
End-to-End Formal using Abstractions to
Maximize Coverage

PRASHANT AGGARWAL
OSKI TECHNOLOGY

DARROW CHU
CADENCE DESIGN SYSTEMS

VIJAY KADAMBY
CISCO

VIGYAN SINGHAL
OSKI TECHNOLOGY

Agenda

Cover three topics using a real design in a simulation setting

• End-to-end formal

• Abstractions to achieve convergence

• Coverage to measure completeness

2 10/30/2011

The design

The design: Packet rewrite module (PRM)

PayloadStart End

cell #1 cell #2 cell #N

Stage #1 : Fragmentation; Packet to cells

Stage #2 : Insert/Strip/Replace operations; Modify cell(s)

New payload Payload #2

Stage #3 : CellReformatter: Reformats into cell(s)

Stage #4 : Repacking; Cells to packet

Payload'''Start End

Start EndPayload #2'

cell #2cell #1 cell #M-1 cell #M

Payload #(M–1)''Payload #2''Payload #1Start

New payload

Payload #1 Payload #2Start

Payload #(N-1)' Payload #N'

Payload #N-1 EndPayload #N

cell #1 cell #2

cell #N-1

Payload #1’

EndPayload #M''

cell #N-1 cell #N

Modified cell

10/30/20114

CellReformatter inputs/outputs

CellReformatter

clk

reset

portIdIn

cellIn

cellInAttri

Interface
to stage
#2

cellOut

cellOutAttri

Interface
to stage

#4

portIdOut

validIn validOut

flowCtrlOut

portId
56 concurrent ports

{SOP, EOP, Size}

throttles cells for a
port

5 10/30/2011

CellReformatter in action

Payload #1’
SOP = 0, Size = 140, EOP = 0

Start

Payload #2’

SOP = 1, Size = 120, EOP = 0

SOP = 0, Size = 130, EOP = 0

Payload #3’

Payload #1’’Start

SOP = 1, Size = 128, EOP = 0
{ Payload #1’, Payload #2’.bytes[0:7] }

SOP = 0, Size = 128, EOP = 0
{ Payload #2’.bytes[8:135] }

Payload #2’’

SOP = 0, Size = 128, EOP = 0
{ Payload #2’.bytes[136:139],
Payload #3’.bytes[0:123] }

Payload #3’’

CellReformatter

6 10/30/2011

Design summary

Attribute Value

Inputs 4,425

Outputs 3,488

Memory bits 948,636

Total flops 1,048,481

• Large data path

• 256 Bytes in one cycle

• 56 concurrent ports

• Interleave data for a given packet

• Multiple partial packets can be outstanding
for different ports

• RTL stores up to 16 cells

• QOS requirements depending on register
programming

• Design has to deal with input errors

7 10/30/2011

Memory architecture

8 10/30/2011

• 3 FIFOs in the design

• dataFifo: stores the reformatted cells

• statusFifo: stores the attributes of cells

• stateFifo: stores the read and write address
pointers of the port

• Bank architecture

• oddBank: determines the memory bank
and toggles every cycle to avoid bank
contention

• streamId: determines the memory address
in a bank

• Each bank is divided into 2 single port
RAMs: MSB & LSB

Formal in a simulation world

Types of post-silicon flaws

0%

10%

20%

30%

40%

50%

60%

2004

2007

2010

Wilson Research Group and Mentor Graphics
2010 Functional Verification Study. Used with permission.

R
es

po
ns

es

10

Verification is the still the largest problem

10/30/2011

Verification market size (2009)*

Simulation
($401.8M)

Formal
($38.3M)

0

50

100

150

200

250

300

350

400

450

Gate-level RTL

M
ill

io
ns

Simulation Formal

$0.4M

• Gate-level formal (equivalence checking)
• Then (1993): Chrysalis; Now: Cadence (Verplex), Synopsys

• RTL formal (model checking)
• Then (1994): Averant, IBM; Now: Jasper, Mentor (0-In)

Source:
Gary Smith EDA,

October 2010

* excluding analog

11 10/30/2011

Formal tool usage in industry

Formal
($38.3M)

