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IEEE 754 Floating Point Standard

Elementary operations are to be performed

as though the infinitely precise (standard

mathematical) operation were performed

and then the result rounded to the

indicated precision.
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AMD K5 Algorithm FDIV(p, d,mode)

1. sd0 = lookup(d) [exact 17 8]

2. dr = d [away 17 32]

3. sdd0 = sd0 × dr [away 17 32]

4. sd1 = sd0 × comp(sdd0, 32) [trunc 17 32]

5. sdd1 = sd1 × dr [away 17 32]

6. sd2 = sd1 × comp(sdd1, 32) [trunc 17 32]

... ... = ... ...

29. q3 = sd2 × ph3 [trunc 17 24]

30. qq2 = q2 + q3 [sticky 17 64]

31. qq1 = qq2 + q1 [sticky 17 64]

32. fdiv = qq1 + q0 mode
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Using the Reciprocal
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Reciprocal Calculation:

1/12 = 0.0833 ≈ 0.083 = sd2

Quotient Digit Calculation:

0.083 × 430.0000 = 35.6900000 ≈ 36.000000 = q0

0.083 × -2.0000 = -.1660000 ≈ -.170000 = q1

0.083 × .0400 = .0033200 ≈ .003400 = q2

0.083 × -.0008 = -.0000664 ≈ -.000067 = q3

Summation of Quotient Digits:

q0 + q1 + q2 + q3 = 35.833333
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Computing the Reciprocal

i

2
sd sd sd

0 1
1/d

sd
i+1

= sd
i
(2 - sd d)

dy
dx

= - x
-2

y = 1
x

- d

8



top 8 bits approx

of d inverse

1.00000002 0.111111112
1.00000012 0.111111012
1.00000102 0.111110112
1.00000112 0.111110012
1.00001002 0.111101112
1.00001012 0.111101012
1.00001102 0.111101002
1.00001112 0.111100102
1.00010002 0.111100002
1.00010012 0.111011102
1.00010102 0.111011012

... ...
1.00101102 0.110110102
1.00101112 0.110110002
1.00110002 0.110101112
1.00110012 0.110101012
1.00110102 0.110101002
1.00110112 0.110100112
1.00111002 0.110100012
1.00111012 0.110100002
1.00111102 0.110011112
1.00111112 0.110011012

top 8 bits approx

of d inverse

1.01000002 0.110011002
1.01000012 0.110010112
1.01000102 0.110010102
1.01000112 0.110010002
1.01001002 0.110001112
1.01001012 0.110001102
1.01001102 0.110001012
1.01001112 0.110001002
1.01010002 0.110000102
1.01010012 0.110000012
1.01010102 0.110000002

... ...
1.01101102 0.101101002
1.01101112 0.101100112
1.01110002 0.101100102
1.01110012 0.101100012
1.01110102 0.101100002
1.01110112 0.101011112
1.01111002 0.101011102
1.01111012 0.101011012
1.01111102 0.101011002
1.01111112 0.101010112

top 8 bits approx

of d inverse

1.10000002 0.101010102
1.10000012 0.101010012
1.10000102 0.101010002
1.10000112 0.101010002
1.10001002 0.101001112
1.10001012 0.101001102
1.10001102 0.101001012
1.10001112 0.101001002
1.10010002 0.101000112
1.10010012 0.101000112
1.10010102 0.101000102

... ...
1.10101102 0.100110012
1.10101112 0.100110002
1.10110002 0.100101112
1.10110012 0.100101112
1.10110102 0.100101102
1.10110112 0.100101012
1.10111002 0.100101012
1.10111012 0.100101002
1.10111102 0.100100112
1.10111112 0.100100112

top 8 bits approx

of d inverse

1.11000002 0.100100102
1.11000012 0.100100012
1.11000102 0.100100012
1.11000112 0.100100002
1.11001002 0.100011112
1.11001012 0.100011112
1.11001102 0.100011102
1.11001112 0.100011102
1.11010002 0.100011012
1.11010012 0.100011002
1.11010102 0.100011002

