An ACL2 Tutonal

J Strother Moore
Department of Computer Sciences
University of Texas at Austin

Outline

e ACL2 Background
e Elementary Examples

e A Closer Look at a Big JVM Model

e Two Styles of Code Proofs

Boyer-Moore Project

McCarthy’s “Theory of Computation™
Edinburgh Pure Lisp Theorem Prover

A Computational Logic
NQTHM
ACL?2
|
l Il Il Il Il Il Il Il Il | Il Il Il Il Il Il Il Il | Il Il Il Il Il Il Il Il | Il Il Il Il Il Il Il Il l Il
1960 1970 1980 1990 2000

Boyer -]

Moore -]

Kaufmann |

- AMD K5 floating-point
division pcode

R J . IBM floating point
_ and micro Gypsy compiler algorithms
= Byzantine Generals

= real-time model - Y86
= Motorola 68020
= Rockwell JEM1 = sixth ACL 2 workshop
= EXpression compiler = hiphase mark
P, ckwell Greenhills OS
= KIT OS kernel Am"ﬂ'gﬂ"iliﬂ' ﬂﬂiﬁt e
= prime factorization = Clock sync - mglt‘:-?r_lpgﬂ]
A Piton =alois/Rockwell SHADE
= BDX930 abandoned _ Logic formalization
(Spain), ongoing
I —— — » m— T m—r NN B FESCESCECEN SN N SN ST S S ST »
1970 1975 1980 14985 1990 1995 2000 2005 2010
_ ACM Software System
= FMo001 Award
= hinary adder = Dijkstra shortest path
= Godel - Gauss = FM9801
= insertion sort = RS A = |Inity = Paris-Harrington Ramsey UCLID integration
= FMB8502 - prot
= Motorola CAP otype
= FM8501 = DEC alpha 1 PTG MIL cert.
_ unsolvability of halting = Ngthm compiler = Kalman filters

problem

IEEE 754 Floating Point Standard

Elementary operations are to be performed
as though the infinitely precise (standard
mathematical) operation were performed
and then the result rounded to the
iIndicated precision.

AMD K5 Algorithm FDIV(p, d, mode)

29.
30.
31.
32.

SO0k wh =

sdy = lookup(d)

d, d

sddy = sdp X d,

sdi = sdy x comp(sddy, 32)
sddy = sdy X d,

sdo = sd; x comp(sddy, 32)

qs = sda X phs
qq2 = g2 + Q3

qq1 = qq2 + q1
Jdiv = qq1 + qo

lexact 17
laway 17
laway 17
[trunc 17
laway 17

trunc 17

[trunc 17
[sticky 17
[sticky 17
mode

32]
32]
32]
32]
32]

24
64
64

Using the Reciprocal

36.
+ -17
+ 0034
+ -.000066
35833334
12 430000000
432,
2
204
04
0408
0008
-.000792

-.000008

Reciprocal Calculation:
1/12 = 0.0833 ~ 0.083 = sd>

Quotient Digit Calculation:

0.083 x 430.0000 = 35.6900000 =~ 36.000000 = qq
0.083 x -2.0000 = -.1660000 ~ -.170000 = ¢,
0.083 x .0400 = .0033200 ~ .003400 = qg-
0.083 x -.0008 = -.0000664 =~ -.000067 = g3

Summation of Quotient Digits:
qo + q1 + g2 + q3 = 35.833333

Computing the Reciprocal

[[sdﬂ = sd(2-sd d)ﬂ

top 8 bits
of d

approx
inverse

top 8 bits
of d

approx
inverse

top 8 bits
of d

approx
inverse

top 8 bits
of d

approx
inverse

1.00000004
1.00000015
1.00000104
1.00000114
1.00001004
1.00001015
1.00001104
1.00001114
1.00010004
1.00010015
1.00010104

1.00101104
1.00101114
1.0011000
1.00110014
1.00110104
1.00110114
1.00111004
1.00111014
1.00111104
1.00111114

