
1 / 12

Using ACL2 for Set Operations
ACL2 Lecture 4

Warren A. Hunt, Jr.
hunt@cs.utexas.edu

Computer Science Department
University of Texas

2317 Speedway, M/S D9500
Austin, TX 78712-0233

January, 2023



2 / 12

Sets and Set Operations

In this lecture, we investigate using ACL2 to define sets and operations on sets.

▶ Set objects.

▶ Recognizing an acceptable set.

▶ Removing duplicate elements.

▶ Set union.

▶ Lookup by index.

▶ Update list at position.

▶ Lookup at write location.

▶ Access by name.

▶ Update by name.

Repeated REMINDER: We are introducing functional programming.

The lack of side effects provides opportunities for analysis. Much of this course
concerns the pursuit of such opportunities.



3 / 12

Set Objects

In this lecture, we will define set operations.

We first define what elements our sets may contain.

(defun eqlablep (x)

;; Set element recognizer

(or (acl2-numberp x)

(symbolp x)

(characterp x)))

(defun eqlable-listp (l)

;; Set recognizer

(if (consp l)

(and (eqlablep (car l))

(eqlable-listp (cdr l)))

(equal l nil)))

Using EQLABLE-LISTP as our set recognizer restricts set members to be
characters, numbers, and symbols.

Is this an adequate definition?



4 / 12

Sets or Bags

Is our use of EQLABLE-LISTP as our set recognizer good enough? Consider:

(eqlable-listp ’(a b c b)) ==> T

Should our set recognizer allows duplicate members?

We can further restrict our set recognizer by requiring that there are no
duplicates.

(defun no-dups (x)

(if (atom x)

t

(let ((e (car x))

(rst (cdr x)))

(and

;; Check that E doesn’t later appear

(not (mem e rst))

;; Check the rest of the elements

(no-dups rst)))))

NO-DUPS returns T when no duplicates are found.

We combine EQLABLE-LISTP with NO-DUPS to recognize a set, but not a bag.



5 / 12

What About Removing Duplicates?

To clean up a bag, we can write a function to remove duplicates.

(defun rm-dups (x)

;; Remove duplicates if they exist

(declare (xargs :guard (eqlable-listp x)))

(if (atom x)

NIL

(let ((e (car x))

(rst (cdr x)))

(if (mem e rst)

(rm-dups rst)

(cons e (rm-dups rst))))))

Let’s trace things to see what happens.

(trace$ rm-dups)

(rm-dups ’(1 2 3 2 4 2 3 2))



6 / 12

Confirm the Operation of RM-DUPS

Are we sure RM-DUPS works properly? Can we state (and prove) a property that
would increase our confidence?

Consider:

(defthm not-mem-rm-dups

;; If no E in X, then no E in (RM-DUPS E X).

(implies (not (mem e x))

(not (mem e (rm-dups x)))))

(defthm no-mem-rm-all

;; There are no duplicates after removing duplicates.

(no-dups (rm-dups x)))

It is important that we can explore our definitions.

We often perform such explorations by proof.



7 / 12

Set Union

Given two sets, can we create their union?

(defun set-union (x y)

(if (atom x)

;; If X empty, return Y

y

(let ((e (car x))

(rst (cdr x)))

(if (mem e y)

;; If first element (E) of X appears in Y, then skip

(set-union rst y)

;; Otherwise, include E, and continue...

(cons e (set-union rst y))))))

Is this what we want? Let’s check SET-UNION by proof.

(defthm eqlable-listp-set-union

;; Set union returns objects of the same type.

(implies (and (eqlable-listp x)

(eqlable-listp y))

(eqlable-listp (set-union x y))))



8 / 12

Properties of SET-UNION

To increase our confidence, we state several desired properties.

(defthm not-mem-set-union

;; If E not member of X nor Y, then not in their SET-UNION.

(implies (and (not (mem e x))

(not (mem e y)))

(not (mem e (set-union x y)))))

(defthm no-dups-set-union

;; No duplicates in X and Y, then no duplicates in SET-UNION.

(implies (and (no-dups x)

(no-dups y))

(no-dups (set-union x y))))

(defthm mem-set-union

;; If E is in X or Y, then E is in their SET-UNION.

(implies (or (mem e x)

(mem e y))

(mem e (set-union x y))))

We can check these properties by proof – this is something everyone will learn
to do.



9 / 12

Lookup and Update by Position

We can use lists as a memory.

(defun ith (n l)

;; If at the end of memory L?

(if (endp l)

;; then, return default value

nil

;; If at address, access item

(if (zp n)

(car l)

;; otherwise, keep looking...

(ith (- n 1) (cdr l)))))

(defun !ith (key val l)

(if (zp key)

;; If at the end position, add element

(cons val (cdr l))

;; otherwise, copy element, and continue...

(cons (car l)

(!ith (1- key) val (cdr l)))))

One should consider what happens when (< (LEN L) N)).



10 / 12

Lookup and Update Properties

Have we defined a useful memory? Consider:

(defthm ith-!ith

;; We read what we wrote

(equal (ith n (!ith n v l)) v))

(defthm ith-!ith-different-addresses

(implies (and (natp i)

(natp j)

(not (equal i j)))

;; Writes at other locations

(equal (ith i (!ith j v l))

;;don’t change what is at position I

(ith i l)))))

Lemma ITH-!ITH confirms that we can read back what was written.

Lemma ITH-!ITH-DIFFERENT-ADDRESSES says a write other than at I doesn’t
change the value at position I.

Is this enough?



11 / 12

Associative Memory

Instead of a lookup by index, often we prefer to lookup by name (key). ASSCP
recognizes a list of pairs where each pair is: (CONS key value).

(defun asscp (x)

(if (atom x)

(null x)

(and (consp (car x))

(asscp (cdr x)))))

(defun assc (k al)

;; Indicate the structure of AL.

(declare (xargs :guard (asscp al)))

(if (atom al)

NIL

(let* ((pair (car al))

(key (car pair)))

(if (equal k key)

;; If found, return pair.

pair

(assc k (cdr al))))))

Why does ASSC return a pair instead of just the value?



12 / 12

Update Associative Memory

Our update function is simple, we just add a key-value pair to the front of our
memory.

(defun update (k v al)

(declare (xargs :guard t))

(cons (cons k v)

al))

We can observe various properties of this approach? For instance,

(defthm assc-update

(equal (assc k (update k v a))

(cons k v)))

But, is this enough? What about blocked (unreachable) entries?


	Sets and Set Operations
	Set Objects
	Sets or Bags
	What About Removing Duplicates?
	Confirm the Operation of RM-DUPS
	Set Union
	Properties of SET-UNION
	Lookup and Update by Position
	Lookup and Update Properties
	Associative Memory
	Update Associative Memory

