Basic ACL2-Lisp Objects and Functions
ACL2 Lecture 2

Warren A. Hunt, Jr.

hunt@cs.utexas.edu

Computer Science Department
University of Texas
2317 Speedway, M/S D9500
Austin, TX 78712-0233

January, 2026



Lists, Concatenation, Reversing, and Tracing

In this lecture, we investigate some basic list processing functions.

» We define an ACL2 predicate that recognizes a list integers.
» We specify the APP concatenation function.
» We introduce REV, a function to reverse a list.

» We use TRACE$ to investigate the APP and REV function.

At the end, we provide some challenge problems.



Aggregating a Collection of ACL2 Objects
We will use lists to create collections of ACL2 objects.

0 <--- top-level tree node (a CONS)
left (the CAR) --—> / \
/ 0\ <--- right (in Lisp parlance, the CDR)
first item ---> a 0 <--- the next pair (another CONS)
/\

second item --——> b 0

o and so on...

0 <--- the last (CONS) pair

/ \ conventional
last item ---> 4 NIL <--- end

where each item (a, b, ..., z) are the elements.



A Proper List

As we have only constructor (pairing) function, CONS, we are obliged to use it
for all of our data structures.

That is, all ACL2 data objects are nothing more than CONS trees with atoms at
the tips.

A well-formed, right-associated list (another Lisp idiom) is often called a proper
list, but is known in ACL2 as TRUE-LISTP.

(defun true-listp (x)
;3 If pair recognized
(if (comsp x)
;5 then, check the right branch
(true-listp (cdr x))
;; otherwise, require NIL
(eq x nil)))

Remark: in running text, we write ACL2 terms in upper case because Lisp
up-cases everything.



The LENgth of a List

Given the idiomatic use of right-associated CONS tress to represent collections
of items, we define a way to count the number of items.

That is, all ACL2 data objects are nothing more than CONS trees with atoms at
the tips.

(defun len (x)
;; If pair recognized
(if (comsp x)
;; then, increment and continue
(+ 1 (len (cdr x)))
;; otherwise, return zero

0))



Appending Two Lists
Often, we want to combine the elements of one list with another.

Our lists are ordered, so we have to make a decision as to how we wish to
combine two lists. For now, we just attach one list to the front of a second list.

(defun not (x) (if x NIL T)
(defun atom (x) (not (comsp x)))
(defun app (x y)
;3 If pair recognized
(if (atom x)
;; then, just return Y

y

;; otherwise, make a new pair

(cons
;; of the first item in X

(car x)
;; and APP of the rest of X with Y

(app (cdr x) y))))

To define a recursive function, we have to demonstrate that something gets
smaller with each recursive call.

So, what gets smaller?



Associativity of APP

When we have defined something, we often wish to consider properties of the
functions we have defined.

For example, is APP associative?

(equal (app (app x y) z)
(app x (app y 2)))

Let's run some simulations and see what happens.

Can we establish this relationship once and for all?



A Gentle Introduction to ACL2

Moore's A Gentle Introduction to ACL2 Programming can now be investigated.

One thing to note is Moore's use of the COND macro.

:trans (cond ((atom x) 0)
((natp x) (- x))
((symbolp x) (comns x x))
((characterp x) (char-code x))

(t x))
==>
(IF (ATOM X)

0

(IF (NATP X)
(UNARY-- X)
(IF (SYMBOLP X)

(CONS X X)

(IF (CHARACTERP X)
(CHAR-CODE X)
NN



Can you REVerse a List with APP

Here is a challenge problem: Using APP as a helper function, can you define a
function that will reverse a list?

If so, what will its time complexity be?

Can we use TRACE$ to help figure this out?



	Lists, Concatenation, Reversing, and Tracing
	Aggregating a Collection of ACL2 Objects
	A Proper List
	The LENgth of a List
	Appending Two Lists
	Associativity of APP
	A Gentle Introduction to ACL2
	Can you REVerse a List with APP

