Reasoning with Quantified Boolean Formulas

Marijn J.H. Heule
marijn@cs.utexas.edu
THE UNIVERSITY OF

slides based on a lecture by Martina Seidl, JKU, Linz

What are QBF?

- Quantified Boolean formulas (QBF) are
formulas of propositional logic + quantifiers
- Examples:
- $(x \vee \bar{y}) \wedge(\bar{x} \vee y)$ (propositional logic)
- $\exists x \forall y(x \vee \bar{y}) \wedge(\bar{x} \vee y)$

Is there a value for x such that for all values of y the formula is true?

- $\forall y \exists x(x \vee \bar{y}) \wedge(\bar{x} \vee y)$

For all values of y, is there a value for x such that the formula is true?

SAT vs. QSAT aka NP-complete vs. PSPACE-complete

$$
\begin{gathered}
\text { SAT } \\
\phi\left(x_{1}, x_{2}, x_{3}\right)
\end{gathered}
$$

Is there a satisfying assignment?

QBF
$\exists x_{1} \forall x_{2} \exists x_{3} \phi\left(x_{1}, x_{2}, x_{3}\right)$
$\exists x_{1}$

Is there a satisfying assignment tree?

Small Example QSAT Problems

Consider the formula $\forall a \exists b, c .(a \vee b) \wedge(\bar{a} \vee c) \wedge(\bar{b} \vee \bar{c})$

Small Example QSAT Problems

Consider the formula $\forall a \exists b, c .(a \vee b) \wedge(\bar{a} \vee c) \wedge(\bar{b} \vee \bar{c})$

A model is:

Small Example QSAT Problems

Consider the formula $\forall a \exists b, c .(a \vee b) \wedge(\bar{a} \vee c) \wedge(\bar{b} \vee \bar{c})$

A model is:

Consider the formula $\exists b \forall a \exists c .(a \vee b) \wedge(\bar{a} \vee c) \wedge(\bar{b} \vee \bar{c})$

Small Example QSAT Problems

Consider the formula $\forall a \exists b, c .(a \vee b) \wedge(\bar{a} \vee c) \wedge(\bar{b} \vee \bar{c})$

A model is:

Consider the formula $\exists b \forall a \exists c .(a \vee b) \wedge(\bar{a} \vee c) \wedge(\bar{b} \vee \bar{c})$

A counter-model is:

The quantifier prefix frequently determines the truth of a QBF.

The Two Player Game Interpretation of QSAT

Interpretation of QSAT as two player game for a QBF $\exists x_{1} \forall a_{1} \exists x_{2} \forall a_{2} \cdots \exists x_{n} \forall a_{n} \psi$:

- Player A (existential player) tries to satisfy the formula by assigning existential variables
- Player B (universal player) tries to falsify the formula by assigning universal variables
- Player A and Player B make alternately an assignment of the variables in the outermost quantifier block
- Player A wins: formula is satisfiable, i.e., there is a strategy for assigning the existential variables such that the formula is always satisfied
- Player B wins: formula is unsatisfiable

Promises of QBF

- QSAT is the prototypical problem for PSPACE.
- QBFs are suitable as host language for the encoding of many application problems like
- verification
- artificial intelligence
- knowledge representation
- game solving
- In general, QBF allow more succinct encodings then SAT

Application of a QBF Solver

QBF Solver returns

1. yes/no
2. witnesses

Example of $\exists \forall \exists$: Synthesis

Given an input-output specification, does there exists a circuit that satisfies the input-output specification.

QBF solving can be used to find the smallest sorting network:

- (\exists) Does there exists a sorting network of k wires,
- (\forall) such that for all input variables of the network
- (\exists) the output $O_{i} \leq O_{i+1}$

Example of $\forall \exists \ldots \forall \exists$: Games

Many games, such as Go and Reversi, can be naturally expressed as a QBF problem.

Boolean variables $a_{i, k}, b_{j, k}$ express that the existential player places a piece on row i and column j at his k th turn. Variables $c_{i, k}, d_{j, k}$ are used for the universal player.

The QBF problem is of the form
$\forall c_{i, 1}, d_{j, 1} \exists a_{i, 1}, b_{j, 1} \ldots \forall c_{i, n}, d_{j, n} \exists a_{i, n}, b_{j, n} \cdot \psi$
Outcome "satisfiable": the second player (existential) can always prevent that the first player (universal) wins.

