CS429: Computer Organization and Architecture

Instruction Set Architecture VI

Warren Hunt, Jr. and Bill Young
Department of Computer Sciences
University of Texas at Austin

Last updated: October 14, 2014 at 13:35

(CS429 Slideset 11: 1 Instruction Set Architecture VI

Aligned Data

o Primitive data type requires K bytes.

o Address “should” be a multiple of K.

o This is required on some machines and advised on 1A32.
o Treated differently by Linux and Windows.

Motivation for Aligning Data

@ Memory accessed by (aligned) double or quad-words.

o It's inefficient to load or store a datum that spans quad word
boundaries.

o Virtual memory gets tricky when datum spans 2 pages.

Compiler

@ Inserts gaps in structure to ensure correct alignment of fields.

(CS429 Slideset 11: 2 Instruction Set Architecture VI

Specific Cases of Alignment

Size of Primitive Data Type:
1 byte (e.g., char)
@ no restrictions on address
2 bytes (e.g., short)
o lowest bit of address must be 0>
4 bytes (e.g., int, float, char *, etc)
o lowest 2 bits of address must be 00,
8 bytes (e.g., double)

@ On Windows and most other OSs: lowest 3 bits of address
must be 000,

@ On Linux: lowest 2 bits of address must be 00;; treated as a
4-byte primitive data type.
12 bytes (e.g., long double)
@ On Linux: lowest 2 bits of address must be 00,; treated as a
4-byte primitive data type.

Satisfying Alignment with Structures

Offsets within Structure

o Must satisfy element’s alignment
requirements.

Overall Structure Placement

. . struct S1 {
o Each structure has alignment requirement char c-
K. int i[2];
o K is the largest alignment of any element.) double v;
*p;
o Initial address and structure length must
be multiples of K.
Example (under Windows):
o K = 8, due to double element.
RN o [i R S v \
p+0 p+d p+8 p+16 p+24
‘ Multiple of 4 Multiple of 8 Multiple of 8
Multiple of 8

(CS429 Slideset 11: 4 Instruction Set Architecture VI

Linux vs. Windows

struct S1 {
Windows (including Cygwin): _Chtar . C[z]
int i :
K = 8, due to double element. double v:
}oxp;
[k I o | i | 3 v \
p+0 p+4 p+8 p+16 p+24
Multiple of 4 Multiple of 8 Multiple of 8

Multiple of 8

Linux:
K = 4, the double is treated like a 4-byte data type.

[<E ECHETE v |

p+0 pt+é p+8 p+12 p+20
' Multiple of 4 Multiple of 4 Multiple of 4
Multiple of 4

(CS429 Slideset 11: 5 Instruction Set Architecture VI

Overall Alignment Requirement

t t S2 _
’ Hiizub?e ;{(; p must be a multiple of:
int i[2]; o 8 for Windows
char c;]
}oxp @ 4 for Linux

[EUNETEG
p+0 p+8 p+12 p+16 Windows: p+24
Linux: p+20

struct S3 {

float x[2];
int i[2]; p must be a multiple of 4 (in either OS).
char c;

‘ x[0] ‘ x[1] ‘ i[0] i[1] ‘c@

p+0 p+4 p+8 p+12 p+16 p+20

(CS429 Slideset 11: 6 Instruction Set Architecture VI

Ordering Elements within Structures

struct S4 {
char c1;
double v;
char c2;
int i;
}oxp;

10 bytes of wasted space in Windows

a=

=

.

p+0

p+8

struct S5 {
double v;
char cl;
char c¢2;
int i;
}o*p;

(CS429 Slideset 11: 7 Instruction Set Architecture VI

p+16 p+20 p+24

2 bytes wasted space.

