Reasoning with Quantified Boolean Formulas

Marijn J.H. Heule marijn@cs.utexas.edu

slides based on a lecture by Martina Seidl, JKU, Linz

イロト イボト イヨト イヨト ニヨー のくで

1/32

What are QBF?

Quantified Boolean formulas (QBF) are

formulas of propositional logic + quantifiers

- Examples:
 - $(x \lor \bar{y}) \land (\bar{x} \lor y)$ (propositional logic)
 - $\bullet \exists x \forall y (x \lor \bar{y}) \land (\bar{x} \lor y)$

Is there a value for x such that for all values of y the formula is true?

∀y∃x(x ∨ ȳ) ∧ (x̄ ∨ y)
 For all values of y, is there a value for x such that the formula is true?

SAT vs. QSAT aka NP-complete vs. PSPACE-complete

Is there a satisfying assignment?

 $\begin{array}{c} \mathsf{QBF} \\ \exists x_1 \forall x_2 \exists x_3 \phi(x_1, x_2, x_3) \end{array}$

Is there a satisfying assignment tree?

Consider the formula $\forall a \exists b, c.(a \lor b) \land (\bar{a} \lor c) \land (\bar{b} \lor \bar{c})$

Consider the formula $\forall a \exists b, c.(a \lor b) \land (\bar{a} \lor c) \land (\bar{b} \lor \bar{c})$

A model is:

Consider the formula $\forall a \exists b, c.(a \lor b) \land (\bar{a} \lor c) \land (\bar{b} \lor \bar{c})$

A model is:

Consider the formula $\exists b \forall a \exists c.(a \lor b) \land (\bar{a} \lor c) \land (\bar{b} \lor \bar{c})$

Consider the formula $\forall a \exists b, c.(a \lor b) \land (\bar{a} \lor c) \land (\bar{b} \lor \bar{c})$

Consider the formula $\exists b \forall a \exists c. (a \lor b) \land (\bar{a} \lor c) \land (\bar{b} \lor \bar{c})$

A counter-model is:

A model is:

The quantifier prefix frequently determines the truth of a QBF.

The Two Player Game Interpretation of QSAT

Interpretation of QSAT as *two player game* for a QBF $\exists x_1 \forall a_1 \exists x_2 \forall a_2 \cdots \exists x_n \forall a_n \psi$:

- Player A (existential player) tries to satisfy the formula by assigning existential variables
- Player B (universal player) tries to falsify the formula by assigning universal variables
- Player A and Player B make alternately an assignment of the variables in the outermost quantifier block
- Player A wins: formula is satisfiable, i.e., there is a strategy for assigning the existential variables such that the formula is always satisfied
- Player B wins: formula is unsatisfiable

Promises of QBF

▶ QSAT is the prototypical problem for *PSPACE*.

- QBFs are suitable as *host language* for the encoding of many application problems like
 - verification
 - artificial intelligence
 - knowledge representation
 - game solving

In general, QBF allow more succinct encodings then SAT

Application of a QBF Solver

QBF Solver returns 1. yes/no 2. witnesses

Example of $\exists \forall \exists$: Synthesis

Given an input-output specification, does there exists a circuit that satisfies the input-output specification.

QBF solving can be used to find the smallest sorting network:

- ▶ (\exists) Does there exists a sorting network of k wires,
- \blacktriangleright (\forall) such that for all input variables of the network
- (\exists) the output $O_i \leq O_{i+1}$

Example of $\forall \exists \ldots \forall \exists$: Games

Many games, such as Go and Reversi, can be naturally expressed as a QBF problem.

Boolean variables $a_{i,k}$, $b_{j,k}$ express that the existential player places a piece on row *i* and column *j* at his *k*th turn. Variables $c_{i,k}$, $d_{j,k}$ are used for the universal player.

Go

Reversi

The QBF problem is of the form $\forall c_{i,1}, d_{j,1} \exists a_{i,1}, b_{j,1} \dots \forall c_{i,n}, d_{j,n} \exists a_{i,n}, b_{j,n}.\psi$ Outcome "satisfiable": the second player (existential) can always prevent that the first player (universal) wins.

Illustrating Example $\forall \exists$: Conway's Game of Life

Conway's Game of Life is an infinite 2D grid of cells that are either alive or dead using the following update rules:

- Any alive cell with fewer than two alive neighbors dies;
- Any alive cell with two or three live neighbors lives;
- Any alive cell with more than three alive neighbors dies;
- Any dead cell with exactly three alive neighbors becomes alive.

