
1 / 106

Recursion and Induction
Basics

Warren A. Hunt, Jr.
hunt@cs.utexas.edu

University of Texas, Austin

Fall, 2021, updated Spring, 2023

Adapted from J Moore’s Recursion and Induction Notes.
Slides created and edited by Warren A. Hunt, Jr.
This content closely mirrors Moore’s R&I Notes.



2 / 106

Introduction

The language we will use is a subset of Lisp called ACL2. ACL2, which stands
for “A Computational Logic for Applicative Common Lisp,” is both a functional
programming language based on Common Lisp and a first-order mathematical
theory with induction.

The best way to learn to use that theorem prover to productive ends is first to
master the art of recursive definition and inductive proof.

We will start by learning a subset of the ACL2 language and a subset of the
rules of inference.



3 / 106

Data Types

ACL2 provides five data types:

▶ Numbers: integers, rationals and complex rationals

▶ Characters: examples in ACL2 (Common Lisp) include #\a, #\A, and
#\Newline

▶ Strings: ASCII characters written between “string quotes.”

▶ Symbols: are primitive data objects. Some symbols are “overloaded,” such
as t and nil, but most just “represent themselves,” e.g., LOAD, Store,
fence.

▶ Pairs: The only mechanism to aggregate objects is to pair one object with
another object. Lisp provides many abbreviation mechanisms to help write
aggregate terms.
▶ nil can be written ().
▶ (x . nil) may be written (x).
▶ (x . (y . . .)) may be written (x y . . .).

▶ Identity: We will use a canonical form to determine object equality.



4 / 106

Exercises
Problem 1.
Each of the utterances below is supposed to be a single object. Say whether it
is a number, string, symbol, pair, or ill-formed (i.e., does not represent a single
object in our language).

1. Monday

2. π

3. HelloWorld!

4. --1

5. -1

6. *PI*

7. 31415x10**-4

8. (A . B . C)

9. Hello World!

10. if

11. invokevirtual

12. ((1) . (2))

13. <=

14. ((A . 1) (B . 2) (C . 3))

15. Hello World!



5 / 106

Exercises
Problem 2.
Group the constants below into equivalence classes.

1. (1 . (2 3))

2. (nil . (nil nil))

3. ((nil nil) . nil)

4. (1 (2 . 3) 4)

5. (nil nil)

6. (1 (2 . 3) . (4 . ()))

7. (HelloWorld !)

8. (1 (2 3 . ()) 4)

9. ((A . t) (B . nil)(C . nil))

10. (()())

11. (1 2 3)

12. (() () . nil)

13. (A B C)

14. (a . (b . (c)))

15. (HELLO WORLD !)

16. ((a . t) (b) . ((c)))



6 / 106

Terms

For our purposes, a term is a variable symbol, a quoted constant, or a function
application written as (fn arg1 ... argn)

If car is a function symbol of arity one and cons is a function symbol of arity
two, then (cons (car x) y) is a term.

Semantically, terms are interpreted with respect to an assignment binding
variable symbols to constants and an interpretation of function symbols as
mathematical functions.

▶ Semantically, terms are interpreted with respect to an assignment binding
variable symbols to constants and an interpretation of function symbols as
mathematical functions.

▶ Suppose the variables x is bound to 1 and y is bound to (2 3 4)

▶ Suppose cons is interpreted as the function that constructs ordered pairs

▶ Then, the meaning or value of the term (cons x y) is (1 . (2 3 4)) or,
equivalently, (1 2 3 4).

ACL2 provides an infinite number of variable symbols, whose syntax is that of
symbols.



7 / 106

Terms, continued

A quoted constant is written by prefixing an integer, string, or symbol by a
single quote mark.

’t, ’nil, ’-3, ’"Hello World!" and ’LOAD are quoted constants.

We do not consider ’(1 2 3) a quoted constant; this is a technicality.

We will shortly introduce some abbreviations that allow us to write ’(1 2 3)

as an abbreviation for (cons ’1 (cons ’2 (cons ’3 ’nil))).

ACL2 has an infinite number of function symbols each with an associated arity.
We now concern ourselves with six primitive function symbols:

▶ (cons x y) - construct and return the ordered pair (x . y).

▶ (car x) - return left component of x , if x is a pair; otherwise, return nil.

▶ (cdr x) - return right component of x , if x is a pair; otherwise, nil.

▶ (consp x) - return t if x is a pair; otherwise return nil.

▶ (if x y z) - return z if x is nil; otherwise return y .

▶ (equal x y) - return t if x and y are identical; otherwise return nil.

With these primitives we cannot do anything interesting with numbers, strings,
and symbols. They are just tokens to put into or take out of pairs. But we can
explore most of the interesting issues in recursion and induction in this setting!



8 / 106

Exercises

Problem 3.
Which of the utterances below are terms?

1. (car (cdr x))

2. (cons (car x y) z)

3. (cons 1 2)

4. (cons ’1 ’2)

5. (cons one two)

6. (cons ’one ’two)

7. (equal ’1 (car (cons ’2 ’3)))

8. (if t 1 2)

9. (if ’t ’1 ’2)

10. (car (cons (cdr hi-part) (car lo-part)))

11. car(cons x y)

12. car(cons(x,y))

13. (cons 1 (2 3 4))



9 / 106

Exercises

Problem 4.
For each constant below, write a term whose value is the constant.

1. ((1 . 2) . (3 . 4))

2. (1 2 3)

3. ((1 . t) (2 . nil) (3 . t))

4. ((A . 1) (B . 2))



10 / 106

Exercises

Problem 5.
For each term below, write the constant to which it evaluates.

1. (cons (cons ’1 ’2) (cons (cons ’3 ’4) ’nil))

2. (cons ’1 (cons ’2 ’3))

3. (cons ’nil (cons (cons ’nil ’nil) ’nil))

4. (if ’nil ’1 ’2)

5. (if ’1 ’2 ’3)

6. (equal ’nil (cons ’nil ’nil))

7. (equal ’Hello ’HELLO)

8. (equal (cons ’1 ’2) (cons ’1 ’two))



11 / 106

Substitutions

A substitution is a set {v0 ← t0, v1 ← t1, . . .} where each vi is a distinct
variable symbol and each ti is a term.

▶ If, for a given substitution σ and variable v , there is an i such that v is vi ,
we say v is bound by σ.

▶ If v is bound by σ, then the binding of v in σ is ti , for the i such that vi is
v .

The result of applying a substitution σ to a term term is denoted term/σ and
is defined as follows.

▶ If term is a variable, then term/σ is either the binding of term in σ or is
term itself, depending on whether term is bound in σ.

▶ If term is a quoted constant, term/σ is term.

▶ Otherwise, term is (f a1 . . . an) and term/σ is (f a1/σ . . . an/σ).

Problem 6.
Suppose σ is

{x ← (car a), y ← (cdr x)}
What term is (car (cons x (cons y (cons ’"Hello" z))))/σ?



12 / 106

Abbreviations for Terms

If x is t, nil, an integer, a character object, or a string, and x is used where a
term is expected, then x abbreviates the quoted constant ’x .

If ’() is used as a term, it abbreviates ’nil.

If ’(x) is used as a term it abbreviates (cons ’x ’nil).

If ’(x . y) is used where a term is expected, it abbreviates (cons ’x ’y).

If ’(x1 x2 . . . xn) is used where a term is expected, it abbreviates (cons ’x1
(cons ’x2 . . . (cons ’xn ’nil). . .)). Thus, for example, ’(MON TUE WED)

abbreviates (cons ’MON (cons ’TUE (cons ’WED ’NIL))).

When (list x1 . . .) is used as a term, it abbreviates (cons x1 (list . . .)).
When (list) is used as a term, it abbreviates nil. Thus (list a b c)

abbreviates (cons a (cons b (cons c nil))).

Symbols and and or are used as function symbols of two arguments.