... ...
1.11101102 0.100001012
1.11101112 0.100001002
1.11110002 0.100001002
1.11110012 0.100000112
1.11110102 0.100000112
1.11110112 0.100000102
1.11111002 0.100000102
1.11111012 0.100000012
1.11111102 0.100000012
1.11111112 0.100000002
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The Formal Model of the Code
(defun FDIV (p d mode)

(let*

((sd0 (eround (lookup d) ’(exact 17 8)))

(dr (eround d ’(away 17 32)))

(sdd0 (eround (* sd0 dr) ’(away 17 32)))

(sd1 (eround (* sd0 (comp sdd0 32)) ’(trunc 17 32)))

(sdd1 (eround (* sd1 dr) ’(away 17 32)))

(sd2 (eround (* sd1 (comp sdd1 32)) ’(trunc 17 32)))

...

(qq2 (eround (+ q2 q3) ’(sticky 17 64)))

(qq1 (eround (+ qq2 q1) ’(sticky 17 64)))

(fdiv (round (+ qq1 q0) mode)))

(or (first-error sd0 dr sdd0 sd1 sdd1 ... fdiv)

fdiv)))
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The K5 FDIV Theorem (1200 lemmas)

(defthm FDIV-divides

(implies (and (floating-point-numberp p 15 64)

(floating-point-numberp d 15 64)

(not (equal d 0))

(rounding-modep mode))

(equal (FDIV p d mode)
(round (/ p d) mode))))

(by Moore, Lynch and Kaufmann, in 1995,

before the K5 was fabricated)
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ACL2 =

A Computational Logic

for

Applicative Common Lisp
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“ACL2” is the name of

• a functional programming language,

• a mathematical logic, and

• an automatic interactive theorem prover.
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Demo 0
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ACL2 is untyped.

ACL2 is strict (not lazy).

ACL2 is first order (no functional args).

ACL2 is applicative (functional).

All ACL2 functions are total (always

terminate on all arguments).
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ACL2 is executable – almost all functions

applied to constants can be reduced to

equivalent constants.

ACL2 is quantifier-free – but has the

expressive power of full first-order logic

thanks to Skolemization.

ACL2 is automatic – once the theorem

prover starts, the user cannot guide it.
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ACL2 is interactive – the theorem prover’s

behavior is influenced by the data base of

previously proved lemmas and

user-provided advice.
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ACL2 is coded in ACL2.
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ACL2 is the first theorem prover to win the

ACM Software System Award.
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ACL2 is (probably) the first winner that is

written in a functional programming

language.
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Lisp Syntax
< term > := < var > |

’< const >)|

(< fn > < term >1

. . .

< term >n)

< const > := < number > | < char > |

< string > | < symbol > |

< pair >
25



Example Constants

123, 22/7

\#Newline, #\A, #\a

"Hello world!"

x, world, pt, PT, Pt

((Mon . 1) (Tue . 2) (Wed . 3))
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Example Terms

(cons (car x) rest))

e.g., cons(car(x), rest)

(if (zp n) 1 (* n (fact (- n 1))))

e.g., if n = 0 then 1 else n ∗ fact(n − 1) fi
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About T and NIL

T and NIL are symbols.

T and t are the same, as are NIL and nil.

T and NIL are used as the “truth values”

true and false.

NIL is also used as the “terminal marker”

on nested pairs representing lists.
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About Pairs

< x, < y, < z, nil>>>

•

ւց

x
•

ւց

y
•

ւց

z nil

(x . (y . (z . nil)))
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•

ւց

x
•

ւց

y
•

ւց

z nil

(x . (y . (z . nil)))
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•

ւց

x
•

ւց

y
•

ւց

z nil

(x . (y . (z . nil)))

(x . (y . (z ))) ; may erase ‘‘. nil’’
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•

ւց

x
•

ւց

y
•

ւց

z nil

(x . (y . (z . nil)))

(x . (y . (z ))) ; may erase ‘‘. nil’’

(x . (y z )) ; may erase ‘‘. (. . .)’’
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•

ւց

x
•

ւց

y
•

ւց

z nil

(x . (y . (z . nil)))

(x . (y . (z ))) ; may erase ‘‘. nil’’

(x . (y z )) ; may erase ‘‘. (. . .)’’