Reversi

Illustrating Example $\forall \exists$: Conway's Game of Life

Conway's Game of Life is an infinite 2D grid of cells that are either alive or dead using the following update rules:

- Any alive cell with fewer than two alive neighbors dies;
- Any alive cell with two or three live neighbors lives;
- Any alive cell with more than three alive neighbors dies;
- Any dead cell with exactly three alive neighbors becomes alive.

Game of Life is very popular: over 1,100 wiki articles

Garden of Eden in Conway's Game of Life

> A Garden of Eden (GoE) is a state that can only exist as initial state.
> Let $T(x, y)$ denote the CNF formula that encodes the transition relation from a state to its successor using variables x that describe the current state and variables y the successor state.

A QBF that encodes the GoE problem is simply

$$
\forall y \exists x \cdot T(x, y)
$$

The smallest Garden of Eden known so far (shown above) was found using a QBF solver.
[Hartman et al. 2013]

The Language of QBF

The language of quantified Boolean formulas $\mathcal{L}_{\mathcal{P}}$ over a set of propositional variables \mathcal{P} is the smallest set such that

- if $v \in \mathcal{P} \cup\{\top, \perp\}$ then $v \in \mathcal{L}_{\mathcal{P}}$
- if $\phi \in \mathcal{L}_{\mathcal{P}}$ then $\bar{\phi} \in \mathcal{L}_{\mathcal{P}}$
- if ϕ and $\psi \in \mathcal{L}_{\mathcal{P}}$ then $\phi \wedge \psi \in \mathcal{L}_{\mathcal{P}}$
- if ϕ and $\psi \in \mathcal{L}_{\mathcal{P}}$ then $\phi \vee \psi \in \mathcal{L}_{\mathcal{P}}$
- if $\phi \in \mathcal{L}_{\mathcal{P}}$ then $\exists v \phi \in \mathcal{L}_{\mathcal{P}}$
- if $\phi \in \mathcal{L}_{\mathcal{P}}$ then $\forall v \phi \in \mathcal{L}_{\mathcal{P}}$
(variables, constants)
(negation)
(conjunction)
(disjunction)
(existential quantifier)
(universal quantifier)

Some Notes on Variables and Truth Constants

- T stands for top
- always true
- empty conjunction
- \perp stands for bottom
- always false
- empty disjunction
- literal: variable or negation of a variable
- examples: $I_{1}=v, l_{2}=\bar{w}$
- $\operatorname{var}(I)=v$ if $I=v$ or $I=\bar{v}$
- complement of literal $I: \bar{l}$
- $\operatorname{var}(\phi)$: set of variables occurring in QBF ϕ

Some QBF Terminology

Let $Q v \psi$ with $Q \in\{\forall, \exists\}$ be a subformula in a QBF ϕ, then

- ψ is the scope of v
- Q is the quantifier binding of v
- quant $(v)=Q$
- free variable w in $\phi: w$ has no quantifier binding in ϕ
- bound variable w in QBF $\phi: w$ has quantifier binding in ϕ
- closed QBF: no free variables

Example

Prenex Conjunctive Normal Form (PCNF)

A QBF ϕ is in prenex conjunctive normal form iff

- ϕ is in prenex normal form $\phi=\mathrm{Q}_{1} v_{1} \ldots \mathrm{Q}_{n} v_{n} \psi$
- matrix ψ is in conjunctive normal form, i.e.,

$$
\psi=C_{1} \wedge \cdots \wedge C_{n}
$$

where C_{i} are clauses, i.e., disjunctions of literals.