0.111111114
0.111111014
0.111110114
0.111110014
0.111101114
0.111101014
0.111101004
0.111100104
0.111100004
0.111011104
0.111011014

0.110110104
0.110110004
0.110101114
0.110101014
0.110101004
0.110100114
0.110100014
0.110100004
0.110011114
0.110011014

1.01000004
1.01000015
1.01000104
1.01000114
1.01001004
1.01001015
1.01001104
1.01001114
1.01010009
1.01010015
1.01010104

1.01101104
1.01101114
1.01110004
1.01110014
1.01110104
1.01110114
1.01111004
1.01111014
1.01111104
1.01111114

0.110011004
0.110010115
0.110010104
0.110010004
0.110001115
0.110001104
0.110001014
0.110001004
0.110000104
0.110000014
0.110000004

0.101101009
0.101100114
0.101100104
0.101100015
0.101100004
0.101011114
0.101011104
0.101011015
0.101011004
0.101010114

-10000004
.10000015
.10000104
.10000114
.10001004
110001015
.10001104
110001115
.10010004
110010015
.10010104

e T T o S o S SO O S Gy S et

110101104
10101114
.10110004
110110015
110110104
10110114
110111004
10111015
10111104
10111114

T T o T o S S S Gy SO R e

0.101010105
0.101010015
0.101010004
0.101010004
0.101001115
0.101001105
0.101001014
0.101001004
0.101000115
0.101000115
0.101000104

0.100110015
0.100110004
0.100101114
0.100101115
0.100101105
0.100101014
0.100101014
0.100101005
0.100100115
0.100100114

.11000004
.11000015
.11000104
111000115
.11001004
111001015
11001104
11001115
.11010004
111010014
11010104

e T T o S o S SO O S Gy S et

11101104
11101114
11110004
11110015
11110104
11110114
11111004
11111014
11111104
11111114

T T o T o S S S Gy SO R e

0.100100104
0.100100015
0.100100014
0.100100004
0.100011114
0.100011114
0.100011104
0.100011104
0.100011014
0.100011004
0.100011004

0.100001015
0.100001004
0.100001004
0.100000115
0.100000115
0.100000104
0.100000104
0.100000015
0.100000015
0.100000004

The Formal Model of the Code

(defun FDIV (p d mode)
(let*
((sd0 (eround (lookup d)
(dr (eround d
(sdd0 (eround (* sdO dr)
(sdl (eround (* sdO (comp sddO 32))
(sddl (eround (* sdl dr)
(sd2 (eround (* sdl (comp sddl 32))

(qq2 (eround (+ g2 qg3)
(qql (eround (+ qg2 ql)
(fdiv (round (+ qql qO0)

(or (first-error sd0 dr sdd0 sdl sddl ...

fdiv)))

> (exact 17
’(away 17
’(away 17
>(trunc 17
’(away 17
>(trunc 17

’(sticky 17
’(sticky 17
mode)))
fdiv)

8)))
32)))
32)))
32)))
32)))
32)))

64)))
64)))

10

The K5 FDIV Theorem (1200 lemmas)

(defthm FDIV-divides
(implies (and (floating-point-numberp p 15 64)
(floating-point—-numberp d 15 64)
(not (equal d 0))
(rounding-modep mode))

(equal (FDIV p d mode)
(round (/ p d) mode))))

(by Moore, Lynch and Kaufmann, in 1995,
before the K5 was fabricated)

11

ACL2 =

A Computational Logic
for
Applicative Common Lisp

12

“ACL2" is the name of

e a functional programming language,
e 2 mathematical logic, and

e an automatic interactive theorem prover.

13

Demo 0

14

ACL2 is untyped.

ACL2 is strict (not lazy).

ACL2 is first order (no functional args).
ACL2 is applicative (functional).

All ACL2 functions are total (always
terminate on all arguments).

15

ACL2 is executable — almost all functions
applied to constants can be reduced to
equivalent constants.