▶ If and is used as though it were a function of more than two arguments,
then it abbreviates the corresponding right-associated nest of ands

▶ Thus, (and p q r s), when used where a term is expected, it abbreviates
(and p (and q (and r s))).

▶ And, similarly, (or a b c) abbreviates (or a (or b c)).



13 / 106

Exercises

Problem 7.
Show the term abbreviated by each of the following:

1. (cons 1 ’(2 3))

2. (equal "Hello" hello)

3. (and (or a1 a2 a3) (or b1 b2 b3) (or c1 c2 c3))

4. (equal x ’(or a1 a2 a3))

5. (cons cons ’(cons cons ’cons))



14 / 106

Displaying Terms

The art of displaying a Lisp term in a way that it can be easily read by a person
is called “pretty printing.”

We recommend the following heuristics.

▶ Write clearly and count your parentheses.

▶ Don’t write a line with more than about 30 non-blank characters.

▶ If a function call will not fit on a line, break it into multiple lines,
indenting each argument the same amount.



15 / 106

Function Definitions

To define a function, we use the form (defun f (v1 . . . vn) β) where f is the
function symbol being defined, the vi are the formal variables or simply formals,
and β is the body of the function.

Operationally, a definition means that to compute (f a1 . . . an) one can
evaluate the actuals, ai , bind the formals, vi to those values, and compute β
instead. Logically speaking, a definition adds the axiom that (f v1 . . . vn) is
equal to β.

Here are the Lisp definitions of the standard propositional logic connectives:

(defun not (p) (if p nil t))

(defun and (p q) (if p q nil))

(defun or (p q) (if p p q))

(defun implies (p q) (if p (if q t nil) t))

(defun iff (p q) (and (implies p q) (implies q p)))



16 / 106

Fuctions Definitions, continued

Note that in Lisp, and and or are not Boolean valued.

(and t 3) and (or nil 3) both return 3. This is unimportant if they are only
used propositionally, e.g., (and t 3) ↔ (and 3 t) ↔ t, if “↔” means iff.

In Lisp, any non-nil value is propositionally equivalent to t.
Here is a recursive definition that copies a cons-structure.

(defun tree-copy (x)

(if (consp x)

(cons (tree-copy (car x))

(tree-copy (cdr x)))

x))

The term (tree-copy ’((1 . 2) . 3)) has the value ((1 . 2) . 3).



17 / 106

Exercises

In the exercises that follow you may wish to define auxiliary (“helper”)
functions as part of your solutions.

Problem 8.
Define app to concatenate two lists. For example (app ’(1 2 3) ’(4 5 6))

is (1 2 3 4 5 6).

Problem 9.
Define rev to reverse a list. For example, (rev ’(1 2 3)) is (3 2 1).

Problem 10.
Define mapnil to “copy” a list, replacing each element by nil. Thus, (mapnil
’(1 2 3)) is (nil nil nil).

Problem 11.
The result of “swapping” the pair (x . y) is the pair (y . x). Define
swap-tree to swap every cons in the binary tree x. Thus, (swap-tree ’((1 .

2) . (3 . 4))) is ((4 . 3) . (2 . 1)).



18 / 106

Exercises

Problem 12.
Define mem to take two arguments and determine if the first one occurs as an
element of the second. Thus, (mem ’2 ’(1 2 3)) is t and (mem ’4 ’(1 2

3)) is nil.

Problem 13.
Define the list analogue of subset, i.e., (sub x y) returns t or nil according
to whether every element of x is an element of y .

Problem 14.
Define int to take two lists and to return the list of elements that appear in
both. Thus (int ’(1 2 3 4) ’(2 4 6)) is (2 4).

Problem 15.
Define (tip e x) to determine whether e occurs as a tip of the binary tree x.

Problem 16.
Define (flatten x) to make list containing the tips of the binary tree x.
Thus, (flatten ’((1 . 2) . (3 . 4))) is (1 2 3 4).

Problem 17.
Define evenlen to recognize lists of even length. Thus, (evenlen ’(1 2 3))

is nil and (evenlen ’(1 2 3 4)) is t.



19 / 106

Axioms

A formal mathematical theory is given by

▶ a formal syntax for “formulas,”

▶ a set of formulas designated as “axioms,”

▶ and some formula manipulation rules (of inference) that allow one to
derive “new” formulas from “old” ones.

A “proof” of a formula p is a derivation of p from the given axioms using the
given rules of inference.

If a formula can be proved, it is said to be a “theorem.”

Formulas are given “semantics” similar to those described for terms.

Given an “assignment” of values to variable symbols and an interpretation of
the function symbols, every formula is given a truthvalue by the semantics.



20 / 106

Axioms, continued

Given an interpretation, a formula is “valid” if it is given the value true under
every possible assignment to the variable symbols.

A “model” of a theory is an interpretation that makes all the axioms valid.
Provided the rules of inference are validity preserving, every theorem is valid,
i.e., “always true.”

A model, given a set of functions, is an association of each function symbol to
an actual function on that set.

Given an assignment, a mapping of variables to elements of the domain (e.g.,
natural numbers), one can use the model to determine the value of the terms.

We assume you know all that, and won’t go into it further. The whole point of
a practical formal theory is to use proof to determine truth: one way to
determine if a formula is true is to prove it.



21 / 106

Axioms, continued

If α and β are terms, then α = β is a formula. If p and q are formulas, then
each of the following is a formula:

▶ p → q

▶ p ∧ q

▶ p ∨ q

▶ ¬p
▶ p ↔ q.

If α and β are terms, then α ̸= β is just an abbreviation for the formula
¬(α = β).

We extend the notation term/σ in the obvious way so that we can apply
substitution σ to formulas, replacing all the variables bound by σ in all the
terms of the formula.

The axioms we will use for the initial part of our study are given below. Note
that “Axioms” 1 and 8 are actually axiom schemas, i.e., they describe an
infinite number of axioms.



22 / 106

Axioms, continued

Axiom 1. ’α ̸= ’β,
where α and β are distinct integers, strings, or symbols

Axiom 2. x ̸= nil → (if x y z) = y

Axiom 3. x = nil → (if x y z) = z

Axiom 4. (equal x y) = nil ∨ (equal x y) = t

Axiom 5. x = y ↔ (equal x y) = t

Axiom 6. (consp x) = nil ∨ (consp x) = t

Axiom 7. (consp (cons x y)) = t

Axiom 8. (consp ’α) = nil,
where α is an integer, string, or symbol

Axiom 9. (car (cons x y)) = x

Axiom 10. (cdr (cons x y)) = y

Axiom 11. (consp x) = t → (cons (car x) (cdr x)) = x

Axiom 12. (consp x) = nil → (car x) = nil

Axiom 13. (consp x) = nil → (cdr x) = nil



23 / 106

Axioms, continued

One axiom described by Axiom (schema) 1 is ’t ̸= ’nil. Others are ’nil ̸=
’3 and ’"Hello" ̸= ’Hello. We refer to all of these as Axiom 1.

One axiom described by Axiom (schema) 8 is (consp ’nil) = nil. Others
are (consp ’3) = nil and (consp ’Hello) = nil. We refer to all of these
as Axiom 8.

Note that if ϕ is an axiom or theorem and σ is a substitution, then ϕ/σ is a
theorem, by the Rule of Instantiation.

We assume you are familiar with the rules of inference for propositional calculus
and equality. For example, we take for granted that you can recognize
proposititional tautologies, reason by cases, substitute equals for equals.

For example, we show a theorem on the next slide that you should be able to
prove, using nothing but your knowledge of propositional calculus and equality
(and Axiom 1).



24 / 106

Example Proof Using Axioms and the Deduction Law

The proof shown below uses the Deduction Law of propositional calculus: we
can prove p → q by assuming p as a “Given” and deriving q.

Theorem.

(consp x) = t ∧ x = (car z) → (consp (car z)) ̸= nil

Proof.