Example

Some Words on Notation

If convenient, we write

- a conjunction of clauses as a set, i.e.,

$$
C_{1} \wedge \ldots \wedge C_{n}=\left\{C_{1}, \ldots, C_{n}\right\}
$$

- a clause as a set of literals, i.e.,

$$
I_{1} \vee \ldots \vee I_{k}=\left\{I_{1}, \ldots, I_{k}\right\}
$$

- $\operatorname{var}(\phi)$ for the variables occurring in ϕ
- $\operatorname{var}(I)$ for the variable of a literal, i.e.,

$$
\operatorname{var}(I)=x \text { iff } I=x \text { or } I=\bar{x}
$$

Example

Semantics of QBFs

A valuation function $\mathcal{I}: \mathcal{L}_{\mathcal{P}} \rightarrow\{\mathcal{T}, \mathcal{F}\}$ for closed QBFs is defined as follows:

- $\mathcal{I}(T)=\mathcal{T} ; \mathcal{I}(\perp)=\mathcal{F}$
- $\mathcal{I}(\bar{\psi})=\mathcal{T}$ iff $\mathcal{I}(\psi)=\mathcal{F}$
- $\mathcal{I}(\phi \vee \psi)=\mathcal{T}$ iff $\mathcal{I}(\phi)=\mathcal{T}$ or $\mathcal{I}(\psi)=\mathcal{T}$
- $\mathcal{I}(\phi \wedge \psi)=\mathcal{T}$ iff $\mathcal{I}(\phi)=\mathcal{T}$ and $\mathcal{I}(\psi)=\mathcal{T}$
- $\mathcal{I}(\forall v \psi)=\mathcal{T}$ iff $\mathcal{I}(\psi[\perp / v])=\mathcal{T}$ and $\mathcal{I}(\psi[T / v])=\mathcal{T}$
- $\mathcal{I}(\exists v \psi)=\mathcal{T}$ iff $\mathcal{I}(\psi[\perp / v])=\mathcal{T}$ or $\mathcal{I}(\psi[\top / v])=\mathcal{T}$

```
Boolean split (QBF \phi)
switch(\phi)
    case T: return true;
    case }\perp\mathrm{ : return false;
    case }\overline{\psi}: return (not split (\psi))
    case }\mp@subsup{\psi}{}{\prime}\wedge\mp@subsup{\psi}{}{\prime\prime}: return split (\mp@subsup{\psi}{}{\prime})&& split ( \psi '' ) ;
    case }\mp@subsup{\psi}{}{\prime}\vee\mp@subsup{\psi}{}{\prime\prime}: return split(\psi') || split ( \psi '' )
    case QX\psi:
        select }x\inX;\quad\mp@subsup{X}{}{\prime}=X\{x}
        if (Q == \forall)
            return (split (Q\mp@subsup{X}{}{\prime}\psi[x/T]) &&
                split (Q\mp@subsup{X}{}{\prime}\psi[x/\perp]));
        else
            return (split (Q\mp@subsup{X}{}{\prime}\psi[x/T]) ||
                split(Q\mp@subsup{X}{}{\prime}\psi[x/\perp]));
```


Some Simplifications

The following rewritings are equivalence preserving:

1. $\bar{\top} \Rightarrow \perp ; \quad \bar{\perp} \Rightarrow T$;
2. $\top \wedge \phi \Rightarrow \phi ; \quad \perp \wedge \phi \Rightarrow \perp ; \quad \top \vee \phi \Rightarrow \top ; \quad \perp \vee \phi \Rightarrow \phi$;
3. $(\mathrm{Q} x \phi) \Rightarrow \phi, \mathrm{Q} \in\{\forall, \exists\}, x$ does not occur in ϕ;

Example

$$
\begin{gathered}
\forall a b \exists x \forall c \exists y z \forall d\{\{a, b, \bar{c}\},\{a, \bar{b}, \bar{\top}\}, \\
\{c, y, d, \perp\},\{x, y, \bar{\perp}\},\{x, c, d, \top\}\} \\
\approx
\end{gathered}
$$

$\forall a b c \exists y \forall d\{\{a, b, \bar{c}\},\{a, \bar{b}\},\{c, y, d\}\}$

Boolean splitCNF (Prefix P, matrix ψ)

if $(\psi==\emptyset)$: return true;
if $(\emptyset \in \psi)$: return false;
$P=Q X P^{\prime}, x \in X, \quad X^{\prime}=X \backslash\{x\} ;$
if $\quad(Q==\forall)$

$$
\begin{array}{ll}
\text { return } & \left(\text { splitCNF }\left(Q X^{\prime} P^{\prime}, \psi^{\prime}\right) \& \&\right. \\
& \left.\operatorname{splitCNF}\left(Q X^{\prime} P^{\prime}, \psi^{\prime \prime}\right)\right) ;
\end{array}
$$

else

$$
\begin{aligned}
\text { return } & \left(\operatorname{splitCNF}\left(Q X^{\prime} P^{\prime}, \psi^{\prime}\right) \|\right. \\
& \left.\operatorname{splitCNF}\left(Q X^{\prime} P^{\prime}, \psi^{\prime \prime}\right)\right) ;
\end{aligned}
$$

where
ψ^{\prime} : take clauses of ψ, delete clauses with x, delete \bar{x} $\psi^{\prime \prime}$: take clauses of ψ, delete clauses with \bar{x}, delete x