ACL2 is quantifier-free — but has the
expressive power of full first-order logic
thanks to Skolemization.

ACL2 i1s automatic — once the theorem
prover starts, the user cannot guide It.

16

ACL2 is interactive — the theorem prover's
behavior is influenced by the data base of
oreviously proved lemmas and
user-provided advice.

17

User

proofs

proposed definitions
conjectures and

advice

database composed

of “*books'’ of definitions,

theorems, and advice

theorem
prover

Q E. D.

18

ACL2 is coded in ACL2.

19

User

proofs

proposed definitions
conjectures and

advice

QE. D.

20

ACL?2 is the first theorem prover to win the
ACM Software System Award.

21

r’(.\ 00 N ACM Awards: Software System Award - Mozilla

;Eile Edit VWiew Go Bookmarks Tools Window Help

= = ¢
@ = @ = @ @ I‘ http://awards.acm.orgisoftware_system/ :I @ Search Hg!’%i! o~
.. rin

Back Forward

v 4% Home | Eﬂﬂnokmarks' _‘Intemet-'ﬁmokup @New&c::'ol.

Association for Computing Machinery

Advancing Computing as a Sclence & Profession

Software System Award

Software System Award

Awarded to an institution or individual(s) recognized for developing a software system that has had
a lasting influence, reflected in contributions to concepts, in commercial acceptance, or both. The
Software System Award carries a prize of $10,000. Financial support for the Software System Award
is provided by IBM.

Complete Listing:
|AIBICIDIEIEIGIHII|I|K|ILIM|N|OIB|IQIRI|IS|TIU|IVIWI|X]|Y]|Z]

[Year of Award: = go |

Chronological Listing

Bina, Eric Stonebraker, Michael
Wong, Eugene

The Boyer-Moore Theorem

Prover World-Wide Web
Boyer, Robert S Berners-Lee, Tim System R
Kaufmann, Matt Cailliau, Robert Chamberlin, Donald

Moore,] Strother Gray, James

Lorie, Raymond
Secure Network Programming Remote Procedure Call Putzolu. Gianfranco

Bindignavle, Raghuram Birrell, Andrew Selinger, Patricia

Lam, Simon S. Nelson, Bruce Traiger, Irving
Su, Shaowen

Woo, Thomas Y. C.

Sketchpad SMALLTALK
Sutherland, Ivan Goldbera, Adele
Ingalls, Daniel H.H.

MAKE
Feldman, Stuart

Interlisp Kay, Alan C.
Bebrow, Daniel G.

Java Burton, Richard R. TeX

Gosling, James A. Deutsch, L. Peter Kiitith: Donald E.

Kaplan, Ronald M.

22

ACL2 is (probably) the first winner that is
written in a functional programming
language.

23

8060

N ACM Awards: Software System Award - Mozilla

;Eile Edit VWiew Go Bookmarks Tools Window Help

=

Back Forward

@ = @ = @ @ I‘http:Hawards.acm.orgfsoftware_system.ﬂ

:I 2R Search !’!E!’EB! v

rint

v 4% Home | Eﬂﬂnokmarks' _‘Intemet-'ﬁmokup @New&c::'ol.

The Boyer-Moore Theorem
Prover

Boyer, Robert S

Kaufmann, Matt

Moore,] Strother

Secure Network Programming
Bindignavle, Raghuram

Lam, Simon S.

Su, Shaowen

Woo, Thomas Y. C.

MAKE
Feldman, Stuart

Java
Gosling, James A.

SPIN
Holzmann, Gerard

The Apache Group
Behlendorf, Brian
Fielding, Roy T.
Hartill, Rob
Robinson, David
Skolnick, CIiff
Terbush, Randy
Thau, Robert S.
Wilson, Andrew

The S System
Chambers, John M.