1. (consp x) = t {Given}
2. x = (car z) {Given}
3. t ̸= nil {Axiom 1}
4. (consp x) ̸= nil {Equality Substitution, line 1 into line 3}
5. (consp (car z)) ̸= nil {Equality Substitution, line 2 into line 4}

Q.E.D.

We will not write proofs in this style. We will simply say that the formula is a
theorem “by propositional calculus, equality, and Axiom 1.”



25 / 106

Use of the Rule of Instantiation

Recall that each function definition adds an axiom. The definition

(defun tree-copy (x)

(if (consp x)

(cons (tree-copy (car x))

(tree-copy (cdr x)))

x))

adds the axiom

Axiom tree-copy

(tree-copy x)

=
(if (consp x)

(cons (tree-copy (car x))

(tree-copy (cdr x)))

x)



26 / 106

Function Definition Adds An Axiom

Thus, by the Rule of Instantiation

Theorem.
(tree-copy (cons a b))

=
(if (consp (cons a b))

(cons (tree-copy (car (cons a b)))

(tree-copy (cdr (cons a b))))

(cons a b))



27 / 106

Terms as Formulas

Logicians make a careful distinction between terms (whose values range over
objects in the domain, like the integers, etc.) and formulas (whose values range
over the truthvalues).

▶ We have set up two systems of propositional calculus. At the level of
formulas we have the traditional equality relation, =, and the logical
operators ∧, ∨, ¬, →, and ↔.

▶ At the level of terms, we have the primitive function equal and the
defined propositional functions and, or, not, implies, and iff.

In our term-level propositional calculus, t and nil play the role of truthvalues.
Because terms can be written entirely with ASCII symbols (and easily entered
on a keyboard!) we tend to write terms and use them as formulas.



28 / 106

Terms as Formulas, continued

For example, we might say that

(implies (and (consp x)

(not (consp y)))

(not (equal x y)))

is a theorem. But of course it cannot be a theorem because it is a term and
only formulas are theorems!

If we use an ACL2 term p as though it were a formula then the term should be
understood as an abbreviation for p ̸= nil.



29 / 106

Abuse of Terminology

Thus, if we say term p is a theorem we mean it is a theorem that p is not nil.
This abuse of terminology is justified by the following theorems.

Theorem. NOT is Logical Negation:
(not p) ̸= nil ↔ ¬ (p ̸= nil).

Proof. We handle the two directions of the ↔.
Case 1.
(not p) ̸= nil → ¬ (p ̸= nil).
This is equivalent to its contrapositive:
p ̸= nil → (not p) = nil.
By the definition of not and Axiom 2 and the hypothesis p̸= nil, (not p) =
(if p nil t) = nil.

Case 2.
¬ (p ̸= nil) → (not p) ̸= nil.
The hypothesis is propositionally equivalent to p = nil. By substitution of
equals for equals, the conclusion is (not nil) ̸= nil. By the definition of not
and Axioms 3 and 1, (not nil) = (if nil nil t) = t ̸= nil.

Q.E.D.



30 / 106

Exercises

Problem 18.
Prove
(and p q) ̸= nil ↔ (p ̸= nil) ∧ (q ̸= nil).

Problem 19.
Prove
(or p q) ̸= nil ↔ (p ̸= nil) ∨ (q ̸= nil).

Problem 20.
Prove
(implies p q) ̸= nil ↔ (p ̸= nil) → (q ̸= nil).

Problem 21.
Prove
(iff p q) ̸= nil ↔ (p ̸= nil) ↔ (q ̸= nil).

Problem 22.
Prove
(equal x y) ̸= nil ↔ (x = y)



31 / 106

Use of Only Terms

These theorems allow changing the propositional functions into their logical
counterparts as we move the “ ̸= nil” into the term. We can always drop a “̸=
nil” anywhere it occurs in a formula.

Problem 23.
Using the theorems above, prove that

(implies (and p (implies q r))

s)

is equivalent to

(p ∧ (q → r)) → s

which is equivalent to

((p ∧ ¬ q) → s)

∧
((p ∧ q ∧ r) → s)

When writing proofs on paper or the board, we tend to use formulas and the
short symbols =, ∧, ∨, ¬, →, ↔ instead of the longer term notation.



32 / 106

Exercises

Problem 24.
Prove

(equal (car (if a b c)) (if a (car b) (car c)))

that is, prove

(car (if a b c)) = (if a (car b) (car c))

Problem 25.
Prove

(equal (if (if a b c) x y)

(if a (if b x y) (if c x y)))

Problem 26.
Prove

(equal (tree-copy (cons a b))

(cons (tree-copy a) (tree-copy b)))



33 / 106

Definitions, Revisited

Problem 27.
Suppose we define

(defun f (x) 1)

and then prove some theorems and then “redefine” f with

(defun f (x) 2)

Prove (equal ’June ’July).

Problem 28.
Suppose we define

(defun f (x) (cons x y))

Prove (equal 1 2).1

Problem 29.
Suppose we define

(defun f (x) (not (f x)))

Prove (equal t nil).

1The definition f in this problem has nothing to do with the definition of f in the previous
problem! We tend to “re-use” function names like f, g and h from time to time simply to avoid
inventing new names.



34 / 106

Definitions, Revisited

The problems on the previous slides should disturb you!

We want to use proof as a way to determine truth. But we know that ’June
and ’July are different objects, as are 1 and 2 and t and nil – and yet we can
prove them equal!

Something has gone terribly wrong!

The restrictions we’ll impose will prevent us from defining many useful
functions but guarantee that we don’t ruin the logic with “definitions” like
those shown above.

ACL2 is much more generous in its restrictions but they are spiritually similar:
both here and in ACL2 the restrictions on definitions will guarantee that every
defined function terminates.

We do not explain in this document why these restrictions suffice.



35 / 106

Definitions, Revisited again

One way to make sure a function terminates is to insist that there is an
argument that is being car’d and/or cdr’d at least once every time the
function recurs and that before it recurs the definition tests that the argument
is a cons-pair.

For example, (defun f (x) (not (f x))) is disallowed by this restriction.

And, (defun f (x) (not (f (cdr x)))) is also disallowed.

But

(defun f (x)

(if (consp x)

(and (not (f (car x)))

(not (f (cdr (cdr x)))))

t))

is allowed because x is car’d and/or cdr’d in every recursion and the function
tests (consp x) before recurring.

We say (consp x) “rules” the two recursive calls above.



36 / 106

Simplified Definitional Principle

A car/cdr nest around v is (car v), (cdr v), or a car/cdr nest around (car

v) or (cdr v).

Thus, (car (cdr (car x))) is a car/cdr nest around x.

The idea in this next definition is to take a term β and a particular occurrence
r of some subterm in β and define the set of tests that rule r .

Then, if you have a function definition like (defun f (v1 . . . vk) β) you can
let r be a particular recursive call of f in β and then determine what tests rule
that call.

The rulers of an occurrence of a term r in another term β is the set defined as
follows:

1. if β is (if p x y) and r is in x , then the rulers of r in β is the set
obtained by adding p to the set of rulers of r in x ;

2. if β is (if p x y) and r is in y , then the rulers of r in β is the set
obtained by adding (NOT p) to the set of rulers of r in y ;

3. otherwise, the rulers of r in β is the empty set.



37 / 106

Simplified Definitional Principle, continued

Thus, in the term (if a (if b (h c) (h d)) (g c)), both a and b rule the
first occurrence of c and the occurrence of (h c).

In addition, a and (not b) rule the occurrences of d and (h d). Finally, (not
a) rules the second occurrence of c and (g c).

Note that our definition of “rulers” does not include every test that has to be
true in order to reach the occurrence in question.

For example, p does not rule the occurrence of a in (car (if p a b)) even
though the only way evaluation can reach a is if p is true.

The rulers of the occurrence of a in that term is the empty set, because that
term is not a call of if.

However, p does rule the occurrence of a in the equivalent term (if p (car

a) (car b)).