Unit Clauses

A clause C is called unit in a formula ϕ iff

- Contains exactly one existential literal
- the universal literals of C are to the right of the existential literal in the prefix
The existential literal in the unit clause is called unit literal.
Example
$\forall a b \exists x \forall c \exists y \forall d\{\{a, b, \bar{c}, \bar{x}\},\{a, \bar{b}\},\{c, y, d\},\{x, y\},\{x, c, d\},\{y\}\}$

Unit Clauses

A clause C is called unit in a formula ϕ iff

- Contains exactly one existential literal
- the universal literals of C are to the right of the existential literal in the prefix
The existential literal in the unit clause is called unit literal.

Example

$\forall a b \exists x \forall c \exists y \forall d\{\{a, b, \bar{c}, \bar{x}\},\{a, \bar{b}\},\{c, y, d\},\{x, y\},\{x, c, d\},\{y\}\}$
Unit literals: x, y

Unit Literal Elimination

Let ϕ be a QBF with unit literal I and let ϕ^{\prime} be a QBF obtained from ϕ by

- removing all clauses containing /
- removing all occurrences of \bar{l}

Then

$$
\phi \approx \phi^{\prime}
$$

Example
$\forall a b \exists x \forall c \exists y \forall d\{\{a, b, \bar{c}, \bar{x}\},\{a, \bar{b}\},\{c, y, d\},\{x, y\},\{x, c, d\},\{y\}\}$
After unit literal elimiation: $\forall a b c\{\{a, b, \bar{c}\},\{a, \bar{b}\}\}$

Pure Literals

A literal $/$ is called pure in a formula ϕ iff

- / occurs in ϕ
- the complement of I, i.e., \bar{l} does not occur in ϕ

Example

$\forall a b \exists x \forall c \exists y z \forall d\{\{a, b, \bar{c}\},\{a, \bar{b}\},\{c, y, d\},\{x, y\},\{x, c, d\}\}$

Pure Literals

A literal $/$ is called pure in a formula ϕ iff

- / occurs in ϕ
- the complement of I, i.e., \bar{l} does not occur in ϕ

Example

$\forall a b \exists x \forall c \exists y z \forall d\{\{a, b, \bar{c}\},\{a, \bar{b}\},\{c, y, d\},\{x, y\},\{x, c, d\}\}$
Pure: a, d, x, y

Pure Literal Elimination

Let ϕ be a QBF with pure literal / and let ϕ^{\prime} be a QBF obtained from ϕ by

- removing all clauses with $/$ if quant $(I)=\exists$
- removing all occurrences of I if quant $(I)=\forall$

Then

$$
\phi \approx \phi^{\prime}
$$

Example
$\forall a b \exists x \forall c \exists y z \forall d\{\{a, b, \bar{c}\},\{a, \bar{b}\},\{c, y, d\},\{x, y\},\{x, c, d\}\}$
After Pure Literal Elimination: $\forall b\{\{b\},\{\bar{b}\}\}$

Universal Reduction (UR)

- Let П. ψ be a QBF in PCNF and $C \in \psi$.
- Let $I \in C$ with
- quant $(I)=\forall$
- forall $k \in C$ with quant $(k)=\exists k<_{\Pi}$ l, i.e., all existential variables k of C are to the left of I in Π.
- Then I may be removed from C.
- $C \backslash\{/\}$ is called the universal reduct of C.

Example
$\forall a b \exists x \forall c \exists y z \forall d\{\{a, b, \bar{c}, x\},\{a, \bar{b}, x\},\{c, y, d\},\{x, y\},\{x, c, d\}\}\}$

Universal Reduction (UR)

- Let $\Pi . \psi$ be a QBF in PCNF and $C \in \psi$.
- Let $I \in C$ with
- quant $(I)=\forall$
- forall $k \in C$ with quant $(k)=\exists k<_{\Pi}$ l, i.e., all existential variables k of C are to the left of I in Π.
- Then I may be removed from C.
- $C \backslash\{/\}$ is called the universal reduct of C.