Source: xkcd.com

• Around for 20 years

• Expectations has been set high

• Low effort for constraints

• Tools run fast enough

• Expectations have been set low

• Only verify local assertions

• No End-to-End proofs

• Perception: low !/$

• Training and staffing

• Few places to learn formal
application

• Single user should not do both
formal and simulation

12 10/30/2011

Tradeoffs in design flow

10/30/201113

Resources

Source:
Stuart Oberman, NVIDIA

Achieving verification closure

Plan

Verify

Measure

Apply Abstractions for Verification Convergence

Integrate Formal and Simulation Coverage

Partition Verification between Formal and Simulation

14 10/30/2011

Where to apply model checking

10/30/2011

“Control”, “Data Transport” designs

• Arbiters of many kinds

• Interrupt controller

• Power management unit

• Credit manager block

• Tag generator

• Schedulers

Multiple, concurrent streams

Hard to completely verify using simulation

“10 bugs per 1000 gates”

-Ted Scardamalia, IBM

• Bus bridge

• Memory Controller

• DMA controller

• Host bus interface

• Standard interfaces (PCI Express, USB)

• Clock disable unit

15

“Data transform” designs
• Floating point unit

• Graphics shading unit

• Inverse quantization

• Convolution unit in a DSP chip

• MPEG decoder

• Classification search algorithm

• Instruction decode

Where not to apply model checking

10/30/2011

Single, sequential functional streams

“2 bugs per 1000 gates”

-Ted Scardamalia, IBM

16

f(x) g(y) h(z)

10/30/201117

Simulation

Formal (MC)
MAC

AXI-AHB
BRIDGE

RF

DEC SCH EXEC

LSUINT ARM

MC

USB
C

BB
USB
PHY

GPIO I2CTIMR

Formal (SEC) DMAC

Formal (MC, SEC*) and simulation strengths

* SEC = Sequential Equivalence Checking (RTL vs C model)

How perfect does formal have to be?

10/30/201118

Graphic: MacGregor
Marketing• Not all bugs need to found/fixed

• Formal does not need to find the last bug

• Usually bounded proofs are good enough
(if bound is good enough!)

• Formal has to be more cost-effective than the alternative

Verification manager’s dashboard

10/30/201119

Coverage tracking

Bug tracking

Runtime status

Design Under Test
(DUT)

A formal testbench

Constraints

Checkers
(Scoreboard)

Coverage
(code and
functional)

Abstraction Models

20 10/30/2011

Three Cs of Formal

• Checkers

• Constraints

• Complexity

• (using Abstraction Models)

• … and Coverage (to measure completeness of formal)

21 10/30/2011

End-to-End formal

Different kinds of Checkers

• Internal assertions

• Interface assertions

• End-to-end checkers

23 10/30/2011

RTL

Internal assertions

AXI4
AVIP

DDR2
AVIP

Interface
assertions

End-to-End
Checker

Internal assertions

• Relate a few design signals

• Can be written completely in SVA

• Usually embedded in RTL, and written by designers

• e.g. state machine “sm[7:0]” is one-hot encoded

• Useful for bug hunting

• Not for finding all/most bugs, or as replacement for simulation effort

• Complexity

• Can be small, if proof core is small

24 10/30/2011

Interface assertions

• Relate input and output signals on a given interface

• May require a small amount of modeling code

• E.g. valid-ack protocol
(validOut && (!ackIn)) |-> ##1 (dataOut == $past(dataOut));

• Protocol interfaces kits, e.g. AMBA AHB/AXI3, DDR/DDR2

• Useful for bug hunting

• Not for finding all/most bugs, or as replacement for simulation effort

• Complexity

• Often harder to prove than internal assertions

25 10/30/2011

End-to-End Checkers

• Require a reference model to implement Checker

• Can replace simulation effort for that design, mostly or
completely

• Usually needs a plan to avoid complexity barrier

• Often abstractions are necessary to overcome complexity

• For each search step

• Reduce the diameter of search

• Example of end-to-end checkers

• Number of bytes coming out equals number of bytes going in

• Output cell sizes and SOP/EOP corresponds to input data

• Output data values match predicted values

26 10/30/2011

End-to-End Checkers

• For End-to-End formal verification, less than 5% of Checker code is
SVA; rest is SV or Verilog