The reason we’ve defined rulers this way has to do with heuristics in the ACL2
theorem prover.



38 / 106

Simplified Definitional Principle, continued

Principle of Structural Recursion: A definition, (defun f (v1 . . . vn) β) will
be allowed (for now) only if it satisfies these four restrictions:

1. The symbol being defined, f , must be “new,” i.e., not already in use as a
function symbol in any axiom.

2. The formal variables, v1, . . . , vn, must be distinct variable symbols.

3. The body, β, must be a term, it must use no new function symbol other
than (possibly) f , and the only variable symbols in it are among the
formals.

4. There is an i such that (consp vi) rules every recursive call of f in β and
for every recursive call (f a1 . . . an) in β, ai is a car/cdr nest around vi .
We call vi a measured formal.

An acceptable definition adds the axiom (f v1 . . . vn) = β.



39 / 106

Problems

Problem 30.
Explain why these restrictions rule out the spurious definitions of f in the
problems above.

Problem 31.
Is the following definition allowed under the above restrictions?

(defun f (x)

(if (consp x)

(if (consp (cdr x))

(f (cdr (cdr x)))

nil)

t))

Problem 32.
Is the following definition allowed?

(defun f (x y)

(if (consp x)

(f (cons nil x) (cdr y))

y))



40 / 106

Problems
Problem 33.
Is the following definition allowed?

(defun f (x y)

(if (consp x)

(f (cons nil y) (cdr x))

y))

Problem 34.
Is the following definition allowed?

(defun f (x)

(if (not (consp x))

x

(f (cdr (cdr x)))))

Problem 35.
Is the following sequence of definitions allowed?

(defun endp (x) (not (consp x)))

(defun f (x)

(if (endp x)

nil

(cons nil (f (cdr x)))))



41 / 106

Problems

Problem 36.
Is the following definition allowed?

(defun f (x y)

(if (consp x)

(f (cdr x) (cons nil y))

y))

Problem 37.
Is the following definition allowed?

(defun f (x y)

(if (consp x)

(f (cdr x)

(f (cdr x) y))

y))



42 / 106

Problems

Problem 38.
Is the following sequence of definitions allowed?

(defun f (x)

(if (consp x)

(g (cdr x))

x))

(defun g (x)

(if (consp x)

(f (cdr x))

x))



43 / 106

Consideration of Structural Induction

Problem 39.
Given the definition

(defun f (x)

(if (consp x)

(f (cdr x))

t))

can you prove the theorem (equal (f x) t) using the logical machinery we
have described above?

ACL2 supports inductive proofs. Its Induction Principle is quite general and
involves the notion of the ordinals and well-foundedness.

For now, we will use a much simpler principle.

A substitution σ is a car/cdr substitution on x if the binding (image) of x
under σ is a car/cdr nest around x.

The other bindings of σ are unrestricted. For example, σ = {x ← (car x),

y ← (cons (cdr x) y)} is a car/cdr substitution on x.



44 / 106

Principle of Structural Induction

Principle of Structural Induction: Let ψ be the term representing a
conjecture. ψ may be proved by selecting an “induction” variable x, selecting a
set of car/cdr substitutions on x σ1, . . . , σn, and by proving the following
subgoals:

Base Case:

(implies (not (consp x))

ψ)

and

Induction Step:

(implies (and (consp x) ; test

ψ/σ1 ; induction hypothesis 1
...

ψ/σn) ; induction hypothesis n

ψ) ; induction conclusion

Here is an example Induction Step.

(implies (and (consp x)

ψ/{x ← (car x), y ← (app x y)}
ψ/{x ← (cdr (cdr x)), y ← (cons x y)}
ψ/{x ← (cdr (cdr x)), y ← y})

ψ)



45 / 106

Principle of Structural Induction

Let us use structural induction to prove a theorem about tree-copy. Recall
the definition.

(defun tree-copy (x)

(if (consp x)

(cons (tree-copy (car x))

(tree-copy (cdr x)))

x))

Theorem (equal (tree-copy x) x).



46 / 106

Example Structural Induction Proof

Name the formula above *1.

We prove *1 by induction. One induction scheme is suggested by this
conjecture – namely the one that unwinds the recursion in tree-copy.

If we let (ψ x) denote *1 above then the induction scheme we’ll use is

(and (implies (not (consp x)) (ψ x))

(implies (and (consp x)

(ψ (car x))

(ψ (cdr x)))

(ψ x))).

When applied to the goal at hand the above induction scheme produces the
following two nontautological subgoals.

Subgoal *1/2
(implies (not (consp x))

(equal (tree-copy x) x)).

But simplification reduces this to t, using the definition of tree-copy and the
primitive axioms.



47 / 106

Example Structural Induction Proof, continued

Subgoal *1/1
(implies (and (consp x) ; hyp 1

(equal (tree-copy (car x)) (car x)) ; hyp 2

(equal (tree-copy (cdr x)) (cdr x))) ; hyp 3

(equal (tree-copy x) x)).

But simplification reduces this to t, using the definition of tree-copy and the
primitive axioms.
That completes the proof of *1.
Q.E.D.



48 / 106

Example Structural Induction Proof, a closer look

Let us look more closely at the reduction of Subgoal *1/1. Consider the
left-hand side of the concluding equality. Here is how it reduces to the
right-hand side under the hypotheses.

(tree-copy x)

= {def tree-copy}
(if (consp x)

(cons (tree-copy (car x))

(tree-copy (cdr x)))

x)

= {hyp 1 and Axiom 6}
(if t

(cons (tree-copy (car x))

(tree-copy (cdr x)))

x)

= {Axioms 2 and 1}
(cons (tree-copy (car x))

(tree-copy (cdr x)))

= {hyp 2}



49 / 106

Example Structural Induction Proof, a closer look

(cons (tree-copy (car x))

(tree-copy (cdr x)))

= {hyp 2}
(cons (car x)

(tree-copy (cdr x)))

= {hyp 3}
(cons (car x)

(cdr x))

= {Axiom 11 and hyp 1}
x

This proof is of a very routine nature: induct so as to unwind some particular
function appearing in the conjecture and then use the axioms and definitions to
simplify each case to t.



50 / 106

Problems

The problems below refer to function symbols defined in previous exercises.

Try to prove them for the definitions you wrote. But if you cannot, then use
the definitions we use in our solutions. If the conjectures below are not
theorems, show a counterexample!

And then try to write the theorem “suggested” by the conjecture. For example,
add a hypothesis that restricts some variable so that the conjecture holds; you
may even need to introduce new concepts.

Problem 40.
Prove

(equal (app (app a b) c) (app a (app b c))).

Problem 41.
Prove

(equal (app a nil) a)



51 / 106

Problems, continued

Problem 42.
Prove

(equal (mapnil (app a b)) (app (mapnil a) (mapnil b)))

Problem 43.
Prove

(equal (rev (mapnil x)) (mapnil (rev x)))

Problem 44.
Prove

(equal (rev (rev x)) x)

Problem 45.
Prove

(equal (swap-tree (swap-tree x)) x)



52 / 106

Problems, continued

Problem 46.
Prove

(equal (mem e (app a b)) (or (mem e a) (mem e b)))

Problem 47.
Prove

(equal (mem e (int a b)) (and (mem e a) (mem e b)))

Problem 48.
Prove

(sub a a)

Problem 49.
Prove

(implies (and (sub a b)

(sub b c))

(sub a c))



53 / 106

Problems, continued

Problem 50.
Prove

(sub (app a a) a)

Problem 51.
Define

(defun mapnil1 (x a)

(if (consp x)

(mapnil1 (cdr x) (cons nil a))

a))

Formalize and then prove the remark “On lists of nils, mapnil1 is
commutative.

Problem 52.
Define (perm x y) so that it returns t if lists x and y are permutations of each
other; otherwise it returns nil.



54 / 106

Problems, continued

Problem 53.
Prove

(perm x x)

Problem 54.
Prove

(implies (perm x y) (perm y x)).