Example

$\forall a b \exists x \forall c \exists y z \forall d\{\{a, b, \bar{c}, x\},\{a, \bar{b}, x\},\{c, y, d\},\{x, y\},\{x, c, d\}\}\}$
After Universal Reduction:
$\forall a b \exists x \forall c \exists y z \forall d\{\{a, b, x\},\{a, \bar{b}, x\},\{c, y\},\{x, y\},\{x\}\}\}$

Boolean splitCNF2 (Prefix P, matrix ψ)
$(P, \psi)=\operatorname{simplify}(P, \psi) ;$
if $(\psi==\emptyset)$: return true;
if $(\emptyset \in \psi)$: return false;
$P=Q X P^{\prime}, x \in X, \quad X^{\prime}=X \backslash\{x\} ;$
if $\quad(Q==\forall)$

$$
\begin{array}{cl}
\text { return } & \left(\text { splitCNF2 }\left(Q X^{\prime} P^{\prime}, \psi^{\prime}\right) \& \&\right. \\
\text { splitCNF2 } \left.\left(Q X^{\prime} P^{\prime}, \psi^{\prime \prime}\right)\right)
\end{array}
$$

else

$$
\begin{aligned}
\text { return } & \text { (splitCNF2 }\left(Q X^{\prime} P^{\prime}, \psi^{\prime}\right) \| \\
& \text { splitCNF2 } \left.\left(Q X^{\prime} P^{\prime}, \psi^{\prime \prime}\right)\right) ;
\end{aligned}
$$

where
ψ^{\prime} : take clauses of ψ, delete clauses with x, delete \bar{x} $\psi^{\prime \prime}$: take clauses of ψ, delete clauses with \bar{x}, delete x

Resolution for QBF

Q-Resolution: propositional resolution + universal reduction.

Definition

Let C_{1}, C_{2} be clauses with existential literal $I \in C_{1}$ and $I \in C_{2}$.

1. Tentative Q-resolvent:
$C_{1} \otimes C_{2}:=\left(U R\left(C_{1}\right) \cup U R\left(C_{2}\right)\right) \backslash\{I, \bar{l}\}$.
2. If $\{x, \bar{x}\} \subseteq C_{1} \otimes C_{2}$ then no Q-resolvent exists.
3. Otherwise, Q-resolvent $C:=\left(C_{1} \otimes C_{2}\right)$.

- Q-resolution is a sound and complete calculus.
- Universals as pivot are also possible.

Q-Resolution Small Example

Exclusive OR (XOR): QBF $\psi=\exists x \forall y(x \vee y) \wedge(\bar{x} \vee \bar{y})$

Q-Resolution Small Example

Exclusive OR (XOR): QBF $\psi=\exists x \forall y(x \vee y) \wedge(\bar{x} \vee \bar{y})$

Truth Table

x	y	ψ
0	0	0
0	1	1
1	0	1
1	1	0

Q-Resolution Small Example

Exclusive OR (XOR): QBF $\psi=\exists x \forall y(x \vee y) \wedge(\bar{x} \vee \bar{y})$

Q-Resolution Proof

Q-Resolution Small Example

Exclusive OR (XOR): QBF $\psi=\exists x \forall y(x \vee y) \wedge(\bar{x} \vee \bar{y})$

Q-Resolution Proof

Q-Resolution Small Example

Exclusive OR (XOR): QBF $\psi=\exists x \forall y(x \vee y) \wedge(\bar{x} \vee \bar{y})$

Q-Resolution Proof

Q-Resolution Small Example

Exclusive OR (XOR): QBF $\psi=\exists x \forall y(x \vee y) \wedge(\bar{x} \vee \bar{y})$

Truth Table

x	y	ψ
0	0	0
0	1	1
1	0	1
1	1	0

Q-Resolution Proof

$$
\longrightarrow y=x \Rightarrow \psi=0
$$

Q-Resolution Small Example

Exclusive OR (XOR): QBF $\psi=\exists x \forall y(x \vee y) \wedge(\bar{x} \vee \bar{y})$