D2 I

p+0 p+8 p+12 p+16

‘ v

Arrays of Structures

Principle
struct S6 {
o Allocated by repeating allocation for the short i;
element type. float v;
short j;
o In general, you can nest arrays and } a[10]:

structures to arbitrary depth.

allli a[ll.v a[1]j §§g¥ﬁﬁ§

a+16 a+20 -7 Tav24

atl2 -

] a[0] | all] |/ al2] | e

(CS429 Slideset 11: 8 Instruction Set Architecture VI

Accessing Elements within Array

o Compute offset to start of struet f6.‘.{
structure. ?looart \I/
. . . short j;

o Compute 12/ as 4 * (i + 2i). } a[10];

o Access element according to
its offset within the
structure.

short get_j(int idx) {
return al[idx].j; }

o Assembler gives # %eax = idx
: T leal (%eax,%eax,2),%eax
displacement as a+38; linker movswl a+8(Y%eax 4) %eax
must set the actual value.

a[0] | see | a[i] | cee

a+0 » - 12i

\ alili R alil.y | alil &N

a+12i a+12i+8

(CS429 Slideset 11: 9 Instruction Set Architecture VI

Satisfying Alignment within Structure

Achieving Alignment

o Starting address of structure array must be a
multiple of worst-case alignment for any element.

@ Here a must be a multiple of 4. struct S6 {
o Offset of element within structure must be 1s‘|hooar: \'/
multiple of element’s alignment requirement. short j
@ V's offset is a multiple of 4. } aflo0];
o Overall size of structure must be multiple of
worst-case alignment for any element.
o Structure padded with unused space to 12 bytes.

[| eee | [e |

a+0 V‘x’a‘+lei
Multiple of 4 -~
- S| - - S|
Con SN i
a+12i a+12i+4
Multiple of 4

CS429 Slideset 11: 10 Instruction Set Architecture VI

Union Allocation

Principles

@ Overlay union elements.

o Allocate according to the largest element.

o Can only use one field at a time.

union Ul { :E]

char c; - -
int i[2]; i[0] if1]
double v;
}oxup v
up+0 up+4

up+8

CS429 Slideset 11: 11 Instruction Set Architecture VI

Using Union to Access Bit Patterns

typedef union {
float f;
unsigned u;

} bit_float_t;

®© 6 6 06 o

float bit2float (unsigned

{
bit_float_t arg;
arg.u = u;
return arg.f;

}

unsigned float2bit (float

{
bit_float_t arg;
arg . f = f;
return arg.u;

}

u)

t)

Get direct representation to bit representation of float.
bit2float generates float with given bit pattern.
Note this is not the same as (float) u.

float2bit generates bit pattern from float.

Note this is not the same as (unsigned) f.

CS429 Slideset 11: 12 Instruction Set Architecture VI

Byte Order Revisited

Idea
o Short/long/quad words stored in memory as 2/4/8
consecutive bytes.
@ Which is the most (least) significant?

o Can cause problems when exchanging binary data between
machines.

Big Endian
@ Most significant byte has lowest address.
o PowerPC, Sparc

Little Endian
o Least significant byte has lowest address.
o Intel x86, Alpha

CS429 Slideset 11: 13 Instruction Set Architecture VI

Byte Ordering Example

union {
unsigned char c[8]; ‘
unsigned short s[4]; ‘

00]‘ \ 2]‘c[3]‘c[4]‘c[5]‘c[6]‘c[7‘
stol | st | s21 |

unsigned int i[2];

s[3] ‘
|

unsigned long 1[1]; iol ‘ i
} dw;
int j;

for (j = 0; j < 8; j++)
dw.c[j] = 0xf0 + j;
printf(” Chars 0—7 =— [0x%x,0x%x,0x%x ,0x%x,0x%x,0x%x,0x%x,0x%
x]\n",
dw.c[0] ,dw.c[1] ,dw.c[2],dw.c[3],
dw.c[4],dw.c[5] ,dw.c[6] .,dw.c[7]):

printf(”Shorts 0-3 = [0x%x,0x%x,0x%x,0x%x]\n"
dw.s[0] ,dw.s[1] ,dw.s[2] ,dw.s[3]);
printf(”lInts 0—1 = [0x%x,0x%x]\n",

dw.i[0],dw.i[1]);
printf(”Long 0 = [0x%Ix]\n", dw.I1[0]);

