
TURING AWARD LECTURE

Reflections on Trusting Trust
To what extent should one trust a statement that a program is free of Trojan
horses? Perhaps it is more important to trust the people who wrote the
software.

KEN THOMPSON

INTRODUCTION
I thank the ACM for this award. I can' t help but feel
that I am receiving this honor for t iming and serendip-
ity as much as technical merit. UNIX 1 swept into popu-
larity with an industry-wide change from central main-
frames to autonomous minis. I suspect that Daniel Bob-
row [1] would be here instead of me if he could not
afford a PDP-10 and had had to "settle" for a PDP-11.
Moreover, the current state of UNIX is the result of the
labors of a large number of people.

There is an old adage, "Dance with the one that
brought you," which means that I should talk about
UNIX. I have not worked on mainstream UNIX in many
years, yet I continue to get undeserved credit for the
work of others. Therefore, I am not going to talk about
UNIX, but I want to thank everyone who has contrib-
uted.

That brings me to Dennis Ritchie. Our collaboration
has been a thing of beauty. In the ten years that we
have worked together, I can recall only one case of
miscoordination of work. On that occasion, I discovered
that we both had wri t ten the same 20-line assembly
language program. I compared the sources and was as-
tounded to find that they matched character-for-char-
acter. The result of our work together has been far
greater than the work that we each contributed.

I am a programmer. On my 1040 form, that is what I
put down as my occupation. As a programmer, I wri te

1 UNIX is a trademark of AT&T Bell Laboratories.

©1984 0001-0782/84/0800-0761 75¢

programs. I would like to present to you the cutest
program I ever wrote. I will do this in three stages and
try to bring it together at the end.

STAGE I
In college, before video games, we would amuse our-
selves by posing programming exercises. One of the
favorites was to write the shortest self-reproducing pro-
gram. Since this is an exercise divorced from reality,
the usual vehicle was FORTRAN. Actually, FORTRAN
was the language of choice for the same reason that
three-legged races are popular.

More precisely stated, the problem is to write a
source program that, when compiled and executed, will
produce as output an exact copy of its source. If you
have never done this, I urge you to try it on your own.
The discovery of how to do it is a revelat ion that far
surpasses any benefit obtained by being told how to do
it. The part about "shortest" was just an incentive to
demonstrate skill and determine a winner.

Figure 1 shows a self-reproducing program in the C 3
programming language. (The purist will note that the
program is not precisely a self-reproducing program,
but will produce a self-reproducing program.) This en-
try is much too large to win a prize, but it demonstrates
the technique and has two important properties that I
need to complete my story: 1) This program can be
easily wri t ten by another program. 2) This program can
contain an arbi trary amount of excess baggage that will
be reproduced along with the main algorithm. In the
example, even the comment is reproduced.

August 1984 Volume 27 Number 8 Communications of the ACM 781

Turing Award Lecture

char s [] = I

t011

i ; i

" ~ l l l

I 'V ,] ' ~

I '~t '] l p

(213 lines deleted)
0

1;

/ ,
• The string s is a
• representation of the body
• of this program from '0 '
• to the end.
, /

main()
{

int i;

printf("char\ts[] = {kn");
for(i=0; s[i] ; i++)

printf("~t%d, \n" , s[i]);
printf("%s", s);

I
Here are some simple transliterations to al low

a non-C programmer to read this code.
= assignment
= = equal to .EQ.
!= not equal to .NE.
+ + increment
' x ' single character constant
"xxx" multiple character string
%d format to convert to decimal
%s format to convert to string
kt tab character
kn newline character

F I G U R E 1.

STAGE II
The C compiler is wri t ten in C. What I am about to
describe is one of many "chicken and egg" problems
that arise when compilers are wri t ten in their own lan-
guage. In this case, I will use a specific example from
the C compiler.

C allows a string construct to specify an init ialized
character array. The individual characters in the string
can be escaped to represent unprintable characters• For
example,

"Hello wor ld \n"

represents a string with the character "\n," representing
the new line character.

Figure 2.1 is an idealization of the code in the C
compiler that interprets the character escape sequence.
This is an amazing piece of code. It "knows" in a com-
pletely portable way what character code is compiled
for a new line in any character set. The act of knowing

then allows it to recompile itself, thus perpetuat ing the
knowledge.

Suppose we wish to alter the C compiler to include
the sequence "\v" to represent the vertical tab charac-
ter. The extension to Figure 2.1 is obvious and is pre-
sented in Figure 2.2. We then recompile the C com-
piler, but we get a diagnostic. Obviously, since the bi-
nary version of the compiler does not know about "\v,"
the source is not legal C. We must "train" the compiler.
After it "knows" what "\v" means, then our new
change will become legal C. We look up on an ASCII
chart that a vertical tab is decimal 11. We alter our
source to look like Figure 2.3. Now the old compiler
accepts the new source. We install the resulting binary
as the new official C compiler and now we can write
the portable version the way we had it in Figure 2.2.

This is a deep concept. It is as close to a "learning"
program as I have seen. You simply tell it once, then
you can use this self-referencing definition.