Game of Life is very popular: over 1,100 wiki articles

Garden of Eden in Conway's Game of Life

A Garden of Eden (GoE) is a state that can only exist as initial state.

Let T(x, y) denote the CNF formula that encodes the transition relation from a state to its successor using variables x that describe the current state and variables y the successor state.

A QBF that encodes the GoE problem is simply $\forall y \exists x. T(x, y)$

The smallest Garden of Eden known so far (shown above) was found using a QBF solver. [Hartman et al. 2013]

The Language of QBF

The language of quantified Boolean formulas $\mathcal{L}_{\mathcal{P}}$ over a set of propositional variables \mathcal{P} is the smallest set such that

if v ∈ P ∪ {⊤, ⊥} then v ∈ L_P (variables, constants)
if φ ∈ L_P then φ̄ ∈ L_P (negation)
if φ and ψ ∈ L_P then φ ∧ ψ ∈ L_P (conjunction)
if φ and ψ ∈ L_P then ∀v φ ∈ L_P (disjunction)
if φ ∈ L_P then ∃vφ ∈ L_P (existential quantifier)
if φ ∈ L_P then ∀vφ ∈ L_P (universal quantifier)

Some Notes on Variables and Truth Constants

- \top stands for *top*
 - always true
 - empty conjunction
- \perp stands for *bottom*
 - always false
 - empty disjunction
- *literal*: variable or negation of a variable
 - examples: $l_1 = v$, $l_2 = \bar{w}$
 - var(I) = v if I = v or $I = \overline{v}$
 - complement of literal I: \overline{I}

• $var(\phi)$: set of variables occurring in QBF ϕ

Some QBF Terminology

- Let $Qv\psi$ with $Q \in \{\forall, \exists\}$ be a subformula in a QBF ϕ , then
 - ψ is the *scope* of *v*
 - Q is the quantifier binding of v
 - quant(v) = Q
 - free variable w in ϕ : w has no quantifier binding in ϕ
 - **bound variable w** in QBF ϕ : w has quantifier binding in ϕ
 - closed QBF: no free variables

Prenex Conjunctive Normal Form (PCNF)

A QBF ϕ is in prenex conjunctive normal form iff

- ϕ is in prenex normal form $\phi = Q_1 v_1 \dots Q_n v_n \psi$
- matrix ψ is in conjunctive normal form, i.e.,

$$\psi = C_1 \wedge \cdots \wedge C_n$$

where C_i are clauses, i.e., disjunctions of literals.

$$\underbrace{\forall x \exists y ((x \lor \bar{y}) \land (\bar{x} \lor y))}_{\text{prefix} \quad \text{matrix in CNF}}$$

Some Words on Notation

If convenient, we write

▶ a conjunction of clauses as a set, i.e.,

$$C_1 \wedge \ldots \wedge C_n = \{C_1, \ldots, C_n\}$$

a clause as a set of literals, i.e.,

$$I_1 \vee \ldots \vee I_k = \{I_1, \ldots, I_k\}$$

- $var(\phi)$ for the variables occurring in ϕ
- var(1) for the variable of a literal, i.e.,

$$var(I) = x$$
 iff $I = x$ or $I = \bar{x}$

Semantics of QBFs

A valuation function $\mathcal{I}: \mathcal{L}_{\mathcal{P}} \to \{\mathcal{T}, \mathcal{F}\}$ for closed QBFs is defined as follows:

$$\begin{array}{l} \mathcal{I}(\top) = \mathcal{T}; \ \mathcal{I}(\bot) = \mathcal{F} \\ \mathcal{I}(\bar{\psi}) = \mathcal{T} \ \text{iff} \ \mathcal{I}(\psi) = \mathcal{F} \\ \mathcal{I}(\phi \lor \psi) = \mathcal{T} \ \text{iff} \ \mathcal{I}(\phi) = \mathcal{T} \ \text{or} \ \mathcal{I}(\psi) = \mathcal{T} \\ \mathcal{I}(\phi \land \psi) = \mathcal{T} \ \text{iff} \ \mathcal{I}(\phi) = \mathcal{T} \ \text{and} \ \mathcal{I}(\psi) = \mathcal{T} \\ \mathcal{I}(\forall v\psi) = \mathcal{T} \ \text{iff} \ \mathcal{I}(\psi[\bot/v]) = \mathcal{T} \ \text{and} \ \mathcal{I}(\psi[\top/v]) = \mathcal{T} \\ \mathcal{I}(\exists v\psi) = \mathcal{T} \ \text{iff} \ \mathcal{I}(\psi[\bot/v]) = \mathcal{T} \ \text{or} \ \mathcal{I}(\psi[\top/v]) = \mathcal{T} \end{array}$$

