CS429: Computer Organization and Architecture

Linking |

Warren Hunt, Jr. and Bill Young
Department of Computer Sciences
University of Texas at Austin

Last updated: December 3, 2014 at 07:50

(CS429 Slideset 24: 1 Linking |

A Simplistic Translation Scheme

m.c ASCII source file PrOblemS'

o Efficiency: small change
Compiler requ ires com plete
re-compilation.

m.s o Modularity: hard to share
common functions (e.g.,
printf).

Assembler . i i
Solution: Static linker (or

linker).

Binary executable object file
p (memory image on disk)

CS429 Slideset 24: 2 Linking |

Better Scheme Using a Linker

Linking is the process of

m.c a.c ASCII source files Combining VariOUS pieces
l j of code and data into a
’ Compiler ‘ ’ Compiler ‘ single file that can be
l] loaded (copied) into
ms as memory and executed.
l l Linking could happen at:
’ Assembler ‘ ’ Assembler ‘))
l j o compile time;
Separately compiled) H .
o 20 relocatable object files Ioad tlme’
l j @ run time.
’ Linker (1d) ‘
Must somehow tell a
j Executable object file module about symbols
p (code and data for all functions

from other modules.

defined in m.c and a.c)

(CS429 Slideset 24: 3 Linking |

A linker takes representations of separate program modules and
combines them into a single executable.

This involves two primary steps:

Q Symbol resolution: associate each symbol reference
throughout the set of modules with a single symbol definition.

Q Relocation: associate a memory location with each symbol
definition, and modify each reference to point to that location.

(CS429 Slideset 24: 4 Linking |

Translating the Example Program

Compiler driver coordinates all steps in the translation and linking
process.
o Typically included with each compilation system (e.g., gcc).
@ Invokes the preprocessor (cpp), compiler (ccl), assembler
(as), and linker (Id).
o Passes command line arguments to the appropriate phases

Example: Create an executable p from m.c and a.c:

> gcc —02 —v —0 pm.c a.c

cpp [args] m.c /tmp/cca07630. i

ccl /tmp/cca07630.i m.c —02 [args] —o /tmp/cca07630.s

as [args] —o /tmp/cca076301.0 /tmp/cca07630.s

<similar process for a.c>

Id —o p [system obj files] /tmp/cca076301.0 /tmp/
cca076302.0

>

(CS429 Slideset 24: 5 Linking |

Compiling/Assembling

sum:
pushl %ebp
C Code movl %esp , %ebp
movl 8(%ebp), %ecx
double sum(int val) { movl $0, %edx
int sum = 0; cmpl $2, %ecx
double pi = 3.14; jle L4
int i: movl $0, %edx
movl $3, %eax
. i i .L5:
for (i=3; |<_Zva|; i++) addl Y%eax , Y%edx
sum += i ; addl $1, %eax
return sum + pi; cmpl Y%eax , Y%ecx
} jge .L5
.L4:
pushl %edx
fildl (%esp)
leal 4(%esp), %esp
Obtain with command: faddl .LCO
popl %ebp
gcc -0 -S sum.c ret
Produces file code.s -LCO:
.long 1374389535
.long 1074339512

(CS429 Slideset 24: 6 Linking |

Role of the Assembler

o Translate assembly code (compiled or hand generated) into
machine code.
o Translate data into binary code (using directives).

o Resolve symbols—translate into relocatable offsets.
o Error checking:

o Syntax checking;
o Ensure that constants are not too large for fields.

CS429 Slideset 24: 7 Linking |

Where Did the Labels Go?

Disassembled Object Code

08048334 <sum>:

8048334: 55 push %ebp

8048335: 89 e5 mov %esp, %ebp
8048337: 8b 4d 08 mov 8(%ebp), %ecx
804833a: ba 00 00 00 00 mov $0x0, %edx

804833 f: 83 f9 02 cmp $0x2 , %ecx
8048342: 7e 13 jle 8048357 <sum+0x23>
8048344: ba 00 00 00 00 mov $0x0, %edx
8048349: b8 03 00 00 00 mov $0x3, %eax
804834e: 01 c2 add %eax , %edx
8048350: 83 c3 01 add $0x1, %eax
8048353: 39 cl cmp %eax, %ecx
8048355: 7d f7 jge 804834e <sum+Oxla>
8048357: 52 push %edx

8048358: db 04 24 fildl (%esp)

804835b: 8d 64 24 04 lea 4(%esp) ., %esp
804835f: dc 05 50 84 04 08 faddl 0x8048450

8048365: 5d pop %ebp

8048366: c3 ret

(CS429 Slideset 24: 8 Linking |

Label Resolution

Disassembled Object Code

8048342: 7e 13 jle 8048357 <sum+0x23>
8048355: 7d 7 jge 804834e <sum+Oxla>
804835f: dc 05 50 84 04 08 faddl 0x8048450

Byte relative offsets for jle and jge:
o jge: 13 bytes forward
o jge: 9 bytes backward (two's complement of 0xf7)

Relocatable absolute address:
o faddl: 0x8048450

(CS429 Slideset 24: 9 Linking |

How Does the Assembler Work?