Truth Table

Q-Resolution Proof

$$
\begin{aligned}
& \longrightarrow y=x \Rightarrow \psi=0 \\
& \left.\longrightarrow \quad f_{y}(x)=x \quad \text { (counter model }\right)
\end{aligned}
$$

Q-Resolution Large Example

Input Formula
 $\exists a \forall b \exists c d \forall e \exists f g .(\bar{a} \vee \bar{g}) \wedge(b \vee f \vee g) \wedge(c \vee \bar{e} \vee \bar{f}) \wedge$
 $$
(d \vee \bar{e} \vee \bar{f}) \wedge(\bar{c} \vee \bar{d} \vee e) \wedge(a \vee f)
$$

Q-Resolution Large Example

Input Formula

$\exists a \forall b \exists c d \forall e \exists f g .(\bar{a} \vee \bar{g}) \wedge(b \vee f \vee g) \wedge(c \vee \bar{e} \vee \bar{f}) \wedge$

$$
(d \vee \bar{e} \vee \bar{f}) \wedge(\bar{c} \vee \bar{d} \vee e) \wedge(a \vee f)
$$

Q-Resolution Proof DAG

$\bar{a} \vee \bar{g} \quad b \vee f \vee g \quad c \vee \bar{e} \vee \bar{f} \quad d \vee \bar{e} \vee \bar{f} \quad \bar{c} \vee \bar{d} \vee e \quad a \vee f$

QBF Preprocessing

Preprocessing is crucial to solve most QBF instances efficiently.
Results of DepQBF w/ and w/o bloqqer on QBF Eval 2012 [1]

Quantified Blocked Clause

Definition (Quantified Blocking literal)

An existential literal / in a clause C of a QBF $\pi . \varphi$ blocks C with respect to $\pi . \varphi$ if for every clause $D \in F_{\bar{T}}$, there exists a literal $k \neq I$ with $k \leq_{\pi} l$ such that $k \in C$ and $\bar{k} \in D$.

Definition (Quantified Blocked clause)
A clause is blocked if it contains a literal that blocks it.

Quantified Blocked Clause

Definition (Quantified Blocking literal)

An existential literal / in a clause C of a QBF $\pi . \varphi$ blocks C with respect to $\pi . \varphi$ if for every clause $D \in F_{\bar{T}}$, there exists a literal $k \neq I$ with $k \leq_{\pi} I$ such that $k \in C$ and $\bar{k} \in D$.

Definition (Quantified Blocked clause)
A clause is blocked if it contains a literal that blocks it.
Example

$$
\begin{array}{r}
\exists a \forall b c d \exists e f \forall g \cdot(\bar{a} \vee \bar{g}) \wedge(b \vee f \vee g) \wedge(c \vee \bar{e} \vee \bar{f}) \wedge \\
(d \vee \bar{e} \vee \bar{f}) \wedge(\bar{c} \vee \bar{d} \vee e) \wedge(a \vee f)
\end{array}
$$

Quantified Blocked Clause

Definition (Quantified Blocking literal)

An existential literal / in a clause C of a QBF $\pi . \varphi$ blocks C with respect to $\pi . \varphi$ if for every clause $D \in F_{\bar{T}}$, there exists a literal $k \neq I$ with $k \leq_{\pi} I$ such that $k \in C$ and $\bar{k} \in D$.

Definition (Quantified Blocked clause)
A clause is blocked if it contains a literal that blocks it.
Example

$$
\begin{array}{r}
\exists a \forall b c d \exists e f \forall g \cdot(\bar{a} \vee \bar{g}) \wedge(b \vee f \vee g) \wedge(c \vee \bar{c} \vee \bar{f}) \wedge \\
(d \vee \bar{e} \vee \bar{f}) \wedge(\bar{c} \vee \bar{d} \vee e) \wedge(a \vee f)
\end{array}
$$

Quantified Blocked Clause

Definition (Quantified Blocking literal)

An existential literal / in a clause C of a QBF $\pi . \varphi$ blocks C with respect to $\pi . \varphi$ if for every clause $D \in F_{\bar{T}}$, there exists a literal $k \neq I$ with $k \leq_{\pi} I$ such that $k \in C$ and $\bar{k} \in D$.