イロト イロト イヨト イヨト ニヨー のくで

17/32

```
Boolean split (QBF \phi)
switch (\phi)
  case \top: return true:
  case \perp: return false:
  case \psi: return (not split(\psi));
  case \psi' \wedge \psi'': return split(\psi') && split(\psi'');
  case \psi' \lor \psi'': return split(\psi') || split(\psi'');
  case QX\psi:
     select x \in X; X' = X \setminus \{x\};
     if (Q == \forall)
        return (split (QX'\psi[x/\top]) &&
                   split (QX'\psi[x/\perp]);
     else
        return (split(QX'\psi[x/\top]) ||
                   split (QX'\psi[x/\perp]);
```

Some Simplifications

The following rewritings are equivalence preserving:

1.
$$\overline{\top} \Rightarrow \bot$$
; $\overline{\bot} \Rightarrow \top$;
2. $\top \land \phi \Rightarrow \phi$; $\bot \land \phi \Rightarrow \bot$; $\top \lor \phi \Rightarrow \top$; $\bot \lor \phi \Rightarrow \phi$;
3. $(Qx \phi) \Rightarrow \phi, Q \in \{\forall, \exists\}, x \text{ does not occur in } \phi$;

$$\forall ab \exists x \forall c \exists yz \forall d\{\{a, b, \bar{c}\}, \{a, \bar{b}, \bar{\top}\}, \\ \{c, y, d, \bot\}, \{x, y, \bar{\bot}\}, \{x, c, d, \top\}\} \\ \approx \\ \forall abc \exists y \forall d\{\{a, b, \bar{c}\}, \{a, \bar{b}\}, \{c, y, d\}\} \end{cases}$$

Boolean splitCNF (Prefix P, matrix ψ) if $(\psi == \emptyset)$: return **true**; if $(\emptyset \in \psi)$: return false; P = QXP', $x \in X$, $X' = X \setminus \{x\}$: if $(Q == \forall)$ return (splitCNF($QX'P', \psi'$) && splitCNF($QX'P', \psi''$)); else return (splitCNF($QX'P', \psi'$) || splitCNF ($QX'P', \psi''$)); where ψ' : take clauses of ψ , delete clauses with x, delete \bar{x} ψ'' : take clauses of ψ , delete clauses with \bar{x} , delete x

Unit Clauses

A clause C is called **unit** in a formula ϕ iff

- ► C contains exactly one existential literal
- the universal literals of C are to the right of the existential literal in the prefix

The existential literal in the unit clause is called *unit literal*. Example

 $\forall ab \exists x \forall c \exists y \forall d \{\{a, b, \bar{c}, \bar{x}\}, \{a, \bar{b}\}, \{c, y, d\}, \{x, y\}, \{x, c, d\}, \{y\}\}$

イロト 不良 トイヨト イヨト ヨー ろくろ

21/32

Unit Clauses

A clause C is called **unit** in a formula ϕ iff

- ► C contains exactly one existential literal
- the universal literals of C are to the right of the existential literal in the prefix

The existential literal in the unit clause is called *unit literal*. Example

 $\forall ab \exists x \forall c \exists y \forall d \{\{a, b, \overline{c}, \overline{x}\}, \{a, \overline{b}\}, \{c, y, d\}, \{x, y\}, \{x, c, d\}, \{y\}\}$

Unit literals: x, y

Unit Literal Elimination

Let ϕ be a QBF with unit literal / and let ϕ' be a QBF obtained from ϕ by

- removing all clauses containing I
- removing all occurrences of \overline{I}

Then

 $\phi \approx \phi'$

Example

 $\forall ab \exists x \forall c \exists y \forall d \{\{a, b, \overline{c}, \overline{x}\}, \{a, \overline{b}\}, \{c, y, d\}, \{x, y\}, \{x, c, d\}, \{y\}\}$

After unit literal elimition: $\forall abc\{\{a, b, \bar{c}\}, \{a, \bar{b}\}\}$

A literal I is called **pure** in a formula ϕ iff

- I occurs in ϕ
- **•** the complement of *I*, i.e., \overline{I} does not occur in ϕ

$$\forall ab \exists x \forall c \exists yz \forall d \{\{a, b, \bar{c}\}, \{a, \bar{b}\}, \{c, y, d\}, \{x, y\}, \{x, c, d\}\}$$

