Primitive ACL2 Datum Objects and Functions
Objects and Functions Talk

Warren A. Hunt, Jr.
hunt@cs.utexas.edu

Computer Science Department
University of Texas
2317 Speedway, M/S D9500
Austin, TX 78712-0233

January, 2026

Primitive ACL2 Functions
Here we investigate primitive ACL2 objects, constructors and access functions.

» The core of ACL2 is defined by 32 functions and the objects these
functions manipulate.

» ACL2 has five data types: numbers, characters, strings, symbols, and pairs.

v

ACL2 has 32 primitive functions that operate on ACL2 data objects.

» As a convention, ACL2 recognizes certain symbols — those that begin and
end with a * character — as representing constant values.

» For example, the symbol *three* can be associated by the ACL2
theorem-proving system with the number 3 by presenting the ACL2
theorem-proving system with:

ACL2 !>(defconst *three* 3)

Summary

Form: (DEFCONST *THREEx ...)

Rules: NIL

Time: 0.00 seconds (prove: 0.00, print: 0.00, other: 0.00)
THREE

ACL2 !>*threex*

3

ACL2 Primitive Functions
Here are the ACL2 pre-defined function symbols:

ACL2 !>(strip-cars *primitive-formals-and-guards*)
(ACL2-NUMBERP ;; Recognizes all numbers, Later
BAD-ATOM<= ;; Later
BINARY-*
BINARY-+
UNARY--
UNARY-/
<
CAR
CDR
CHAR-CODE
CHARACTERP
CODE-CHAR
COMPLEX ;; Complex numbers, Later
COMPLEX-RATIONALP ;; Complex numbers, Later
COERCE
CONS
CONSP

ACL2 Primitive Functions, continued

DENOMINATOR ;; Rational numbers, Later

EQUAL

IF

IMAGPART ;; Complex numbers, Later
INTEGERP

INTERN-IN-PACKAGE-OF-SYMBOL ;; Packages, Later

NUMERATOR ;; Rational Numbers, Later
PKG-IMPORTS ;; Package (naming) system, Later
PKG-WITNESS ;; Package (naming) system, Later
RATIONALP ;; Rational numbers, Later
REALPART ;; Complex numbers, Later

STRINGP

SYMBOL-NAME ;; Packages, Later
SYMBOL-PACKAGE-NAME ;; Packages, Later

SYMBOLP)

Initially, we will confine ourselves to the functions without comments.

Constructing a Logic is Subtle

Defining a logic is a subtle issue as it involved defining all of the object,
functions, and their meanings.

Certainly, it is possible to create something inconsistent — meaning that through
some operation(s), one can demonstrate something that should not be possible.

In ACL2, the upper-case symbols T and NIL are reserved; these distinct
symbols represent true and false, respectively.

An axiom of ACL2 is that distinct symbols are not equal.

But, imagine that we could prove, by using the axioms (the given truths) and
the rules of inference (the means to conclude new truths from existing truths),
that T and NIL were the same.

This would be an inconsistency in the definition of the logic, and would render
ACL2 useless.

We will assume that ACL2 is defined in a logically-consistent manner.

Demonstrating that ACL2 is inconsistent or somehow flawed would certainly
raise one’s grade!

“Incestuous” Core Logic Definitions
On faith, we accept that pairs are created by the CONS function.
On faith, we will accept that we have the natural numbers.

Instead of using sticks (or any other objects) to represent natural numbers, we
will abbreviate them as 0, 1, 2, and so on.

Initially, one may think of ACL2 datum objects as being created from natural
numbers, pairs, and wrapper functions (with restricted arguments) into other
ACL2 datum objects.

For example, a character can be created by wrapping a natural number
(between 0 and 127, inclusive) with the code-char primitive.

ACL2 !'> (code-char 97) ;5 "Wrap" 97 into a character
#\a

ACL2 !'>(char-code #\a) ;3 Peel off the wrapper

97

Strings can be created by wrapping a right-associated, list of characters with
the coerce primitive function:

ACL2 !'>(coerce (list #\a #\b #\c) ’string)
Ilabcll

Aggregating a Collection of ACL2 Objects into a Proper List

We will use CONS pairs to create collections of ACL2 objects, recognized by the
ACL2 TRUE-LISTP function.

0 <--- top-level tree node (a CONS)
left (the CAR) --—> / \
/ \ <--- right (in Lisp parlance, the CDR)
first item ---> a 0 <--- the next pair (another CONS)
/' \

second item —--—-> b 0

o and so on...

0 <--- the last (CONS) pair

/ \ conventional
last item ---> b4 NIL <--- end

where each item (a, b, ..., z) are the elements.

Creating a String
Given a CHARACTER-LISTP object, we can create a string.

:pe character-listp
v -8355 (DEFUN CHARACTER-LISTP (L)
(DECLARE (XARGS :GUARD T :MODE :LOGIC))
(COND ((ATOM L) (EQUAL L NIL))
(T (AND (CHARACTERP (CAR L))
(CHARACTER-LISTP (CDR L))))))

ACL2 !'>:pe characterp

CHARACTERP is built into ACL2 without a defining event. See :DOC
CHARACTERP. See :DOC ARGS for a way to get more information about
such primitives. See :DOC primitive for a list containing each
built-in function without a definition, each associated with its
formals and guard.

ACL2 !>

Strings can be created by wrapping a right-associated, list of characters with
the coerce primitive function:

ACL2 !>(coerce ’(#\a #\b #\c) ’string)
||abc||

	Primitive ACL2 Objects and Functions
	ACL2 Primitive Functions
	ACL2 Primitive Functions, continued
	Constructing a Logic is Subtle
	``Incestuous'' Core Logic Definitions
	Aggregating a Collection of ACL2 Objects into a Proper List
	Creating a String