(x y z ) ; may erase ‘‘. (. . .)’’
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Is it strange that Lisp provides so many

ways to write (x y z)?

(x . (y . (z . nil)))

(x . (y . (z )))

(x . (y z ))

(x y z )

34



Is it strange that you know so many ways

to write 123?

123

0123

+123

011110112

0x7B
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Data Types

ACL2 supports five disjoint data types:

• numbers (integers, non-integer rationals,

complex rationals)

• characters

• strings

• symbols

• pairs
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There are primitive functions for

• creating each type of object from its

constituents, e.g., cons creates pairs;

• accessing the constituents, e.g., car and

cdr, aka head and tail;

• recognizing instances of each type, e.g.,

consp;
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• other expected operations (e.g., addition

of numbers).
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Semantics

(cons 1 (cons 2 (cons 3 nil)))

⇒ ; “evaluates to”

(1 2 3)

(cons 1 ’(2 3))

⇒

(1 2 3)
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’(1 2 3) ⇒ (1 2 3)

(car ’(1 2 3)) ⇒ 1

(cdr ’(1 2 3)) ⇒ (2 3)
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(consp ’(1 2 3)) ⇒ t

(consp 1) ⇒ nil

(consp nil) ⇒ nil
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A Few Axioms

t 6= nil

x = nil → (if x y z) = z

x 6= nil → (if x y z) = y

(car (cons x y)) = x

(cdr (cons x y)) = y
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(consp (cons x y)) = t

(consp nil) = nil

(endp x) = (not (consp x))
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Definitions

(defun not (x) (if x nil t))

is a way to add a

New Axiom

(not x) = (if x nil t)
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Propositional Calculus

(defun not (x) (if x nil t))

(defun and (x y) (if x y nil))

(defun or (x y) (if x x y))

(defun implies (x y)

(if x (if y t nil) t))
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Inconsistent “Definition”

(defun f (x) (not (f x)))

Theorem: t = nil.

Proof.

(f x) = (not (f x))

= (if (f x) nil t).

So (f x) is either nil or t.
46



Case 1: nil = (f x)

= (not (f x)) = (not nil) = t.

Case 2: t = (f x)

= (not (f x)) = (not t) = nil.

Q.E.D.
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The Definitional Principle

(defun f (x1 . . . xn) body)

is admissible if and only if:

• f is not already axiomatized;

• the xi are distinct;

• the only variables in body are the xi;
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• there is a measure of the xi and a

well-founded ordering such that for every

recursive call of f in body it can be

proved that the measure decreases

according to the ordering.

The last condition means that ACL2 can

admit only provably terminating recursive

definitions.
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Recursive Definition

(defun app (x y)

(if (endp x)

y

(cons (car x)

(app (cdr x) y))))

(append ’(1 2 3) (append ’(4 5 6) ’(7 8 9)))

= ’(1 2 3 4 5 6 7 8 9)
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(equal (append (append a b) c)

(append a (append b c)))
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(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.
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(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (append (append a b) c)

(append a (append b c)))
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(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (append b c)

(append a (append b c)))
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(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (append b c)

(append a (append b c)))

55



(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (append b c)

(append b c))
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(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).

(equal (append b c)

(append b c))
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(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).

T
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(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (append (append a b) c)

(append a (append b c)))
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(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (append (cons (car a)

(append (cdr a) b)) c)

(append a (append b c)))
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(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (append (cons (car a)

(append (cdr a) b)) c)

(append a (append b c)))
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(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (cons (car a)

(append (append (cdr a) b) c))

(append a (append b c)))
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(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (cons (car a)

(append (append (cdr a) b) c))

(append a (append b c)))
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(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (cons (car a)

(append (append (cdr a) b) c))

(cons (car a)

(append (cdr a) (append b c))))
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(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (cons (car a)

(append (append (cdr a) b) c))

(cons (car a)

(append (cdr a) (append b c))))
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(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal

(append (append (cdr a) b) c)

(append (cdr a) (append b c)))
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(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (append (append (cdr a) b) c)

(append (cdr a) (append b c)))
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(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

(equal (append (append (cdr a) b) c)

(append (cdr a) (append b c)))
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(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).