• (Synthesizable) Reference model is typically as big an effort as the RTL

27

Memory
Controller (MC)

RTL

D D R 2 i/f

A X I 4 i/f

MC Checker

FSM

FIFO

Counters

MC Reference Model

SVA Assertions

10/30/2011

PRM Checkers

• Model reformatting function

• Model sizes and data of cells in flight

• Predict output cell sizes and data value

PRM

PRM Checker

FSM

FIFO

Counters

PRM Reference Model

SVA Assertions

28 10/30/2011

• Interface checkers

• For a port, between 2 cells of SOP as 1 there should be cell with EOP as 1

• For a port, between 2 cells of EOP as 1 there should be cell with SOP as 1

• For a port, the next valid cell after an EOP as 1 must have SOP as 1

• Output cell should have Size > 0

• Output cell with EOP as 0 should have Size =128

• End-to-end checkers

• For a port, the valid output (validOut) can be 1 only if there are outstanding
cells in flight that have not been sent out

• For a port, payload of a cell at the output should correspond to payload of
expected cell in the reference model

PRM Checkers

29 10/30/2011

Abstractions to overcome
complexity

Source of Complexity

input a;
reg b;
reg [1:0] st;

always @(posedge clk or negedge rst)
if (~rst) st <= 2’b00;
else case(st)

2’b00: if (~a) st <= 2’b01;
2’b01: st <= 2’b10;
2’b10: if (a) st <= 2’b00;
endcase

always @(posedge clk or negedge rst)
if (~rst) b <= 1’b0;
else if (~a | b) b <= 1’b0;
else b <= 1’b1;

Checker: (st == 2’b01) => ~b

a
st[0]

st[1]

b

RTL
Internal netlist

State Transition
Graph (STG)

31 10/30/2011

23 = 8
210 = 1,024
220 = 1,048,576
230 = 1,073,741,824

Irrelevant
Logic

Cone-of-
Influence

Design
Block

Checker

Complexity – function of Cone-of-Influence

• One coarse measure of Complexity

• number of flops/memory bits in the Cone-of-Influence of the Checker

32 10/30/2011

State space complexity

33

R

3

1

1

2

1

1

2

2

3

8191

3

2

3

8191

81918191

255 255.

10/30/2011

Abstractions (to manage complexity)

• An “Abstraction” of a design models a superset of the
design behavior

• Useful to overcome complexity barriers

• Smaller Cone-of-Influence

• Shallower search space

• Ability to skip long initialization sequences

• Cannot give a false positive

• Can give a false negative (Fail), but…

• you get a trace to determine the reason for the negative

34 10/30/2011

Complexity (and Abstractions)

35

R

2

1

1

2

1

1

3

2

2

255. . .

R

• Effect of abstractions:

• Reduce per-cycle
search time

• Reduces state space

• Adds state transitions

• Adds Reset states

10/30/2011

Overcoming complexity with Abstractions

10/30/201136

DESIGN SIZE

Without Abstractions

With Abstractions

Realistic design sizes

R
U

N
T

IM
E

CellReformatter memory abstraction

37 OSKI TECHNOLOGY CONFIDENTIAL

Size

SOP

EOP

11

000

0 0 0

3

111

11 1

342 Size

SOP

EOP

2

00

0 0 1

3

111

11

441

1 03 2

Checker:
(rtl.validOut |->
(rtl.cellOut = ref.cellOut))

10/30/2011

CellReformatter memory abstraction

38

Size

SOP

EOP

11

000

0 0 0

3

111

11 1

342 Size

SOP

EOP

2

00

0 0 1

3

111

11

441

1 03 2

C

B

Abstraction:
Watch index B (variable)

10/30/2011

CellReformatter memory abstraction

39

Size

SOP

EOP

11

000

0 0 0

3

111

11 1

342 Size

SOP

EOP

2

00

0 0 1

3

111

11

441

Checker:
(rtl.validOut &&
(rtl.cellOutAttri.Size > C)) |->
(rtl.cellOut[C] = ref.cellOut[C]))

1 03 2
initial(C) <= B
if (rtl.validOut)
next(C) <= (C – rtl.cellOutAttri.Size) % 4;

C3 3 1–2

B

Abstraction:
Watch index B (variable)