A literal / is called **pure** in a formula ϕ iff

- I occurs in ϕ
- **•** the complement of *I*, i.e., \overline{I} does not occur in ϕ

$$\forall ab \exists x \forall c \exists yz \forall d\{\{a, b, \bar{c}\}, \{a, \bar{b}\}, \{c, y, d\}, \{x, y\}, \{x, c, d\}\}$$

Pure: a, d, x, y

Pure Literal Elimination

Let ϕ be a QBF with pure literal / and let ϕ' be a QBF obtained from ϕ by

- ▶ removing all clauses with *I* if quant(*I*) = \exists
- ▶ removing all occurrences of *I* if quant(I) = \forall

Then

 $\phi\approx\phi'$

Example

 $\forall ab \exists x \forall c \exists yz \forall d \{\{a, b, \bar{c}\}, \{a, \bar{b}\}, \{c, y, d\}, \{x, y\}, \{x, c, d\}\}$

After Pure Literal Elimination: $\forall b\{\{b\}, \{\bar{b}\}\}$

Universal Reduction (UR)

- Let $\Pi.\psi$ be a QBF in PCNF and $C \in \psi$.
- Let $I \in C$ with
 - quant(I) = \forall
 - Forall k ∈ C with quant(k) = ∃ k <_Π I, i.e., all existential variables k of C are to the left of I in Π.
- ► Then *I* may be removed from *C*.
- $C \setminus \{I\}$ is called the *universal reduct* of C.

Example

 $\forall ab \exists x \forall c \exists yz \forall d \{\{a, b, \overline{c}, x\}, \{a, \overline{b}, x\}, \{c, y, d\}, \{x, y\}, \{x, c, d\}\}\}$

Universal Reduction (UR)

- Let $\Pi.\psi$ be a QBF in PCNF and $C \in \psi$.
- Let $I \in C$ with
 - quant(I) = \forall
 - Forall k ∈ C with quant(k) = ∃ k <_Π I, i.e., all existential variables k of C are to the left of I in Π.
- ► Then / may be removed from C.
- $C \setminus \{I\}$ is called the *universal reduct* of C.

Example

 $\forall ab \exists x \forall c \exists yz \forall d \{\{a, b, \overline{c}, x\}, \{a, \overline{b}, x\}, \{c, y, d\}, \{x, y\}, \{x, c, d\}\}\}$

After Universal Reduction:

 $\forall ab \exists x \forall c \exists yz \forall d \{\{a, b, x\}, \{a, \overline{b}, x\}, \{c, y\}, \{x, y\}, \{x\}\}\}$

Boolean splitCNF2 (Prefix P, matrix ψ) $(P, \psi) = simplify(P, \psi);$ if $(\psi == \emptyset)$: return true; if $(\emptyset \in \psi)$: return false; $P = QXP', x \in X, X' = X \setminus \{x\};$ if $(Q == \forall)$ return (splitCNF2($QX'P', \psi'$) && $splitCNF2(QX'P', \psi''));$ else return (splitCNF2($QX'P', \psi'$) || splitCNF2($QX'P', \psi''$)); where ψ' : take clauses of ψ , delete clauses with x, delete \bar{x} ψ'' : take clauses of ψ , delete clauses with \bar{x} , delete x

Resolution for QBF

Q-Resolution: propositional resolution + universal reduction.

Definition

Let C_1, C_2 be clauses with existential literal $I \in C_1$ and $\overline{I} \in C_2$.

- 1. Tentative Q-resolvent: $C_1 \otimes C_2 := (UR(C_1) \cup UR(C_2)) \setminus \{I, \overline{I}\}.$
- 2. If $\{x, \bar{x}\} \subseteq C_1 \otimes C_2$ then no Q-resolvent exists.
- 3. Otherwise, Q-resolvent $C := (C_1 \otimes C_2)$.
 - Q-resolution is a sound and complete calculus.
 - Universals as pivot are also possible.