T
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(equal (append (append a b) c)

(append a (append b c)))

Proof: by induction on a.

Q.E.D.
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Demo 1
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Irrelevance

Equality

Destructor Elimination

User

Generalization

Induction

Simplification

pool

Elimination of

formula
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Irrelevance

User

Equality

Destructor Elimination

Generalization

Induction

Elimination of

congruence−based rewriting

evaluation
propositional calculus
BDDs
equality
uninterpreted function symbols
rational linear arithmetic
rewrite rules
recursive definitions
back− and forward−chaining
metafunctions

Simplification
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Demo 2
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Some More Realistic Examples

• a simple stack machine model

• a simple expression language model

• a simple compiler

• proof that the compiler is correct
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The Stack Machine

We will formalize a machine:

m : programs × environments × stacks

→

stacks
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Sample program:

((LOAD A)

(PUSH 3)

(MUL))
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Instruction set:

(LOAD var

(PUSH const)

(ADD)

(MUL)

(DUP)

No instruction will change the environment

(no STORE instruction).
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Sample environment:

((A . 20)

(B . 30)

(X . -5)

(TEMP . 18))
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Sample stack:

(push 1 (push 2 (push 3 nil)))

⇒

(1 2 3)
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Expressions

We will compile simple expressions into this

language and prove that we did it correctly.

The expression language is

<expr> := <variable> |

<constant> |

<unary-application> |

<binary-application>
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<unary-application>

:= (- <expr>) |

(sq <expr>)

<binary-application>

:= (<expr> + <expr>) |

(<expr> - <expr>) |

(<expr> * <expr>)
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Obvious Criticisms

Everything is trivial!

No STORE instruction.

No program counter.

No branch or conditionals.

No iteration or loops.

No object creation.
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No method invocation.

No exceptions or errors.
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Response to the Criticism

I will show you a completely realistic model

when we’re done with this one.

But for now I want you to really

understand what is involved in modeling

two computational paradigms and proving

their correspondence formally.
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I’ll follow “The Method” to do my proofs

and show you everything (except some

trivial “abstract data type” work at the

bottom).
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Demo 3
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JVM Operational Semantics

Our “M6” model is based on an

implementation of the J2ME KVM. It

executes most J2ME Java programs

(except those with significant I/O or

floating-point).

M6 supports all CLDC data types,

multi-threading, dynamic class loading,

89



class initialization and synchronization via

monitors.
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We have translated the entire Sun CLDC

API library implementation into our

representation with 672 methods in 87

classes. We provide implementations for 21

out of 41 native APIs that appear in Sun’s

CLDC API library.

We prove theorems about bytecoded

methods with the ACL2 theorem prover.
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The executable model is 160 pages of

ACL2. This doesn’t count over 500 pages

of data (the CLDC API) built into the

model.

This work is supported by a gift from Sun

Microsystems.

92



.java

Theorems

.class

.lisp ACL2

‘‘pi(246)=123’’

‘‘pi(n)=n/2’’

jvm2acl2

javac
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Demo 4
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Key Research Problems

1. Automatic Invention of Lemmas and New

Concepts

2. How to use Examples and

Counterexamples

3. How to use Analogy, Learning, and Data

Mining
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4. How to Architect an Open Verification

Environment

5. Parallel, Distributed and Collaborative

Theorem Proving

6. User Interface and Interactive Steering

7. Education of the User Community – and

Their Managers
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8. How to Build a Verified Theorem Prover
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Our Hypothesis

The “high cost” of formal methods

– to the extent the cost is high –

is a historical anomaly due to the fact that

virtually every project formally

recapitulates the past.
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The use of mechanized formal methods will

ultimately

• decrease time-to-market, and

• increase reliability.
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Conclusion

Mechanical reasoning systems are changing

the way complex digital artifacts are built.

Complexity not an argument against formal

methods.

It is an argument for formal methods.
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