Problem 55.
Prove

(implies (and (perm x y)

(perm y z))

(perm x z))



55 / 106

Total Ordering

For several of the problems below it is necessary to have a total ordering
relation. Let <<= be a non-strict total order, i.e., a Boolean function that
enjoys the following properties:

(and (<<= x x) ; Reflexive

(implies (and (<<= x y) ; Anti-symmetric

(<<= y x))

(equal x y))

(implies (and (<<= x y) ; Transitive

(<<= y z))

(<<= x z))

(or (<<= x y) ; Total

(<<= y x)))

Actually, there is such a function in ACL2 and it is called lexorder. But we
use the more suggestive name “<<=” here. On the integers, <<= is just <=, but
it orders all ACL2 objects.



56 / 106

Problems, continued

Problem 56.
Define (ordered x) so that it returns t or nil according to whether each pair
of adjacent elements of x are in the relation <<=. For example, (ordered ’(1

3 3 7 12) would be t and (ordered ’(1 3 7 3 12)) would be nil.

Problem 57.
Define (isort x) to take an arbitrary list and return an ordered permutation
of it.

Problem 58.
Prove

(ordered (isort x)).

Problem 59.
Prove

(perm (isort x) x).



57 / 106

Problems, continued

Problem 60.
Prove

(equal (isort (rev (isort x)))

(isort x)).

We thank Pete Manolios for suggesting this problem.

Problem 61.
Define

(defun rev1 (x a)

(if (consp x)

(rev1 (cdr x) (cons (car x) a))

a))

Prove

(equal (rev1 x nil) (rev x))

Problem 62.
Prove

(equal (mapnil1 x nil) (mapnil x))



58 / 106

Problems, continued

Problem 63.
Prove

(not (equal x (cons x y)))

Problem 64.
Define

(defun mcflatten (x a)

(if (consp x)

(mcflatten (car x)

(mcflatten (cdr x) a))

(cons x a)))

Prove

(equal (mcflatten x nil) (flatten x))



59 / 106

Peano Arithmetic

Recall that the integers are being treated as atomic objects in this document.

But we can explore elementary arithmetic by thinking of a list of n nils as a
representation for the natural number n.

We will call such a list a “nat.” Thus, (nil nil nil) is a nat, but 3 is a
natural number.

Problem 65.
Define (nat x) to recognize nats.

Problem 66.
Define (plus x y) to take two arbitrary lists (even ones that are not nats) and
to return the nat representing the sum of their lengths. By defining plus this
way we insure that it always returns a nat and that it is commutative.



60 / 106

Peano Arithmetic Problems

Problem 67.
Define (times x y) to take two arbitrary lists and to return the nat
representing the product of their lengths.

Problem 68.
Define (power x y) to take two arbitrary lists and to return the nat
representing the exponentiation of their lengths, i.e., if x and y are of lengths i
and j , then (power x y) should return the nat representing i j .

Problem 69.
Define (lesseqp x y) to return t or nil according to whether the length of x
is less than or equal to that of y.

Problem 70.
Define (evennat x) to return t or nil according to whether the length of x is
even.



61 / 106

Peano Arithmetic Problems, continued

Problem 71.
Prove

(implies (nat i)

(equal (plus i nil) i))

Problem 72.
Prove

(equal (plus (plus i j) k)

(plus i (plus j k)))

Problem 73.
Prove

(equal (plus i j) (plus j i))

Problem 74.
Prove

(equal (times (times i j) k)

(times i (times j k)))



62 / 106

Peano Arithmetic Problems, continued
Problem 75.
Prove

(equal (times i j) (times j i))

Problem 76.
Prove

(equal (power b (plus i j))

(times (power b i) (power b j)))

Problem 77.
Prove

(equal (power (power b i) j)

(power b (times i j)))

Problem 78.
Prove

(lesseqp i i)



63 / 106

Peano Arithmetic Problems, continued

Problem 79.
Prove

(implies (and (lesseqp i j)

(lesseqp j k))

(lesseqp i k))

Problem 80.
Prove

(equal (lesseqp (plus i j) (plus i k))

(lesseqp j k))

Problem 81.
Prove

(implies (and (evennat i)

(evennat j))

(evennat (plus i j)))



64 / 106

ACL2 Arithmetic

The techniques we have studied so far suffice to prove the most elementary
facts of natural number arithmetic.

In fact, we could conduct our entire study of recursion and induction in the
domain of number theory. But it is more fun to deal with less familiar “data
structures” where basic properties can be discovered.

So we will skip past formal arithmetic with a few brief remarks.

ACL2 provides the numbers as a data type distinct from conses, symbols,
strings, and characters. They are not lists of nils!

The naturals are among the integers, the integers are among the rationals, and
the rationals are among the ACL2 numbers.

The complex rationals are also among the ACL2 numbers; in fact they are
complex numbers whose real and imaginary parts are rational and whose
imaginary parts are non-0.



65 / 106

ACL2 Arithmetic, continued

Here are a few commonly used functions in ACL2.

▶ (natp x) - recognizes natural numbers

▶ (integerp x) - recognizes integers

▶ (rationalp x) - recognizes rationals

▶ (zp x) - t if x is 0 or not a natural; nil otherwise

▶ (nfix x) - x if x is a natural; 0 otherwise

▶ (+ x y) - sum of the numbers x and y

▶ (- x y) - difference of the numbers x and y

▶ (* x y) - product of the numbers x and y

▶ (/ x y) - rational quotient of the numbers x and y

▶ (< x y) - predicate recognizing that the number x is less than the
number y

▶ (<= x y) - predicate recognizing that the number x is less than or equal
to the number y



66 / 106

ACL2 Arithmetic, continued

The functions +, -, *, /, <, and <= default their arguments to 0 in the sense
that if some argument is not an ACL2 number then 0 is used instead.

The predicate zp is commonly used in recursive definitions that treat an
argument as though it were a natural number and count it down to zero.

Here is a “definition” that accesses the nth element of a list, treating n as a
natural.

Note: this definition is unacceptable under our current Principle of Structural
Recursion because (consp x) does not rule the recursive call. We will return
to this point.)

(defun nth (n x)

(if (zp n)

(car x)

(nth (- n 1) (cdr x))))

Thus, (nth 2 ’(A B C D)) is C. (Nth 0 ’(A B C D)) is A. Interestingly,
(nth -1 ’(A B C D)) is also A, because -1 satisfies zp. Thus, we can use nth
with any first argument. (In ACL2, nth is defined differently, but equivalently.)



67 / 106

ACL2 Arithmetic, continued

The numbers are axiomatized with the standard axioms for rational fields.

Henceforth, you may use arithmetic freely in your proofs and assume any
theorem of ACL2 arithmetic. That is, you may assume any ACL2 theorem that
can be written with the function symbols described above and use it in routine
arithmetic simplification.

But be careful about what you assume!

For example, the following familiar arithmetic facts are not (quite) theorems:

(equal (+ x 0) x) ; Additive Identity

(iff (equal (+ x y) (+ x z)) ; Additive Cancellation

(equal y z))

In addition, the following strange fact is a theorem:

(not (equal (* x x) 2))

That is, we can prove that the square root of 2 is not rational and hence not
in ACL2.



68 / 106

Inadequacies of Structural Recursion

Recall that to avoid logical contradictions introduced by “bad” definitions, we
imposed four restrictions.

The fourth restriction is very constraining: we can only recur on a car/cdr
component of some argument and must ensure that that argument satisfies
consp before the recursion.

The intent of this restriction was to guarantee that the newly defined function
terminates.

The problem with the current version of our fourth restriction is that it is too
syntactic – it insists, literally, on the use of consp, car, and cdr.

In the ACL2 definitional principle, the fourth restriction is less syntactic: it
requires that we be able to prove that the recursion terminates. That is, when
we propose a new definition, a conjecture is generated and if this conjecture
can be proved as a theorem, then we know the function terminates.