Definition (Quantified Blocked clause)
A clause is blocked if it contains a literal that blocks it.
Example

$$
\begin{array}{r}
\exists a \forall b c d \exists e f \forall g \cdot(\bar{a} \vee \bar{g}) \wedge(b \vee f \vee g) \wedge(c \vee \bar{e} \vee \bar{f}) \wedge \\
(d \vee \bar{e} \vee \bar{f}) \wedge(\bar{c} \vee \bar{d} \vee e) \wedge(a \vee f)
\end{array}
$$

Quantified Blocked Clause

Definition (Quantified Blocking literal)

An existential literal / in a clause C of a QBF $\pi . \varphi$ blocks C with respect to $\pi . \varphi$ if for every clause $D \in F_{\bar{T}}$, there exists a literal $k \neq I$ with $k \leq_{\pi} I$ such that $k \in C$ and $\bar{k} \in D$.

Definition (Quantified Blocked clause)
A clause is blocked if it contains a literal that blocks it.
Example

$$
\begin{array}{r}
\exists a \forall b c d \exists e f \forall g \cdot(\bar{a} \vee \bar{g}) \wedge(b \vee f \vee g) \wedge(c \vee \bar{e} \vee \bar{f}) \wedge \\
(d \vee \bar{e} \vee \bar{f}) \wedge(\bar{c} \vee \bar{d} \vee e) \wedge(a \vee f)
\end{array}
$$

Quantified Blocked Clause

Definition (Quantified Blocking literal)

An existential literal / in a clause C of a QBF $\pi . \varphi$ blocks C with respect to $\pi . \varphi$ if for every clause $D \in F_{\bar{T}}$, there exists a literal $k \neq I$ with $k \leq_{\pi} I$ such that $k \in C$ and $\bar{k} \in D$.

Definition (Quantified Blocked clause)
A clause is blocked if it contains a literal that blocks it.
Example

$$
\begin{array}{r}
\exists a \forall b c d \exists e f \forall g \cdot(\bar{a} \vee \bar{g}) \wedge(b \vee f \vee \bar{g}) \wedge(c \vee \bar{c} \vee \bar{f}) \wedge \\
(d \vee \bar{c} \vee \bar{f}) \wedge(\bar{c} \vee \bar{d} \vee e) \wedge(a \vee f)
\end{array}
$$

Quantified Blocked Clause

Definition (Quantified Blocking literal)

An existential literal / in a clause C of a QBF $\pi . \varphi$ blocks C with respect to $\pi . \varphi$ if for every clause $D \in F_{\bar{T}}$, there exists a literal $k \neq I$ with $k \leq_{\pi} I$ such that $k \in C$ and $\bar{k} \in D$.

Definition (Quantified Blocked clause)
A clause is blocked if it contains a literal that blocks it.
Example

$$
\begin{array}{r}
\exists a \forall b c d \exists e f \forall g \cdot(\bar{a} \vee \bar{g}) \wedge(b \vee f \vee \bar{g}) \wedge(c \vee \bar{c} \vee \bar{f}) \wedge \\
(d \vee \bar{e} \vee \bar{f}) \wedge(\bar{c} \vee \bar{d} \vee e) \wedge(a \vee f)
\end{array}
$$

Quantified Blocked Clause

Definition (Quantified Blocking literal)

An existential literal / in a clause C of a QBF $\pi . \varphi$ blocks C with respect to $\pi . \varphi$ if for every clause $D \in F_{\bar{T}}$, there exists a literal $k \neq I$ with $k \leq_{\pi} I$ such that $k \in C$ and $\bar{k} \in D$.

Definition (Quantified Blocked clause)
A clause is blocked if it contains a literal that blocks it.
Example

$$
\begin{array}{r}
\exists a \forall b c d \exists e f \forall g \cdot(\bar{a} \vee \bar{g}) \wedge(b \vee f \vee \bar{g}) \wedge(c \vee \bar{c} \vee \bar{f}) \wedge \\
(d \vee \bar{c} \vee \bar{f}) \wedge(\bar{c} \vee \bar{d} \vee e) \wedge(a \vee f)
\end{array}
$$

Reasoning with Quantified Boolean Formulas

Marijn J.H. Heule
marijn@cs.utexas.edu
THE UNIVERSITY OF

slides based on a lecture by Martina Seidl, JKU, Linz