Q-Resolution Small Example

Exclusive OR (XOR): QBF $\psi = \exists x \forall y (x \lor y) \land (\bar{x} \lor \bar{y})$

 Q-Resolution Small Example

Exclusive OR (XOR): QBF $\psi = \exists x \forall y (x \lor y) \land (\bar{x} \lor \bar{y})$

Truth Table

Q-Resolution Small Example

Exclusive OR (XOR): QBF $\psi = \exists x \forall y (x \lor y) \land (\bar{x} \lor \bar{y})$

Q-Resolution Proof

イロト 不良 トイヨト イヨト ヨー ろくろ

28/32

Exclusive OR (XOR): QBF $\psi = \exists x \forall y (x \lor y) \land (\bar{x} \lor \bar{y})$

Q-Resolution Proof Universal-Reduction $\longrightarrow x \bigvee y \quad \bar{x} \bigvee \bar{y}$ $\downarrow \qquad \downarrow \qquad \downarrow$ $x \qquad \bar{x}$

・ロト (日) (目) (目) (目) (1) (28/32)

Exclusive OR (XOR): QBF $\psi = \exists x \forall y (x \lor y) \land (\bar{x} \lor \bar{y})$

Q-Resolution Proof Universal-Reduction $\longrightarrow x \lor y \quad \overline{x} \lor \overline{y}$ Resolution $\longrightarrow x \checkmark \overline{x}$

Exclusive OR (XOR): QBF $\psi = \exists x \forall y (x \lor y) \land (\bar{x} \lor \bar{y})$

イロト 不良 トイヨト イヨト ヨー ろくろ

28/32

$$\longrightarrow$$
 $y = x \Rightarrow \psi = 0$

Exclusive OR (XOR): QBF $\psi = \exists x \forall y (x \lor y) \land (\bar{x} \lor \bar{y})$

 $\longrightarrow y = x \Rightarrow \psi = 0$ $\longrightarrow f_y(x) = x$ (counter model)

イロト 不良 トイヨト イヨト ヨー ろくろ

28/32

Q-Resolution Large Example

Input Formula $\exists a \forall b \exists cd \forall e \exists fg. (\bar{a} \lor \bar{g}) \land (b \lor f \lor g) \land (c \lor \bar{e} \lor \bar{f}) \land (d \lor \bar{e} \lor \bar{f}) \land (\bar{c} \lor \bar{d} \lor e) \land (a \lor f)$

<ロト < 部 ト < 臣 ト < 臣 ト ○ ○ 29/32

Q-Resolution Large Example

Input Formula $\exists a \forall b \exists cd \forall e \exists fg. (\bar{a} \lor \bar{g}) \land (b \lor f \lor g) \land (c \lor \bar{e} \lor \bar{f}) \land (d \lor \bar{e} \lor \bar{f}) \land (\bar{c} \lor \bar{d} \lor e) \land (a \lor f)$

Q-Resolution Proof DAG

QBF Preprocessing

Preprocessing is crucial to solve most QBF instances efficiently.

Results of DepQBF w/ and w/o bloqqer on QBF Eval 2012 [1]

Definition (Quantified Blocking literal)

An existential literal I in a clause C of a QBF $\pi.\varphi$ blocks C with respect to $\pi.\varphi$ if for every clause $D \in F_{\overline{l}}$, there exists a literal $k \neq I$ with $k \leq_{\pi} I$ such that $k \in C$ and $\overline{k} \in D$.

Definition (Quantified Blocked clause)

A clause is blocked if it contains a literal that blocks it.

Definition (Quantified Blocking literal)

An existential literal I in a clause C of a QBF $\pi.\varphi$ blocks C with respect to $\pi.\varphi$ if for every clause $D \in F_{\overline{l}}$, there exists a literal $k \neq I$ with $k \leq_{\pi} I$ such that $k \in C$ and $\overline{k} \in D$.

Definition (Quantified Blocked clause)

A clause is blocked if it contains a literal that blocks it.

$$\exists a \forall bcd \exists ef \forall g. (\bar{a} \lor \bar{g}) \land (b \lor f \lor g) \land (c \lor \bar{e} \lor \bar{f}) \land (d \lor \bar{e} \lor \bar{f}) \land (\bar{c} \lor \bar{d} \lor e) \land (a \lor f)$$

Definition (Quantified Blocking literal)

An existential literal I in a clause C of a QBF $\pi.\varphi$ blocks C with respect to $\pi.\varphi$ if for every clause $D \in F_{\overline{l}}$, there exists a literal $k \neq I$ with $k \leq_{\pi} I$ such that $k \in C$ and $\overline{k} \in D$.

