Using ACL2 for Tree-Based Set Operations

Sets as Trees without Duplicates

Warren A. Hunt, Jr.
hunt@cs.utexas.edu

Computer Science Department
University of Texas
2317 Speedway, M/S D9500
Austin, TX 78712-0233

March, 2025



Sets as Trees

Previously, we defined a set as a list without duplicates. Access and update was
linear. We now consider tree-based set operations that can provide improved
performance.

(defun bstp (x)

(declare (xargs :guard t))
(if (atom x)
(null x)
(let ((sbt (cdr x)))
(if (atom sbt)
(null sbt)
(and (bstp (car sbt))
(bstp (cdr sbt)))))))

But, is this enough? What about the order?
And, what kind of order should we have?

Draw some example sets that will satisfy this syntax recognizer.



Ordered Sets as Trees

We need a way to specify tree order.
(defun << (x y)

(declare (xargs :guard t))
(and (lexorder x y)
(not (equal x y))))

(defun bst-ordp (x)

(declare (xargs :guard (bstp x)))
(if (atom x)
T
(let ((obj (car x))
(sbt (cdr x)))
(if (atom sbt)
T
(let ((1t (car sbt))
(rt (cdr sbt)))
(and (bst-ordp 1t)
(bst-ordp rt)
;3 Confirm that LT and RT "surround" 0BJ
(tr<<e 1t obj)
(e<<tr obj rt)))))))

Define recognizers tree<<e and e<<tr. Or, define your own tree-set recognizer.



Converter to List-Based Sets

As a sanity check, can we write a converter that takes a tree-based set and
produces a list-based set?

(defun bst-to-1lst (x)

(declare (xargs :guard (and (bstp x)

(bst-ordp x))))
(if (atom x)

nil
(let ((obj (car x))
(sbt (cdr x)))
(if (atom sbt)

(list obj)
(append (bst-to-1lst (car sbt))
(cons obj

(bst-to-1st (cdr sbt))))))))



Tree-Based Set Membership

To see a typical recursion, we define our membership test.

(defun bst-mbr (e x)

(declare (xargs :guard (and (bstp x)
(bst-ordp x))))
(if (atom x)
NIL
(let ((obj (car x))
(sbt (cdr x)))
(if (equal e obj)
T
(if (atom sbt)
NIL
(let ((1t (car sbt))
(rt (cdr sbt)))
(if (<< e obj)
;5 Search left or right...
(bst-mbr e 1t)
(bst-mbr e rt))))))))



Tree-Based Set Insertion

Given that our bstp recognizer requires any extension to be ordered requires
that we find a proper insertion place.

(defun bst-insrt (e x)
;; Insert element in BST tree.
(declare (xargs :guard (and (bstp x) (bst-ordp x))))
(if (atom x)
;3 Create new node in BST tree.
(list* e nil nil)
(let ((obj (car x))
(sbt (cdr x)))
(if (atom sbt)
;3 Insert element in BST tree.

(let ((1t (car sbt))
(rt (cdr sbt)))
(if (equal e obj)
;3 If element already in BST tree.

;3 Continue search in BST tree.
(if (<< e obj)

)



Does Insertion Create a Good Set? Is E a Member After Insertion?

Does insertion leave us with a good set? An ordered set?

(defthm bstp-bst-insrt
;; Syntax of BST-INSRT is OK.
(implies (bstp x)
(bstp (bst-insrt e x))))

(defthm bst-ordp-bst-insrt
;3 BST-INSRT produces well-formed set.
(implies (and (bstp x)
(bst-ordp x))
(bst-ordp (bst-insrt e x))))

After inserting E into set X, will we find it? Will A still be a member?

(defthm bst-mbr-bst-insrt
;; E is a member after its insertion
(bst-mbr e (bst-insrt e x)))

(defthm bst-mbr-a-mbr-insrt
;3 Item A is still a member after any insertion
(implies (bst-mbr a x)
(bst-mbr a (bst-insrt e x))))

Can you prove these lemmas?



Tree-Based Set Element Deletion

Can we remove an element from our set leaving it ordered?

(defun bst-del (e x)
"BST delete, if element E present, delete it from tree X."
(declare (xargs :guard (and (bstp x)
(bst-ordp x))))
(if (atom x)
nil
(let*x ((obj (car x))
(sbt (cdr x))
(1t (car sbt))
(rt (cdr sbt)))
(if (equal e obj)
;; Remove 0BJ
(if (atom sbt)
nil
;3 We have inferior nodes...
;; Finish defining this function.

)))))



Tree-Based Set Element Deletion, Properties
Do we have to delete all E items?

Can we establish the following?

(defthm bstp-bst-del
(implies (bstp x)
(bstp (bst-del e x))))

Does the deletion operation leave the set X ordered?

(defthm bst-ordp-bst-del
(implies (and (bstp x)
(bst-ordp x))
(bst-ordp (bst-del e x))))

The first property is syntactic. The second property concerns the resulting
element order.



Tree-Based Set Element Deletion, Properties

If we delete item E, does item A remain?

(defthm bst-mbr-bst-del-e
;; Item A still a member if different element deleted.
(implies (and (bstp x)
(bst-ordp x)
(not (equal a e)))
(equal (bst-mbr a (bst-del e x))
(bst-mbr a x))))

Will E remain a member after deleting item A?
Is deletion idempotent?
Were we careful enough in our specification of a well-formed tree?

Are there other properties that are missing? If so, what are they?



	Sets as Trees
	Ordered Sets as Trees
	Converter to List-Based Sets
	Tree-Based Set Membership
	Tree-Based Set Insertion
	Is E a Member After Insertion?
	Tree-Based Set Element Deletion
	Tree-Based Set Element Deletion, Properties
	Tree-Based Set Element Deletion, Properties