The basic idea of this conjecture is to establish that some measure of the
function’s arguments decreases in size as the function recurs, and this
decreasing cannot go on forever. If the size were, say, a natural number, then
we would know the decreasing could not go on forever, because the arithmetic
less-than relation, <, is well-founded on the natural numbers.



69 / 106

Problems

Problem 82.
Define (cc x) to return the number of conses in x. The name stands for “cons
count.”

Problem 83.
Prove that cc always returns a non-negative integer.

Problem 84.
Suppose we define

(defun atom (x) (not (consp x)))

(defun first (x) (car x))

(defun rest (x) (cdr x))

then the following “definition” of tree-copy is logically equivalent to the
acceptable version, but is unacceptable by our syntactic fourth restriction:

(defun tree-copy (x)

(if (atom x)

x

(cons (tree-copy (first x))

(tree-copy (rest x)))))

Write down a conjecture that captures the idea that the argument to
tree-copy is getting smaller (as measured by cc) as the function recurs.



70 / 106

Problems, continued

Problem 85.
Prove the conjecture above. Note that since cc is a natural number, this proof
establishes that tree-copy terminates on all objects.

Problem 86.
Define (rm e x) to return the result of removing the first occurrence (if any)
of e from x. Thus, (rm 3 ’(1 2 3 4 3 2 1)) is (1 2 4 3 2 1).

Problem 87.
Show that the following function terminates.

(defun f23 (e x)

(if (mem e x)

(f23 e (rm e x))

23))

Note that no car/cdr nest around x is equal to the result of (rm 3 ’(1 2

3)). Thus, f23 exhibits a kind of recursion we have not seen previously – but
we know it terminates.



71 / 106

Problems, continued

Problem 88.
It is obvious that (f23 e x) always return 23. Can you prove that with our
current logical machinery?

The key to these termination proofs is that the less-than relation is
well-founded on the natural numbers. But consider this famous function,
known as Ackermann’s function,

(defun ack (x y)

(if (zp x)

1

(if (zp y)

(if (equal x 1) 2 (+ x 2))

(ack (ack (- x 1) y) (- y 1)))))

Observe that ack can generate some very large numbers. For example, (ack 4

3) is 65536.

Problem 89.
Ack always terminates. Why? Don’t feel compelled to give a formal proof, just
an informal explanation.



72 / 106

Discussion

In the next three sections of this document we will discuss a well-founded
relation far more powerful than less-than on the natural numbers.

We will then connect that well-foundedness machinery to a new version of the
Definitional Principle, so that we can admit many interesting recursive
functions, including ack.

We will also connect the well-foundedness machinery to a new version of the
Induction Principle, so that we can prove that (f23 e x) is 23 – and far more
interesting theorems.



73 / 106

The Ordinals

The ordinals are an extension of the naturals that captures the essence of the
idea of ordering.

They were invented by George Cantor in the late nineteen century. While
controversial during Cantor’s lifetime, ordinals are among the richest and
deepest mines of mathematics. We only scratch the surface here.

Think of each natural number as denoted by a series of strokes, i.e.,

0 0
1 |
2 ||
3 |||
4 ||||

. . . . . .
ω |||||...,

The limit of that progression is the ordinal ω, an infinite number of strokes.



74 / 106

The Ordinals, continued

Ordinal addition is just concatenation. Observe that adding one to the front of
ω produces ω again, which gives rise to a standard definition of ω: the least
ordinal such that adding another stroke at the beginning does not change the
ordinal.

We denote by ω + ω or ω × 2 the “doubly infinite” sequence that we might
write as follows.

ω × 2 ||||| . . . ||||| . . .

One way to think of ω × 2 is that it is obtained by replacing each stroke in 2
(||) by ω.

Thus, one can imagine ω × 3, ω × 4, etc., which leads ultimately to the idea of
ω × ω, the ordinal obtained by replacing each stroke in ω by ω. This is also
written as ω2.



75 / 106

The Ordinals, continued

ω2 ||||| . . . ||||| . . . ||||| . . . ||||| . . . ||||| . . . . . .

We can analogously construct ω3 by replacing each stroke in ω by ω2 (which, it
turns out, is the same as replacing each stroke in ω2 by ω).

That is, we can construct ω3 as ω copies of ω2, and so on.

This ultimately suggests ωω. We can then stack ωs, i.e., ωωω

, etc. Consider
the limit of all of those stacks,

ωωωωωωω...

.

That limit is ϵ0. (As the subscript suggests, there are lots more ordinals! But
ACL2 stops with ϵ0.)

Despite the plethora of ordinals, we can represent all the ones below ϵ0 in
ACL2, using lists. Below we begin listing some ordinals up to ϵ0; the reader can
fill in the gaps at his or her leisure.

We show in the left column the conventional notation and in the right column
the ACL2 object representing the corresponding ordinal.



76 / 106

The Ordinals, continued

ordinal ACL2 representation

0 0
1 1
2 2
3 3

. . . . . .
ω ((1 . 1) . 0)

ω + 1 ((1 . 1) . 1)
ω + 2 ((1 . 1) . 2)
. . . . . .

ω × 2 ((1 . 2) . 0)
(ω × 2) + 1 ((1 . 2) . 1)

. . . . . .
ω × 3 ((1 . 3) . 0)

(ω × 3) + 1 ((1 . 3) . 1)
. . . . . .
ω2 ((2 . 1) . 0)



77 / 106

The Ordinals, continued

ordinal ACL2 representation

ω2 ((2 . 1) . 0)
. . . . . .

ω2 + ω × 4 + 3 ((2 . 1) (1 . 4) . 3)
. . . . . .
ω3 ((3 . 1) . 0)
. . . . . .
ωω ((((1 . 1) . 0) . 1) . 0)
. . . . . .

ωω + ω99 + ω × 4 + 3 ((((1 . 1) . 0) . 1) (99 . 1) (1 . 4) . 3)
. . . . . .

ωω2

((((2 . 1) . 0) . 1) . 0)
. . . . . .

ωωω

((((((1 . 1) . 0) . 1) . 0) . 1) . 0)
. . . . . .



78 / 106

The Ordinals, Accessors

We say an ordinal is “finite” if it is not a cons and we define (o-finp x) to
recognize finite ordinals. Of course, if x is an ordinal and finite, it is a natural
number.

But by defining o-finp this way we insure that if an ordinal is not finite we can
recur into it with cdr.

To manipulate ordinals we define functions that access the first exponent, the
first coefficient, and the rest of the ordinal:

(defun o-first-expt (x)

(if (o-finp x) 0 (car (car x))))

(defun o-first-coeff (x)

(if (o-finp x) x (cdr (car x))))

(defun o-rst (x) (cdr x))

For example, if x is the representation of ωe × c + r then (o-first-expt x) is
e, (o-first-coeff x) is c and (o-rst x) is r .



79 / 106

The Ordinals, Recognizer

Here is the definition of o-p, the function that recognizes ordinals.

(defun o-p (x)

(if (o-finp x)

(natp x)

(and (consp (car x))

(o-p (o-first-expt x))

(not (equal 0 (o-first-expt x)))

(natp (o-first-coeff x))

(< 0 (o-first-coeff x))

(o-p (o-rst x))

(o< (o-first-expt (o-rst x))

(o-first-expt x)))))

(The ACL2 definition is syntactically different but equivalent.)



80 / 106

The Ordinals, Less Than

The function o< is the “less than” relation on ordinals. We show its definition
on the next slides.

It says that an ordinal is a list of pairs, terminated by a natural number. Each
pair (e . c) consists of an exponent e and a coefficient c and represents
(ωe)× c.

The exponents are themselves ordinals and the coefficients are non-0 naturals.

Importantly, the exponents are listed in strictly descending order. The list
represents the ordinal sum of its elements plus the final natural number.

Thus, ordinals are a kind of generalized polynomial.



