
ACL2 Best Practices

Recursion & Induction
Guest lecturer – Sol Swords (Arm Inc.)
March 13, 2025

Available at: http://bit.ly/3XSGPMj

http://bit.ly/3XSGPMj

Theory Management

● ACL2 quickly gets unmanageable when used with a disorganized set of rules (includes
rewrites, function definitions, etc.)

● Especially important to disable function definitions when you’re not expecting to reason
directly about them
○ defund
○ (in-theory (disable my-fndef))

● When adding a theorem, think about how it will function as a rule—if not generally useful,
disable it
○ defthmd
○ Or use :rule-classes nil to make it not a rule at all

Useful pattern for defining new functions

(encapsulate nil

(defund my-function (x) ...)

(local (in-theory (enable my-function)))

(local (defthm local-lemma ...))

(defthm exported-generally-useful-theorem ...)

(defthmd exported-specifically-useful-theorem ...))

Abbreviation for the same pattern

(include-book “xdoc/top” :dir :system)

(defsection my-function ;; nicer to look at
(defund my-function (x) ...)
(local (in-theory (enable my-function)))
(local (defthm local-lemma ...))
(defthm exported-generally-useful-theorem ...)
(defthmd exported-specifically-useful-theorem ...))

Abbreviation for the same pattern

(include-book “std/util/define” :dir :system)

(define my-function (x)
;; automatically disabled non-locally and enabled locally
... ;; function body
///
(local (defthm local-lemma ...))
(defthm exported-generally-useful-theorem ...)
(defthmd exported-specifically-useful-theorem ...))

Hints

● Changes to underlying definitions/rules cause hints to fail more often than a good rewriting
theory

● Subgoal hints are particularly fragile
○ High probability that a tweak to a function definition will make it so something that happened on Subgoal

*1/2.3.5’’’ now instead happens at Subgoal *1/3.3.4’’
○ Instead use “Goal” hints and stable-under-simplificationp hints – next slide

● A few generally useful classes of hints—others are for very specific, rare circumstances
○ :in-theory, :induct, :do-not-induct, :expand
○ :use (usually only at “Goal”)

● A good alternative to fragile hint structures in many cases: prove a special-purpose, local rule just
for your particular situation

Reasonable use of hints

(encapsulate nil
(local (defthm my-special-purpose-rule ...))
(local (in-theory (e/d ((:i foo))

(a-conflicting-rule))))
(defthm my-thm-about-foo
...
:hints ((“goal” :induct (foo x y)

:do-not-induct t ;; no sub-inductions
:expand ((foo x y)))

(and stable-under-simplificationp
‘(:in-theory (enable a-particular-rule))))))

Books

● Lots of libraries are available in the community books—look around
○ Github code search

● Use include-book with :dir :system or relative paths, no absolute paths
● Writing a certifiable book:

○ First form must be (in-package ...)
○ Allowed forms: include-book, defun, defthm, defconst, defmacro, encapsulate,

local, progn
○ Macros / make-events that expand to the above

● Use of local in books is good but watch out for local incompatibility

Local incompatibility

(in-package “ACL2”)

(local (defun my-local-function (x) ...))

(defthm my-exported-theorem

;; local incompatibility - my-local-function not defined here

(true-listp (my-local-function x)))

Another local incompatibility

(in-package “ACL2”)

(local (include-book “ihs/logops-lemmas” :dir :system))

(defthm a-theorem

;; local incompatibility - loghead not defined here

(natp (loghead n x)))

Build system for books

● All books included must be certified before the book that includes them can be certified - can be
a big dependency graph

● acl2/books/build/cert.pl automatically generates dependencies and certifies books in
the right order using make

● Parallel builds with -j 8 (whatever your machine can manage) recommended—lots of parallelism
available

● Dependency analysis is via line-by-line scan so broken lines can fool it

(include-book ;; don’t do this unless you want to fool the build system
“my-book”)

Rule-classes

● :rewrite — general purpose workhorse
○ Best all round — try to make a good rewrite rule before considering another rule class for your theorem

● :linear — linear arithmetic, probably what you want if your conclusion is one of <,>,<=,>=
○ Triggers on some linear subterm of the inequality – e.g., in:

(< (+ (* 2 (foo)) (- (* 3 (bar)))) (* 1/2 (baz)))
Might choose to trigger on (foo), (bar), or (baz) — need to consider free variables

● :type-prescription — proves something is in some subset of the built-in types such as symbol,
string, cons, positive integer, non-integer rational, etc. — see doc topic type-set

○ Best if no hypotheses — only relieved by type reasoning, not full simplification.
○ E.g. if a function always returns a natural number, good to have a type-prescription rule
○ If it returns a natural number when its input is greater than 5, a type-prescription rule will

probably only be useful when you have input > 5 as an explicit assumption or forward-chaining
result

More rule classes

● :forward-chaining — adds something to set of assumptions when some trigger term is assumed
○ Default trigger is first hypothesis
○ Hypotheses are only relieved by type reasoning/execution
○ Very special-purpose — when abused, can uselessly slow down the prover a lot

● :compound-recognizer – associates a user predicate with built-in types, see e.g. natp-compound-
recognizer

● :equivalence, :congruence, :refinement — for user-defined equivalence classes
● :definition – alternative function definition, like rewrite but integrates with :expand hints and uses

different heuristics for recursive expansion
● :meta, :clause-processor – install custom simplifiers/proof routines