Tel/Tk

Bina, Eric

World-Wide Web
Berners-lLee, Tim
Cailliau, Robert

Remote Procedure Call
Birrell, Andrew
Nelson, Bruce

Sketchpad
Sutherland, Ivan

Interlisp

Bobrow, Daniel G.
Burton, Richard R.
Deutsch, L. Peter
Kaplan, Ronald M.
Masinter, Larry
Teitelman, Warren

TCP/IP
Cerf, Vinton G.
Kahn, Robert E.

NLS

Engelbart, Douglas C.
English, William K.
Rulifson, Jeff

PostScript

Brotz, Douglas K.
Geschke, Charles M.
Paxton, William H.
Taft, Edward A.
Warnock. John E.

Stonebraker, Michael
Wong, Eugene

System R
Chamberlin, Donald
Gray, James

Lorie, Raymond
Putzolu, Gianfranco
Selinger, Patricia
Traiger, Irving

SMALLTALK
Goldberg, Adele
Ingalls, Daniel H.H.
Kay, Alan C.

TeX
Knuth, Donald E.

VisiCalc
Bricklin, Daniel
Frankston, Robert

Xerox Alto Systems

Lampson, Butler W.
Taylor, Robert W.
Thacker, Charles P.

UNIX
Ritchie, Dennis M.
Thompson, Ken

24

Lisp Syntax
< term > =

< const > =

< var > |
’ < const >)|
(< fn> <term >

< term >,)

< number > | < char > |
< string > | < symbol > |
< pair >

25

Example Constants
123, 22/7
\#Newline, #\A, #\a
"Hello world!"

X, world, pt, PT, Pt
((Mon . 1) (Tue . 2)

(Wed .

3))

26

Example Terms
(cons (car x) rest))

e.g., cons(car(x), rest)

(if (zpn) 1 (*xn (fact (- n 1))))

e.g., if n =0 then 1 else n x fact(n — 1) fi

27

About T and NIL
T and NIL are symbols.

T and t are the same, as are NIL and nil.

T and NIL are used as the “truth values”
true and false.

NIL is also used as the “terminal marker”
on nested pairs representing lists.

28

About Pairs

<z, <y, <z, nil>>>

7N\

TN

Y VAR

z nil

(x . (y . (z . nil)))

29

nil

. (z

. nil)))

30

7N\

TN

Y VRN

z nil

(x . (y . (z . nil)))
(x . (y . (z))) ; may erase ‘‘. nil’’

31

7N\

TN

Y VRN

z nil

(x . (y . (z . nil)))

(x . (y . (z))) ; may erase ‘‘. nil’’

(x . (y 2)) ; may erase ‘‘. (...)’’

32

v N
y N
z nil
(x . (y . (z
(x . (y . (z
(x . (y 2
(x Y z

. nil)))

)))
)
)

)

)

)

, may erase
, may erase
, may erase

¢

¢

¢

¢

¢

¢

. (.

33

. nil’’
(L)
.)))

Is It strange that Lisp provides so many
ways to write (x y 2)7?

(x . (y . (z . nil)))
(x . (y . (z)))
(x . (y z))

(x Y 2z)

34

Is It strange that you know so many ways
to write 1237

123
0123

+123
01111011,
0x7B

35

Data Types
ACL2 supports five disjoint data types:

e numbers (integers, non-integer rationals,
complex rationals)

e characters

® strings

e symbols

® pairs

36

There are primitive functions for

e creating each type of object from its
constituents, e.g., cons creates pairs;

e accessing the constituents, e.g., car and
cdr, aka head and tail:

e recognizing instances of each type, e.g.,
consp;

37

e other expected operations (e.g., addition
of numbers).