Definition (Quantified Blocked clause)

A clause is blocked if it contains a literal that blocks it.

$$\exists a \forall bcd \exists ef \forall g.(\bar{a} \lor \bar{g}) \land (b \lor f \lor g) \land (c \lor \bar{e} \lor \bar{f}) \land (d \lor \bar{e} \lor \bar{f}) \land (\bar{c} \lor \bar{d} \lor e) \land (a \lor f)$$

Definition (Quantified Blocking literal)

An existential literal I in a clause C of a QBF $\pi.\varphi$ blocks C with respect to $\pi.\varphi$ if for every clause $D \in F_{\overline{l}}$, there exists a literal $k \neq I$ with $k \leq_{\pi} I$ such that $k \in C$ and $\overline{k} \in D$.

Definition (Quantified Blocked clause)

A clause is blocked if it contains a literal that blocks it.

$$\exists a \forall bcd \exists ef \forall g.(\bar{a} \lor \bar{g}) \land (b \lor f \lor g) \land (c \lor \bar{e} \lor \bar{f}) \land (c \lor \bar{d} \lor e) \land (a \lor f)$$
$$(c \lor \bar{d} \lor e) \land (a \lor f)$$

Definition (Quantified Blocking literal)

An existential literal I in a clause C of a QBF $\pi.\varphi$ blocks C with respect to $\pi.\varphi$ if for every clause $D \in F_{\overline{l}}$, there exists a literal $k \neq I$ with $k \leq_{\pi} I$ such that $k \in C$ and $\overline{k} \in D$.

Definition (Quantified Blocked clause)

A clause is blocked if it contains a literal that blocks it.

$$\exists a \forall bcd \exists ef \forall g.(\bar{a} \lor \bar{g}) \land (b \lor f \lor g) \land (\frac{c \lor \bar{c} \lor \bar{f}}{} \land (\frac{c \lor \bar{c} \lor \bar{f}}{}) \land (\bar{c} \lor \bar{d} \lor c) \land (a \lor f)$$

Definition (Quantified Blocking literal)

An existential literal I in a clause C of a QBF $\pi.\varphi$ blocks C with respect to $\pi.\varphi$ if for every clause $D \in F_{\overline{l}}$, there exists a literal $k \neq I$ with $k \leq_{\pi} I$ such that $k \in C$ and $\overline{k} \in D$.

Definition (Quantified Blocked clause)

A clause is blocked if it contains a literal that blocks it.

$$\exists a \forall bcd \exists ef \forall g.(\bar{a} \lor \bar{g}) \land (\underline{b} \lor f \lor g) \land (\underline{c} \lor \bar{c} \lor \bar{f}) \land \\ (\underline{c} \lor \bar{c} \lor \bar{f}) \land (\bar{c} \lor \bar{d} \lor e) \land (a \lor f)$$

Definition (Quantified Blocking literal)

An existential literal I in a clause C of a QBF $\pi.\varphi$ blocks C with respect to $\pi.\varphi$ if for every clause $D \in F_{\overline{l}}$, there exists a literal $k \neq I$ with $k \leq_{\pi} I$ such that $k \in C$ and $\overline{k} \in D$.

Definition (Quantified Blocked clause)

A clause is blocked if it contains a literal that blocks it.

$$\exists a \forall bcd \exists ef \forall g.(\bar{a} \lor \bar{g}) \land (\underline{b} \lor f \lor g) \land (\underline{c} \lor \bar{c} \lor \bar{f}) \land \\ (\underline{c} \lor \bar{c} \lor \bar{f}) \land (\bar{c} \lor \bar{d} \lor c) \land (\underline{a} \lor f) \end{cases}$$

Definition (Quantified Blocking literal)

An existential literal I in a clause C of a QBF $\pi.\varphi$ blocks C with respect to $\pi.\varphi$ if for every clause $D \in F_{\overline{l}}$, there exists a literal $k \neq I$ with $k \leq_{\pi} I$ such that $k \in C$ and $\overline{k} \in D$.

Definition (Quantified Blocked clause)

A clause is blocked if it contains a literal that blocks it.

$$\exists a \forall bcd \exists ef \forall g. (\overline{a} \lor \overline{g}) \land (\overline{b} \lor f \lor g) \land (\overline{c} \lor \overline{c} \lor \overline{f}) \land \\ (\overline{d} \lor \overline{c} \lor \overline{f}) \land (\overline{c} \lor \overline{d} \lor c) \land (\overline{a} \lor f) \end{cases}$$

Reasoning with Quantified Boolean Formulas

Marijn J.H. Heule marijn@cs.utexas.edu

slides based on a lecture by Martina Seidl, JKU, Linz

イロト 不良 トイヨト イヨト ヨー ろくろ

32/32