10/30/2011

Deploying memory abstraction

CellReformatter

Input
interface

RTL memory

Abstract memory

Output
interface

Bind inputs of RTL
memory and abstract
memory

Add constraints to connect
output interface to output of
abstract memory

D

Cut-point

MSB LSB

MSBLSB

40 10/30/2011

module rtl_memory (
input clk, input we,
input [3:0] addr,
input [127:0] wd,
output [127:0] rd);

reg [127:0] mem [15:0];

always @(posedge clk)
if (we) mem[addr] <= wd;

wire rd = mem[addr];

endmodule

RTL memory

41 10/30/2011

Abstraction for RTL memory

module abs_memory (
input clk, input we,
input [3:0] addr,
input [127:0] wd,
input [6:0] B);

reg mem [15:0];

always @(posedge clk)
if (we) mem[addr] <= wd[B];

wire rd = mem[addr];

endmodule

Abstract memory

• Bind abs_memory to same inputs as rtl_memory
• Bind input B to variable B
• Blackbox rtl_memory
• Assume (rtl_memory.rd[B] == abs_memory.rd)

Abstraction for RTL memory

• Without the abstraction:

• Entire memory (128 * 16 = 2,048 bits) is in the COI for the checker:

• Checker: (rtl.validOut |-> (rtl.cellOut[C] = ref.cell Out[C]))

• Run-time: 0 cycles in 20min

• With the memory abstraction:

• Only one bit per line; total of 16 bits

• Run-time: 30 cycles in 20min

• Can implement a more aggressive abstraction:

• Check only one symbolic bit per run

• Use random input that becomes one for exactly one bit

• Modeling C is a bit more complex
42 10/30/2011

Other abstractions for PRM

• Port number is a fixed variable

• 0 <= P <= 55

• Byte number is a fixed variable

• 0 <= I <= 7

• Wolper’s data independence abstraction is used to verify
data corruption

• Replace input sequence by 0*110ω

• Verify that the output sequence equals 0*110ω

43 10/30/2011

Abstractions

• Other example of abstractions:

• Localization

• Datapath

• Memory

• Sequence

• Counter

• Floating pulse

• Without abstractions:

• On most interesting designs, formal tools do not search far enough

44 10/30/2011

Coverage to measure
completeness

1. reg p;
2. always @(*) begin
3. if (a || (b && c))
4. p = d;
5. else
6. p = e;
7. end

Coverage on RTL designs

a

RTL (Verilog)

Gate-level
netlist

46 10/30/2011

1. reg w, p;
2. always @(*) begin
3. w = a || (b && c);
4. end
5. always @ (*) begin
6. p = (w && d) || ((!w) && e);
7. end

Equivalent RTL

b

d

c

e
p

Synthesis

1. reg p;
2. always @(*) begin
3. if (a || (b && c))
4. p = d;
5. else
6. p = e;
7. end

Input Coverage: line/expression coverage

10/30/2011

a b c p

0 0 0 e

0 0 1 e

0 1 0 e

0 1 1 d

1 0 0 d

1 0 1 d

1 1 0 d

1 1 1 d

a b c p

0 0 0 e

0 0 1 e

0 1 0 e

0 1 1 d

1 0 0 d

1 0 1 d

1 1 0 d

1 1 1 d

target #1

target #2

#1

#2

#3

#4

Line
coverage

Expression
coverage

47

Code coverage vs STG coverage

00,0

01,000,1

01
1

0

1

0

10,0

0

10,1

1

0

1

11,1

11,0 01,1

48 10/30/2011

input a;
reg b;
reg [1:0] st;

always @(posedge clk or negedge rst)
if (~rst) st <= 2’b00;
else case(st)

2’b00: if (~a) st <= 2’b01;
2’b01: st <= 2’b10;
2’b10: if (a) st <= 2’b00;
endcase

always @(posedge clk or negedge rst)
if (~rst) b <= 1’b0;
else if (~a | b) b <= 1’b0;
else b <= 1’b1;

Simulation coverage (a = 0)

00,0

01,000,1

01
1

0

1

0

10,0

0

10,1

1

0

1

11,1

11,0 01,1

49 10/30/2011

input a;
reg b;
reg [1:0] st;

always @(posedge clk or negedge rst)
if (~rst) st <= 2’b00;
else case(st)