One Pass
@ Record label definitions

@ When use is found, compute offset

Two Pass
@ Pass 1: scan for label instantiations—creates symbol table
o Pass 2: compute offsets from label use/def

o Can detect if computed offset is too large for assembly
instruction.

CS429 Slideset 24: 10 Linking |

Symbol Table

00000000 g F .text 00000033 sum
symbol type segment offset from symbol
(global) segment start name

The symbol table tracks the location of symbols in the object file.
@ Symbols that can be resolved need not be included.

@ Symbols that may be needed during linking must be included.

CS429 Slideset 24: 11 Linking |

What Does a Linker Do?

Merges object files

o Merges multiple relocatable (.0) object files into a single
executable object file that can be loaded and executed.

Resolves external references
@ As part of the merging process, resolves external references.

o External reference: reference to a symbol defined in another
object file.

Relocates symbols
o Relocates symbols from their relative locations in the .o files
to new absolute positions in the executable.
o Updates all references to these symbols to reflect their new
positions.
o References can be in either code or data:

o code: a(); /* reference to symbol a */
o data: *xp = &x; /* reference to symbol x */

CS429 Slideset 24: 12 Linking |

Why Linkers?

Modularity

@ Programs can be written as a collection of smaller source files,
rather than one monolithic mass.
o Can build libraries of common functions shared by multiple
programs (e.g., math library, standard C library)
Efficiency
o Time:

o Change one source file, recompile, and then relink.
o No need to recompile other source files.

@ Space:

o Libraries of common functions can be aggregated into a single
file.

o Yet executable files and running machine images contain only
code for the functions they actually use.

CS429 Slideset 24: 13 Linking |

Executable and Linkable Format (ELF)

o Standard binary format for object files.

o Derives from AT&T System V Unix, and later adopted by
BSD Unix variants and Linux.

@ One unified format for:

o Relocatable object files (.0),
o Executable object files,
o Shared object files (.s0).

o The generic name is ELF binaries.
o Better support for shared libraries than the old a.out formats.

CS429 Slideset 24: 14 Linking |

ELF Object File Format

o ELF header: magic number, type
(.0, exec, .s0), machine, byte

ordering, etc. ELF header
o Program header table: page size, Program header tables
virtual addresses of memory (required for executables)
segments (sections), segment sizes .text section
@ .text section: code .data section
o .data section: initialized (static) .bss section
data .symtab
o .bss section: .reII.;ext
o uninitialized (static) data -rel.data
o "Block Started by Symbol” _ .debug
o “Better Save Space” Section header table
o Has section header, but occupies (required for relocatables)
no space.

CS429 Slideset 24: 15 Linking |

ELF Object File Format (continued)

o .symtab section
@ Symbol table

@ Procedure and static variable names ELF header

@ Section names and locations Program header tables
o .rel.text section (required for executables)

@ Relocation info for .text section .text section

@ Addresses of instructions that will need

to be modified in the executable .data section

@ Instructions for modifying -bss section
o .rel.data section .symtab
@ Relocation info for .data section -rel text
@ Addresses of pointer data needing .rel.data
modification in the merged executable .debug
o .debug section Section header table
o Info for symbolic debugging (gcc -g) (required for re|Ocatab|eS)

CS429 Slideset 24: 16 Linking |

Example C Program

a.c
m.c extern int e;
int e =7,
int xep = &e;
int main() int x = 15;
int y;
int r =a();
exit (0); int a()
} {
return xep + X + vy,
}

CS429 Slideset 24: 17 Linking |

Merging Relocatable Object Files

Relocatable object files are merged into an executable by the
Linker. Both are in ELF format.

headers
system code text system code
system data .data main()
text
a()
more system code
main() text

system data

inte=7 .data \
inte=7

int *ep = &e .data
intx =15
a() Ltext
uninitialized data .bss
int *ep = &e
.data
intx=15 .symtab
. .debug
ity .bss

CS429 Slideset 24: 18 Linking |

This slideset:
o Compilation / Assembly / Linking
@ Symbol resolution and symbol tables

Next time:

(]

Code and data relocation
Loading

Libraries

e o o

Dynamically linked libraries

CS429 Slideset 24: 19 Linking |