81 / 106

The Ordinals, Less Than

By insisting on the ordering of exponents we can readily compare two ordinals,
using o< below, in much the same way we can compare polynomials.

(defun o< (x y)

(if (o-finp x)

(or (not (o-finp y))

(< x y))

(if (o-finp y)

nil

(if (equal (o-first-expt x)

(o-first-expt y))

(if (equal (o-first-coeff x)

(o-first-coeff y))

(o< (o-rst x)

(o-rst y))

(< (o-first-coeff x)

(o-first-coeff y)))

(o< (o-first-expt x)

(o-first-expt y))))))

(The ACL2 definition is syntactically different but equivalent.)



82 / 106

Problems about Ordinals

Problem 90.
Which is smaller, ordinal a or ordinal b?

1. a= 23, b= 100

2. a= 1000000, b= ((1 . 1) . 0)

3. a= ((2 . 1) . 0), b= ((1 . 2) . 0)

4. a= ((3 . 5) (1 . 25) . 7), b= ((3 . 5) (2 . 1) . 3)

5. a= ((((2 . 1) . 0) . 5) . 3), b= ((((1 . 1) . 0) . 5) (1 .

25) . 7)



83 / 106

Problems about Ordinals, continued

Problem 91.
The o< operation can be reduced to lexicographic comparison. Define m2 so
that it constructs “lexicographic ordinals” from two arbitrary natural numbers.
Specifically, show that the following is a theorem:

(implies (and (natp i1)

(natp j1)

(natp i2)

(natp j2))

(and (o-p (m2 i1 j1))

(iff (o< (m2 i1 j1)

(m2 i2 j2))

(if (equal i1 i2)

(< j1 j2)

(< i1 i2)))))

The crucial property of o< is that it is well-founded on the ordinals. That is,
there is no infinite sequence of ordinals, xi such that . . . x3 o< x2 o< x1 o< x0.



84 / 106

Problems about Ordinals, continued

Problem 92.
What is the longest decreasing chain of ordinals starting from the ordinal 10?
What is the longest decreasing chain of ordinals starting from the ordinal ((1
. 1) . 0)?

Problem 93.
Construct an infinitely descending o< chain of objects. Note that by the
well-foundedness of o< on the ordinals, your chain will not consist entirely of
ordinals!

Problem 94.
Prove that o< is well-founded on our ordinals, i.e., those recognized by o-p.

Caution: Using the logical machinery we have developed here, it is not possible
to state that o< is well-founded on the ordinals: that requires an existential
quantifier and infinite sequences. However, it can be done in a traditional set
theoretic setting.

The theorem that o< is well-founded is a “meta-theorem”, it can be proved
about the ACL2 system but it cannot be proved within the ACL2 system.



85 / 106

A Note About the Ordinals

Our definitional and induction principles are built on the assumption that o< is
well-founded on the ordinals recognized by o-p.

Thus, if some ordinal measure of the arguments of a recursive function
decreases according to o< in every recursive call, the recursion cannot go on
forever.

The representation of ordinals described here is a version of Cantor’s Normal
Form.

See the online documentation topics ordinals and o-p in the ACL2
documentation; this documentation can be found starting at the ACL2
homepage from which some of the examples above have been chosen.



86 / 106

The Definitional Principle
Below we give a new definitional principle that subsumes the previously given
Principle of Structure Recursion.

The definition

(defun f (v1 . . . vn) β)

is admissible if and only if

1. f is a new function symbol,

2. the vi are distinct variable symbols,

3. β is a term that mentions no variable other than the vi and calls no new
function symbol other than (possibly) f , and

4. there is a term m (the measure) such that the following are theorems:
▶ Ordinal Conjecture

(o-p m)

▶ Measure Conjecture(s) For each recursive call of (fa1 . . . an) in β and the
conjunction q of tests ruling it,
(implies q (o< m/σ m))

where σ is {v1 ← a1, . . ., vn ← an}.
Admissible definitions add the axiom:

(fv1 . . . vn) = β.

In each of the problems below, admit the proposed definitions, i.e., identify the
measure and prove the required theorems.



87 / 106

Problems

In each of the problems below, admit the proposed definitions, i.e., identify the
measure and prove the required theorems.

Problem 95.

(defun tree-copy (x)

(if (atom x)

x

(cons (tree-copy (first x))

(tree-copy (rest x)))))

Problem 96.

(defun ack (x y)

(if (zp x)

1

(if (zp y)

(if (equal x 1) 2 (+ x 2))

(ack (ack (- x 1) y) (- y 1)))))



88 / 106

Problems, continued

Problem 97.
Recursion like that in ack allows us to define functions that cannot be defined
if we are limited to “primitive recursion” where a given argument is
decremented in every recursive call. That is, the new definitional principle is
strictly more powerful than the old one. This can be formalized and proved
within our system (after we extend the principle of induction below). If you are
inclined towards metamathematics, feel free to pursue the formalization and
ACL2 proof of this. The existence of non-primitive recursive functions, dating
from 1928, by Wilhelm Ackermann, a student of David Hilbert’s, was one of
the important milestones in our understanding of the power and limitations of
formal mathematics culminating in Godel’s results of the early 1930s.

Problem 98.

(defun f1 (i j)

(if (and (natp i)

(natp j)

(< i j))

(f1 (+ 1 i) j)

1))



89 / 106

Problems, continued

Problem 99.

(defun f2 (x)

(if (equal x nil)

2

(and (f2 (car x))

(f2 (cdr x)))))

Problem 100.

(defun f3 (x y)

(if (and (endp x)

(endp y))

3

(f3 (cdr x) (cdr y))))



90 / 106

Problems, continued

Problem 101.
Suppose p, m, up, and dn (“down”) are undefined functions. Suppose however
that you know this about p, m, and dn:

Theorem dn-spec

(and (o-p (m x))

(implies (p x)

(o< (m (dn x)) (m x))))

Then admit

(defun f4 (x y q)

(if (p x)

(if q

(f4 y (dn x) (not q))

(f4 y (up x) (not q)))

4))

Note that f4 is swapping its arguments. Thus, if q starts at t, say, then in
successive calls the first argument is x, y, (dn x), (up y), (dn (dn x)), (up
(up y)), etc. I thank Anand Padmanaban for helping me think of and solve
this problem.



91 / 106

The Induction Principle

The Induction Principle allows one to derive an arbitrary formula, ψ, from

▶ Base Case:

(implies (and (not q1) . . . (not qk)) ψ), and

▶ Induction Step(s): For each 1 ≤ i ≤ k,

(implies (and qi ψ/σi,1 . . . ψ/σi,hi )

ψ) ,

provided that for terms m, q1, ...qk , and substitutions σi,j

(1 ≤ i ≤ k, 1 ≤ j ≤ hi ), the following are theorems:

▶ Ordinal Conjecture:

(o-p m) , and

▶ Measure Conjecture(s): For each 1 ≤ i ≤ k, and 1 ≤ j ≤ hi ,

(implies qi (o< m/σi,j m)) .



92 / 106

Relations Between Recursion and Induction

Informally speaking, a recursive definition is “ok” if there is an ordinal measure
that decreases in every recursive call.

Thus, the recursion cannot go on forever.

In a simple recursion on naturals down to 0 by -1, the value of the function on
5 is determined recursively by its value on 4, which is determined recursively by
its value on 3, which is determined recursively by its value on 2, which is
determined recursively by its value on 1, which is determined recursively by its
value on 0, which is specified explicitly in the definition.

An inductive proof is “ok” if there is an ordinal measure that decreases in every
induction hypothesis.

Thus, any concrete instance of the conjecture could be proved by “pumping”
forward a finite number of times from the base cases.

Given a simple inductive proof over the naturals, the conjecture is true on 0
because it was proved explicitly in the base case, so it is true on 1 by the
induction step, so it is true on 2 by the induction step, so it is true on 3 by the
induction step, so it is true on 4 by the induction step, so it is true on 5 by the
induction step.



