 100.0%

• Without abstractions, with 20m run-time, Proof depth 

reached was still 0 (0% coverage)
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• Using Cadence IEV (Incisive Enterprise Verifier)



• End-to-End formal is what replaces simulation

• Abstractions are necessary to achieve convergence

• Coverage helps measure completeness

Conclusions
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