STAGE III
Again, in the C compiler, Figure 3.1 represents the high
level control of the C compiler where the routine "com-

c = next();
if(c != ' \ V)

return(c);
c = next();
if(c = = ' \ V)

re turn(' \ \ ') ;
if(c = = 'n ')

return('kn ');

F I G U R E 2 .2 .

c = next();
if(c ~= ' \ v)

return(c);
c = next();
if(c = = ' \ V)

return('kV);
if(c = = 'n')

re tum('kn ') ;
if(c = = 'v ')

re turn(' \v ') ;

F I G U R E 2.1 .

c = next();
if(c != ' \ V)

return(c);
c = next();
if(c = = ' \ v)

re turn(' \ \ ') ;
if(c = = 'n ')

return(' \ n ') ;
if(c = = ' v ')

return(11);

F I G U R E 2.3 .

762 Communications of the ACM August 1984 Volume 27 Number 8

Turing Award Lecture

pile" is called to compile the next line of source. Figure
3.2 shows a simple modification to the compiler that
will del iberately miscompile source whenever a partic-
ular pat tern is matched. If this were not deliberate, it
would be called a compiler "bug." Since it is deliberate,
it should be called a "Trojan horse."

The actual bug I planted in the compiler would
match code in the UNIX "login" command. The re-
placement code would miscompile the login command
so that it would accept ei ther the in tended encrypted
password or a part icular known password. Thus if this
code were installed in binary and the binary were used
to compile the login command, I could log into that
system as any user.

Such blatant code would not go undetected for long.
Even the most casual perusal of the source of the C
compiler would raise suspicions.

The final step is represented in Figure 3.3. This sim-
ply adds a second Trojan horse to the one that a lready
exists. The second pattern is a imed at the C compiler.
The replacement code is a Stage I self-reproducing pro-
gram that inserts both Trojan horses into the compiler.
This requires a learning phase as in the Stage II exam-
ple. First we compile the modified source with the nor-
mal C compiler to produce a bugged binary. We install
this binary as the official C. We can now remove the
bugs from the source of the compiler and the new bi-
nary will reinsert the bugs whenever it is compiled. Of
course, the login command will remain bugged with no
trace in source anywhere.

compile(s)
char ,s;
I

FIGURE 3.1.

compile(s)
char ,s;
I

if(match(s, "pattern")) {
compUe("bug");
return;

J

FIGURE 3.2.

compile(s)
char ,s;

if(match(s, "pattern1 ")) {
compile ('bug1 ");
return;

I
if(match(s, =pattern 2")) I

compile ('bug 2");
return;

J
FIGURE 3.3.

MORAL
The moral is obvious. You can' t trust code that you did
not totally create yourself. (Especially code from com-
panies that employ people like me.) No amount of
source-level verification or scrut iny will protect you
from using untrusted code. In demonstrat ing the possi-
bility of this kind of attack, I picked on the C compiler.
I could have picked on any program-handling program
such as an assembler, a loader, or even hardware mi-
crocode. As the level of program gets lower, these bugs
will be harder and harder to detect. A well- instal led
microcode bug will be almost impossible to detect.

After trying to convince you that I cannot be trusted,
I wish to moralize. I would like to criticize the press in
its handling of the "hackers," the 414 gang, the Dalton
gang, etc. The acts performed by these kids are vandal-
ism at best and probably trespass and theft at worst. It
is only the inadequacy of the cr iminal code that saves
the hackers from very serious prosecution. The compa-
nies that are vulnerable to this activity, (and most large
companies are very vulnerable) are pressing hard to
update the criminal code. Unauthorized access to com-
puter systems is a lready a serious crime in a few states
and is current ly being addressed in many more state
legislatures as well as Congress.

There is an explosive situation brewing. On the one
hand, the press, television, and movies make heros of
vandals by calling them whiz kids. On the other hand,
the acts performed by these kids will soon be punisha-
ble by years in prison.

I have watched kids testifying before Congress. It is
clear that they are completely unaware of the serious-
ness of theft acts. There is obviously a cultural gap. The
act of breaking into a computer system has to have the
same social stigma as breaking into a neighbor 's house.
It should not mat ter that the neighbor 's door is un-
locked. The press must learn that misguided use of a
computer is no more amazing than drunk driving of an
automobile.

Acknowledgment. I first read of the possibility of such
a Trojan horse in an Air Force cri t ique [4] of the secu-
rity of an early implementat ion of Multics. I cannot find
a more specific reference to this document. I would
appreciate it if anyone who can supply this reference
would let me know.

REFERENCES
1, Bobrow, D.G., Burchfiel, J.D., Murphy, D.L., and Tomlinson, R.S.

TENEX, a paged time-sharing system for the PDP-10. Commun. ACM
15, 3 {Mar. 1972}, 135-143.

2. Kernighan, B.W., and Ritchie, D.M. The C Programming Language.
Prentice-Hall, Englewood Cliffs, N.J., 1978.

3. Ritchie, D.M., and Thompson, K. The UNIX time-sharing system.
Commun. ACM 17, 0uly 1974), 365-375.

4. Unknown Air Force Document.

Author's Present Address: Ken Thompson, AT&T Bell Laboratories,
Room 2C-519, 600 Mountain Ave., Murray Hill, NJ 07974.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

August 1984 Volume 27 Number 8 Communications of the ACM 763