38

Semantics

(cons 1 (cons 2 (cons 3 nil)))
= - “evaluates to”
(1 2 3)

(cons 1 ’(2 3))
—
(1 2 3)

39

’(1 2 3)= (1 2 3)

(car ’(1 2 3)) = 1

(cdr (1 2 3)) = (2 3)

(consp (1 2 3)) = t

(consp 1) = nil

(consp nil) = nil

41

A Few Axioms

t # nil
x = nil — (if x y z)
x # nil — (if x y 2)

(car (cons x y))

]
=

(cdr (comns x y))

|
<

42

(consp (cons x y)) =t
(consp nil) = nil

(endp x) = (not (consp x))

43

Definitions
(defun not (x) (if x nil t))

IS a way to add a

New Axiom
(not x) = (if x nil t)

44

Propositional Calculus

(defun not (x) (if x nil t))
(defun and (x y) (if x y nil))
(defun or (x y) (if x x y))

(defun implies (x y)
(if x (if y t nil) t))

45

Inconsistent “Definition”
(defun f (x) (not (f x)))
Theorem: t = nil.

Proof.

(f x) = (not (f x))
= (if (f x) nil t).

So (f x) is either nil or t.

46

Case 1: nil = (f x)
— (not (f x)) = (not nil) = t.

Case 2: t = (f x)
— (not (f x)) = (not t) = nil.

Q.E.D.

The Definitional Principle
(defun [(x1...z,) body)

is admissible if and only if:

e f is not already axiomatized;
e the x; are distinct;

e the only variables in body are the x;;

48

e there is a measure of the x; and a
well-founded ordering such that for every
recursive call of f in body it can be
proved that the measure decreases

according to the ordering.

The last condition means that ACL2 can
admit only provably terminating recursive
definitions.

49

Recursive Definition

(defun app (x y)
(if (endp x)

y
(cons (car x)

(app (cdr x) y))))

(append (1 2 3) (append ’(4 5 6) ’(7 8 9)))
=’(1234567829)

50

(equal (append (append a b) c)
(append a (append b c)))

51

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.

52

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).
(equal (append (append a b) c)

(append a (append b c)))

53

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.
Base Case: (endp a).

(equal (append b c)
(append a (append b c)))

54

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.
Base Case: (endp a).

(equal (append b c)
(append a (append b c)))

55

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.
Base Case: (endp a).

(equal (append b c)
(append b c))

56

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).
(equal (append b c)

(append b c))

57

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.

Base Case: (endp a).
T

58

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (append (append a b) c)

(append a (append b c)))

59

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (append (cons (car a)
(append (cdr a) b)) c)
(append a (append b c)))

60

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.
Induction Step: (not (endp a)).

(equal (append (cons (car a)
(append (cdr a) b)) c)

(append a (append b c)))

61

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (cons (car a)

(append (append (cdr a) b) c))

(append a (append b c)))

62

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (cons (car a)
(append (append (cdr a) b) c))
(append a (append b c)))

63

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (cons (car a)
(append (append (cdr a) b) c))
(cons (car a)

(append (cdr a) (append b c))))

64

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
(equal (cons (car a)

(append (append (cdr a) b) c))
(cons (car a)

(append (cdr a) (append b c))))

65

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.
Induction Step: (not (endp a)).
(equal

(append (append (cdr a) b) c)

(append (cdr a) (append b c)))

66

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.
Induction Step: (not (endp a)).

(equal (append (append (cdr a) b) c)
(append (cdr a) (append b c)))

67

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.
Induction Step: (not (endp a)).

(equal (append (append (cdr a) b) c)
(append (cdr a) (append b c)))

68

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.

Induction Step: (not (endp a)).
T

69

(equal (append (append a b) c)
(append a (append b c)))

Proof: by induction on a.

Q.E.D.

70

Demo 1

71

User

proofs

proposed definitions
conjectures and

advice

database composed

of “*books'’ of definitions,

theorems, and advice

theorem
prover

Q E. D.