2’b00: if (~a) st <= 2’b01;
2’b01: st <= 2’b10;
2’b10: if (a) st <= 2’b00;
endcase

always @(posedge clk or negedge rst)
if (~rst) b <= 1’b0;
else if (~a | b) b <= 1’b0;
else b <= 1’b1;

Coverage reporting

50 10/30/2011

Coverage reporting

OSKI TECHNOLOGY CONFIDENTIAL51 10/30/2011

Coverage-driven simulation methodology

BFMs

RTL
Verification

Plan
Spec

Checker

Coverage
ModelTests

Coverage
Analysis

More tests

Constraint and bias refinement

TestsTests

10/30/201152

Waiver
List

Coverage for hardware designs

• Trivial to get to 60-70% code coverage

• 100% line/expression coverage often required for tapeouts

• Manual waivers are allowed

• NVIDIA SNUG 2011 paper

• 270 man weeks to do waiver analysis for one design

• 180 man weeks to write missing tests

53 10/30/2011

• Two questions determine completeness:

• “Have I verified enough input sequences” (input coverage)

• “Is my set of checkers complete enough” (observable coverage)

• Same two notions apply for both simulation AND formal

• Bounded model checking is a practical formal technique

• 100% coverage does not mean design is bug-free

• But, coverage is useful to

• manage verification progress

• highlight missed verification holes

Coverage (input vs observable)

10/30/201154

Is my formal complete?

• Are my Checkers complete?

• Are my Constraints weak enough?

• Is my Complexity strategy complete?

55 10/30/2011

Formal coverage (depth = 1)

00,0

01,000,1

01
1

0

1

0

10,0

0

10,1

1

0

1

11,1

11,0 01,1

56 10/30/2011

input a;
reg b;
reg [1:0] st;

always @(posedge clk or negedge rst)
if (~rst) st <= 2’b00;
else case(st)

2’b00: if (~a) st <= 2’b01;
2’b01: st <= 2’b10;
2’b10: if (a) st <= 2’b00;
endcase

always @(posedge clk or negedge rst)
if (~rst) b <= 1’b0;
else if (~a | b) b <= 1’b0;
else b <= 1’b1;

Formal (input) coverage

• Constraints: Environment may be over-constrained

• Intentional: avoided some hard to model or verify input
combinations

• Unintentional: bugs in constraints; forgot to remove intentional
over-constraints

• Complexity: All checkers are verified up to proof depth N

• Any target, not reachable in N clocks, is not covered

• Checkers: does not verify completeness of Checkers

• No different than simulation!
57 10/30/2011

AXI
BFM

PCIe
BFM

Transaction
Layer

Data Link
Layer

Physical
Layer

AXI-PCIe bridge checker

Coverage CoverageCoverage

Testlist
#2

+
Coverage

DB #1
Coverage

DB #2

10/30/201158

Coverage database collection

AXI
constraints

TL
constraints

Transaction
Layer

AXI
asserts

Coverage

internal
asserts

End-to-end
checkers

Formal
Coverage

DB
Coverage

DB #1 + +
Coverage

DB #2

Formal coverage integrated with simulation

10/30/201159

Formal code coverage methodology

Implement Checkers
and Constraints

Run formal verification
and collect Coverage

Are
Coverage goals

met?

Add Abstractions
and/or fix Constraints

Design is formally
verified

60 10/30/2011

PRM coverage (with abstractions)

61

Proof depth Line
coverage

Expression
coverage

7 96.5% 100.0%

15 99.5% 100.0%

63 99.7% 100.0%

• Without abstractions, with 20m run-time, Proof depth

reached was still 0 (0% coverage)

10/30/2011

• Using Cadence IEV (Incisive Enterprise Verifier)

• End-to-End formal is what replaces simulation

• Abstractions are necessary to achieve convergence

• Coverage helps measure completeness

Conclusions

10/30/201162

• Adnan Aziz

• Sandesh Borgaonkar

• Choon Chng

• Harry Foster

• Vineet Gupta

• Anton Lopatinsky

• Deepak Pant

• Philippa Slayton

• Shashidhar Thakur

Thanks

10/30/201163

