CS429: Computer Organization and Architecture

Pipeline |

Warren Hunt, Jr. and Bill Young
Department of Computer Sciences
University of Texas at Austin

Last updated: November 3, 2014 at 07:54

(CS429 Slideset 14: 1 Pipeline |

Overview

What’s wrong with the sequential (SEQ) Y867
o It's slow!
@ Each piece of hardware is used only a small fraction of the
time.

o We would like to find a way to get more performance with
only a little more hardware.

General Principles of Pipelining

o Express task as a collection of stages

@ Move instructions through stages

@ Process several instructions at any given moment
Creating a Pipelined Y86 Processor

@ Rearrange SEQ

o Insert pipeline registers

o Deal with data and control hazards

(CS429 Slideset 14: 2 Pipeline |

Pipelining: Laundry Example

Suppose you have four folks, each with a load of clothes to wash,
dry, fold and stash away. There are four subtasks: wash, dry, fold,
stash. Each takes 30 minutes.

Time to do a load of laundry from start to finish: 2 hours.

(CS429 Slideset 14: 3 Pipeline |

Sequential Laundry

dam (53 B 10 12am

%u'ﬁ':m"an'ﬁ@‘an"a {30030 30301303030 30
. l@ 5 jk .'n'l.ﬁ

: 054

9§ [[SEF

@ Sequential laundry takes 8 hours for 4 loads.

o If they learned pipelining, how long would laundry take?

(CS429 Slideset 14: 4 Pipeline |

Pipelined Laundry

W 1 12 1 IAM

Pipelined laundry takes 3.5 hours for 4 loads!

(CS429 Slideset 14: 5 Pipeline |

Pipelining Lessons

L 2

GGG €

(CS429 Slideset 14: 6

Pipelining doesn't help /atency of a
single task; it helps throughput of
the entire workload.

Multiple tasks operate
simultaneously using different
resources.

Potential speedup = number of
stages.

Unbalanced lengths of pipe stages
reduces speedup.

Time to “fill" pipeline and time to
“drain” it reduces speedup.

Stall for dependencies.

Pipeline |

Computational Example

300 ps 20 ps
Combinational Delay = 320 ps
; Logic > | Reg Throughput = 3.12 GOPS
Clock

System
o Computation requires a total of 300 picoseconds.

o Needs an additional 20 picoseconds to save the result in the
register.

@ Must have a clock cycle of at least 320 ps. Why?

(CS429 Slideset 14: 7 Pipeline |

3-Way Pipelined Version

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Comb. Comb. Comb. Delay = 320 ps
i i Logic =
Logic Reg Logic Reg ¢ Reg | Throughput = 3.12 GOPS
A B C

System
o Divide combinational logic into 3 blocks of 100 ps each.

Clock

@ Can begin a new operation as soon as the previous one passes

through stage A.
o Begin new operation every 120 ps. Why?
@ Overall latency increases! It's now 360 ps from start to finish.

(CS429 Slideset 14: 8 Pipeline |

Pipeline Diagrams

Unpipelined

OP1

OP2

OP3

Time

Cannot start new operation until the previous one completes.

3-Way Pipelined

OPI1 Al B |C

oP2 A | Bi| C

oP3 Al B | C
Time

Up to 3 operations in process simultaneously.

(CS429 Slideset 14: 9 Pipeline |

Operating a Pipeline

OP1 ‘ A B C

oP2 A B c

oP3
| | | | | I
| T T T T |
0 120 240 360 480 600

At times [240..260].

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. Comb.
Reg Logic Reg Logic
B C
|
Clock

Slideset 14: 10 Pipeline |

Limitations: Non-uniform Delays

50ps 20ps 150 ps 20ps 100 ps 20ps
Delay =510 ps

Comb Comb Comb

Logic Reg |—>+ Logic — > | Reg Logic — > |Reg | Throughput =5.88 GOPS

A B C

Clock
oP1 ‘ 2 ‘ B c ‘
OoP2 A B @
OP3 A ‘ B @ ‘ ‘
Time

@ Throughput is limited by the slowest stage.
o Other stages may sit idle for much of the time.

o It's challenging to partition the system into balanced stages.

CS429 Slideset 14: 11 Pipeline |

Limitations: Register Overhead

20 ps 50ps

Delay = 420 ps, Throughput = 14.29 GOPS

As you try to deepen the pipeline, the overhead of loading registers
becomes more significant.

Percentage of clock cycle spend loading registers:

1-stage pipeline: | 6.25%
3-stage pipeline: | 16.67%
6-stage pipeline: | 28.57%

High speeds of modern processor designs are obtained through very
deep pipelining.

The Performance Equation

. Seconds Instructions Cycles Seconds
CPU Time = = * —
Program Program Instruction Cycle

Clock Cycle Time

o Improves by a factor of almost N for N-deep pipeline.

@ Not quite a factor of N due to pipeline overheads.
Cycles Per Instructions

@ In an ideal world, CPl would stay the same.

o An individual instruction takes N cycles.

o But we have N instructions in flight at a time.

@ So, average CPlyjpe = (CPlho—pipe ¥ N)/N

Thus, performance can improve by up to a factor of N.

CS429 Slideset 14: 13 Pipeline |

Data Dependencies

Combinational

R
Logic °e
Clock
OPI1 >
(0)22) 9 >
OP3 -

Time

Sequential System: Each operation depends on the previous one.

CS429 Slideset 14: 14 Pipeline |

Data Hazards
> Comb. H Comb. H Comb.
Logic ! Logic Logic Reg
A B C

opPl | A

w| N0

oP2
op3 NAEEE
A

OP4

Time

Pipelined System:
@ Result does not feed back around in time for the next
operation.
o Pipelining has changed the behavior of the system.

CS429 Slideset 14: 15 Pipeline |

Data Dependencies in Processors

Result from one instruction is
used as an operand for another;

called read-after-write (RAW)
dependency.

irmovl $50,

addl

mrmovl 100(Yoedx

o This is very common in actual programs.

o Must make sure that our pipeline handles these properly and
gets the right result.

@ Should minimize performance impact as much as possible.

CS429 Slideset 14: 16 Pipeline |

SEQ Hardware

PC

o Stages occur in sequence.

@ One operation in process at
at time. Memory

o One stage for each logical
pipeline operation.

o Fetch: get next Execute
instruction from memory.

o Decode: figure out what
to do, and get values
from regfile.

o Execute: compute. SETR

o Memory: access data
memory if needed. o |

o Write back: write results Foten |
to regfile, if needed.

e |

CS429 Slideset 14: 17 Pipeline |

SEQ+ Hardware

data out

Still sequential implementation,
but reorder PC stage to put at
the beginning

PC Stage

o Task is to select PC for
current instruction.

Memory

Execute

o Based on results computed
by previous instruction.

Decode:

Write back

Processor State ‘ @
o PC is no longer stored in a oo || [Triracen =
) | b
register.

o But, can determine PC
based on other stored
information.

PC

picogefpsen] pvaim | pvaic | pvar |
-

L t—|

CS429 Slideset 14: 18 Pipeline |