72

User

f or nul a

Smphﬂcaﬂor/‘

— =

pool

N

Destructor Elimination

Q Equality

Generalization

Elimination of
Q Irrelevance

Induction

@

73

Destructor Elimination

TN

Q Equality

Generalization

Elimination of
Q Irrelevance

Induction

Simplificatio
evaluation
propositional calcu
BDDs

equality \
uninterpreted function symbols
rational linear arithmetic \
rewrite rules

recursive definitions

back— and forward—chaining
metafunctions
ongruence—based rewritigé

O

74

Demo 2

75

Some More Realistic Examples

e a simple stack machine model
e a simple expression language model
e 2 simple compiler

e proof that the compiler is correct

76

The Stack Machine

We will formalize a machine:
m . programs X environments X stacks

—

stacks

77

Sample program:

((LOAD A)
(PUSH 3)
(MUL))

78

Instruction set:

(LOAD war
(PUSH const)
(ADD)

(MUL)

(DUP)

No instruction will change the environment

(no STORE instruction).

79

Sample environment:

((A . 20)
(B . 30)
(X . =5)

(TEMP . 18))

80

Sample stack:

(push 1 (push 2 (push 3 nil)))
—
(1 2 3)

81

Expressions

We will compile simple expressions into this
language and prove that we did it correctly.

The expression language Is

<expr> := <variable>

<constant~>
<unary-application> |
<binary-application>

82

<unary-application>
= (- <expr>) |
(sq <expr>)

<binary-application>
= (<expr> + <expr>)
(<expr> - <expr>)
(<expr> * <expr>)

83

Obvious Criticisms

Everything is triviall

No STORE instruction.

No
No

Drogram counter.

No iteration or loops.

No object creation.

branch or conditionals.

84

No method invocation.

No exceptions or errors.

85

Response to the Criticism

| will show you a completely realistic model
when we're done with this one.

But for now | want you to really
understand what is involved in modeling
two computational paradigms and proving
their correspondence formally.

86

I'll follow “The Method” to do my proofs

and show you everything (except some
trivial “"abstract data type” work at the

bottom).

87

Demo 3

88

JVM Operational Semantics

Our “M6" model is based on an
implementation of the J2ME KVM. It
executes most J2ME Java programs
(except those with significant I/O or
floating-point).

M6 supports all CLDC data types,
multi-threading, dynamic class loading,

89

class initialization and synchronization via
monitors.

90

We have translated the entire Sun CLDC
API library implementation into our
representation with 672 methods in 87
classes. We provide implementations for 21

out of 41 native APIs that appear in Sun'’s
CLDC API library.

We prove theorems about bytecoded
methods with the ACL2 theorem prover.

91

The executable model is 160 pages of
ACL2. This doesn’t count over 500 pages

of data (the CLDC API) built into the
model.

This work is supported by a gift from Sun
Microsystems.

92

Java

]

.class

javac

—li

lisp

jvm2acl?2

)

Theorems

“pi(246)=123"

.) ‘‘pi(n)=n/2”

93

Demo 4

94

Key Research Problems

1. Automatic Invention of Lemmas and New
Concepts

2. How to use Examples and
Counterexamples

3. How to use Analogy, Learning, and Data
Mining

95

4. How to Architect an Open Verification
Environment

5. Parallel, Distributed and Collaborative
Theorem Proving

0. User Interface and Interactive Steering

7. Education of the User Community — and
Their Managers

96

8. How to Build a Verified Theorem Prover

97

Our Hypothesis
The “high cost” of formal methods
— to the extent the cost Is high —

is a historical anomaly due to the fact that
virtually every project formally
recapitulates the past.

98

The use of mechanized formal methods will
ultimately

e decrease time-to-market, and

e /ncrease reliability.

99

Conclusion

Mechanical reasoning systems are changing
the way complex digital artifacts are built.

Complexity not an argument against formal
methods.

It is an argument for formal methods.

100

References
Computer-Aided Reasoning: An Approach,
Kaufmann, Manolios, Moore, Kluwer Academic

Publishers, 2000.

Computer-Aided Reasoning: ACL2 Case Studies,
Kaufmann, Manolios, Moore (eds.), Kluwer

Academic Publishers, 2000.

http://www.cs.utexas.edu/users/moore/acl2

101