93 / 106

Relations Between Recursion and Induction, continued

Clearly these two concepts are duals.

The formal statements of the two principles look more different than they are.
They both require us to prove that a measure returns an ordinal and that some
substitutions make the measure decrease under some tests.

But there seems to be a lot less indexing going on in the Definitional Principle
than in the Induction Principle. That is due to language and the two different
uses of the principles.

The Definitional Principle is designed to tell us whether a definitional equation
is ok.

The Induction Principle is designed to tell us whether a set of formulas is an ok
inductive argument.

So the Definitional Principle talks about the tests in IFs and the substitution
built from each recursive call, whereas the Induction Principle talks about the
tests in the i th formula and the substitution that created the j th induction
hypothesis of the i th formula.



94 / 106

Relations Between Recursion and Induction: the Key Insight

But the key insight is: Every ok definition suggests an ok induction!

We call this the induction suggested by the definition.

It is easist to see this by considering a particular, generic definition and thinking
about what had to be proved to admit it, what induction it suggests, what has
to be proved for that induction to be legal, and when the suggested induction
might be useful.



95 / 106

Relations Between Recursion and Induction, continued

Suppose the following definition has been admitted, justified by measure term
(m x a).

Note that the body is an IF-tree, there are three tips in the IF-tree; the first
tip contains two recursive calls, the second tip contains one recursive call, and
the third tip contains no recursive calls.

(defun f (x a)

(if (test1 x a)

(if (test2 x a)

(h ; tip 1
(f (d1 x a) (a1 x a)) ; rec call 1,1
(f (d2 x a) (a2 x a))) ; rec call 1,2

(g ; tip 2
(f (d3 x a) (a3 x a)))) ; rec call 2,1

(b x a))) ; tip 3



96 / 106

Relations Between Recursion and Induction, continued

To admit this definition we had to prove:

Ordinal Conjecture
(o-p (m x a))

Measure Conjecture 1,1
(implies (and (test1 x a) (test 2 x a))

(o< (m (d1 x a) (a1 x a))

(m x a)))

Measure Conjecture 1,2
(implies (and (test1 x a) (test 2 x a))

(o< (m (d2 x a) (a2 x a))

(m x a)))

Measure Conjecture 2,1
(implies (and (test1 x a) (not (test 2 x a)))

(o< (m (d3 x a) (a3 x a))

(m x a)))



97 / 106

Relations Between Recursion and Induction, continued

Suppose we want to prove (p x a), by induction according to the scheme
“suggested” by (f x a). Here is the scheme:

Base Case ; for tip 3
(implies (not (test1 x a))

(p x a))

Induction Step 1 ; for tip 1
(implies (and (test1 x a)

(test2 x a)

(p (d1 x a) (a1 x a)) ; for rec call 1,1
(p (d2 x a) (a2 x a))) ; for rec call 1,2

(p x a))

Induction Step 2 ; for tip 2
(implies (and (test1 x a)

(not (test2 x a))

(p (d3 x a) (a3 x a))) ; for rec call 2,1
(p x a))



98 / 106

Relations Between Recursion and Induction, continued

This induction is produced by the following parameter choices in the Induction
Principle:

ψ (p x a)

m (m x a)

q1 (and (test1 x a) (test2 x a))

q2 (and (test1 x a) (not (test2 x a)))

σ1,1 {x ← (d1 x a), a ← (a1 x a)}
σ1,2 {x ← (d2 x a), a ← (a2 x a)}
σ2,1 {x ← (d3 x a), a ← (a3 x a)}

It should be obvious to you how these choices are determined from the
definition of f with measure (m x a).

For example, q1 is the conjunction of the tests leading to the first tip
containing recursive calls of f, and the substitutions σ1,j are the substitutions
derived from the recursive calls in that tip.



99 / 106

Relations Between Recursion and Induction, continued

The measure conjectures required by the Induction Principle for this choice of
parameters are the exactly the same as the measure conjectures verified when
the Definitional Principle was used to admit f! That is, to use an induction
suggested by an already-admitted recursive function, no additional measure
conjectures have to be proved.

We have propositionally simplified the defining condition for the Base
Case. The Induction Principle says it is (and (not q1) (not q2))
and the literal instantiation of that here would be

(and (not (and (test1 x a)

(test2 x a)))

(not (and (test1 x a)

(not (test2 x a)))))

but that is propositionally equivalent to (not (test1 x a)).

But why might this induction be interesting or useful for proving (p x a)?

The answer depends on (p x a), of course. But the most common situation is
that we choose the induction scheme suggested by some recursive function
used in the conjecture to be proved. So suppose (f x a) occurs in (p x a).



100 / 106

Relations Between Recursion and Induction, continued

Why is the suggested induction likely to be helpful?

Consider the Base Case and the two Induction Steps.

In the Base Case, the (f x a) occurring in (p x a) can be replaced by tip 3
of the definition of f, (b x a) because the test in the Base Case of the
induction is the test leading to the non-recursive exit from the definition.

So f has been eliminated from the proof of the Base Case.



101 / 106

Relations Between Recursion and Induction, continued

Now consider Induction Step 1. The (f x a) occurring in (p x a) can be
replaced by tip 1 of the definition of f, namely

(h ; tip 1
(f (d1 x a) (a1 x a)) ; rec call 1,1
(f (d2 x a) (a2 x a))) ; rec call 1,2

because the tests in Induction Step 1 are the tests leading to tip 1 of the
definition.

But notice that the induction hypothesis labeled “for rec call 1,1” in Induction
Step 1 gives us a hypothesis about recursive call 1,1 — because the occurrence
of (f x a) in (p x a) becomes an occurrence of (f (d1 x a) (a1 x a))

when we apply the substitution σ1,1 to it.



102 / 106

Relations Between Recursion and Induction, continued

Similarly, the induction hypothesis labeled “for rec call 1,2” gives us a
hypothesis about call 1,2.

Thus, the proof of Induction Step 1 boils down to proving, “if the two recursive
calls in this tip have the property we’re proving, then h of those two calls have
the property.”

While not exactly eliminating f from the proof, it provides us with all the
information we have a right to suppose about f in this case.

Usually the proof of this step requires a lemma about p and h, e.g., “if a and b

have property p, then so does (h a b).”

Such a lemma would eliminate f and if we had that lemma the proof of
Induction Step 1 would be done. The proof of Induction Step 2 is analogous.



103 / 106

Relations Between Recursion and Induction, continued

Thus, we see that there may well be some heuristic value in using the induction
suggested by (f x a) whenever you are trying to prove a property of (f x a).

Occasionally it is necessary to use an induction suggested by a function not
appearing in the conjecture, but when that occurs it is usually some easily
recognized “mash up” of other functions appearing in the conjecture.



104 / 106

Problems

Problem 102.
Recall the previously admitted

(defun f1 (i j)

(if (and (natp i)

(natp j)

(< i j))

(f1 (+ 1 i) j)

1))

Prove (equal (f1 i j) 1).

Problem 103.
Recall the previously admitted

(defun f2 (x)

(if (equal x nil)

2

(and (f2 (car x))

(f2 (cdr x)))))

Prove (equal (f2 x) 2).



105 / 106

Problems, continued

Problem 104.
Recall the previously admitted

(defun f3 (x y)

(if (and (endp x)

(endp y))

3

(f3 (cdr x) (cdr y))))

Prove (equal (f3 x y) 3).

Problem 105.
Recall the previously admitted

(defun f4 (x y q)

(if (p x)

(if q

(f4 y (dn x) (not q))

(f4 y (up x) (not q)))

4))

Prove (equal (f4 x y q) 5).



106 / 106

Exercises That Relate Recursion to Induction

These simple inductive exercises drive home the point that once a function has
been admitted (proved to terminate) then we can do inductions to “unwind” it.

Students so frequently see induction limited to “p(n) implies p(n + 1)” that it
is easy to forget that every total recursive function give rises to an induction
that is appropriate for it.