CS429 Slideset 11: 14 Instruction Set Architecture VI

Byte Ordering on the x86

Little Endian
fo f1 2 f3 f4 5 f6 {7
L et0] el 1] el21] el31] el1] el1] elél] el 7]

LSB MSBLSB MSB LSB MSB LSB MSB
s[0] ‘ s[1] ‘ s[2] ‘ s[3] ‘

LSB MSB LSB MSB
i[0] i[1]
LSB MSB
[1o RSN
Print

Output on Pentium:

Chars 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]
Shorts 0-3 == [0xf1f0,0xf3f2,0xf5f4,0xf7£f6]

Ints 0-1 == [0xf3f2f1f0,0xf7f6f5f4]

Long 0 == [0xf3f2f1f0]

CS429 Slideset 11: 15 Instruction Set Architecture VI

Byte Ordering on Sun

Big Endian

fo f1 2 f3 f4 5 f6 ({7
L cto] et 1] et ef31] et el51] cl6l] cl7]

MSB LSB MSB LSB MSB LSB MSB LSB
\ S[0] \ S[1] \ s[2] \ S[3] \

MSB LSB MSB LSB
\ i[0] \ i \
MSB LSB
T
Print

Output on Sun:

Chars 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]
Shorts 0-3 == [0xfO0f1,0xf2f3,0xf4f5,0xf6f7]

Ints 0-1 == [0xfOf1f2f3,0xf4f5f6f7]

Long 0 == [0xfOf1f2£3]

CS429 Slideset 11: 16 Instruction Set Architecture VI

Arrays in C
o Contiguous allocation of memory.
o Pointer to first element.
@ No bounds checking.

Compiler Optimizations

o Compiler often turns array code into pionter code.
o Uses addressing modes to scale array indices.
o Lots of tricks to improve array indexing in loops.

Structures

o Allocate bytes in order declared.

o Pad in middle and at end to satisfy alignment.
Unions

o Overlay declarations.

o Way to circumvent type system.

CS429 Slideset 11: 17 Instruction Set Architecture VI

Dynamic Nested Arrays

Strength: Create array of

arbitrary size. ;nt xnew_var_matrix(int n)
.Programmmg:.Must do return (int *)
index computation calloc(sizeof(int), n*n);
explicitly. }
Performance:)) ,)
]) int var_ele (int =a, int i,
@ Accessing a single int j, int n)
element is costly. {
o Must do , return afixntj];
multiplication.
movl 12(%ebp),%eax # i
movl 8(%ebp),%edx # a
imull 20(%ebp),%eax # nxi
addl 16(%ebp),%eax # nxitj
movl (%edx,%eax ,4),%eax # Mem[a+4*(n*xi+j)]

CS429 Slideset 11: 18 Instruction Set Architecture VI

Dynamic Array Multiplication

Without optimization:

o Multiplies: 2 for
subscripts, 1 for data
o Adds: 4 for array

indexing, 1 for loop
index, 1 for data

Row-wise

Column-wise

CS429 Slideset 11: 19 Instruction Set Architecture VI

/« Compute element i,i of
variable
matrix product =/
int var_prod_ele
(int =%a, int xb,

int i, int k, int n)
{ . .
int j;
int result = 0;
for (j = 0; j < n; j++)
result +=
ali*n+j] * b[j*nt+k];
return result
}

Optimizing Dynamic Array Multiplication

Optimizations
o Performed when set
optimization level to -02
Code Motion

o Expression i*n can be
performed outside loop.

Strength Reduction

@ Incrementing j has the effect
of incrementing j*n+k by n.

Performance

o Compiler can optimize
regular access patterns.

int j;

int result = 0;

for (j = 0; j < n; j++)
result 4=

alixntj] = b[jxn+k];
return result

int j;

int result = 0;

int iTn = ixn;

int jTnPk = k;

for (j = 0; j <n; j++) {
result +=

al[iTn+j] * b[jTnPk];

jTnPk += n;

}

return result;

CS429 Slideset 11: 20 Instruction Set Architecture VI

