
Integrating FV Into Main-Stream Verification: The IBM Exper ience

Jason Baumgartner
IBM Corporation

baumgarj@us.ibm.com

Thanks to: Viresh Paruthi, Hari Mony, Wolfgang Roesner

November 12, 2006

http://www.research.ibm.com/sixthsense

1



Overview� Intro to Hardware Models and Verification Methods� Functional Verification at IBM

– Can a High-End Processor be Fully Formally Verified?
– Non-Intrusive Formal Verification� Scalability in FV

– Semi-Formal Verification
– Multi-Algorithmic Reasoning
– SixthSense: Transformation-Based Verification (TBV)� Reusing Sim Testbenches in FV� SixthSense Applications

2



Intro to Hardware Models
and Verification Methods

3



Hardware Verification Tasks� Numerous distinct verification tasks in the hardware design flow:

1. Checking equivalence of to-be-fabricated circuit to the HDL model

– Necessary to validate synthesis� Since functional verification performed on HDL

– Combinational equiv checking (CEC) is the most prevalent
industrial FV application� Applicable only to 1:1 latchpoint equivalent designs� Emerging sequential equiv checking (SEC) technologies lift this

restriction� CEC / SEC also useful for a variety of other purposes

– Refer to Thursday presentation by Paruthi

4



Hardware Verification Tasks� Numerous distinct verification tasks in the hardware design flow:

2. Functional implementation verification� Does the implementation satisfy its specification?� E.g., adherence of HDL to (micro)architecture properties

3. Protocol verification� Operates on abstract models of system, not implementation� Does the architecture implement the necessary functionality?� Are the protocols (memory coherency, bus protocols) correct?

4. : : :
5



Hardware Models� Focus of this presentation: timing-independent functional verification� HW can be modeled using HDL; as a netlist; as an automaton� Reason about signals over time� Signals driven by

– Combinational logic (AND gates, inverters) has 0 delay

– Sequential elements (registers, latches) evaluate every time-step� Time refers to smallest observable granule of logic evaluation,
dictated by clocking of sequential elements

6



Modeling Flexibility� Allows direct modeling of sequential hardware� Many other types of problems may be modeled in this way

– Protocols may be modeled using sequential, combinational
primitives

– Timing verification may be modeled using these primitives� To account for delays through combinational gates, model with
both sequential and combinational primitives

7



Verification Testbenches� We focus on verification of safety properties

– Regardless of specification language, can be synthesized into
checker logic� Typically requires a driver encoding input assumptions

– Can be specified as random logic to compose onto the design, or
as constraints� Typically requires an initial state specification

– Initial states dictate reachable states

8



Verification Testbenches

Tool

PROPERTIES

DRIVER

Pass or Fail

DESIGN
NETLIST

COMPOSITE

INITIALIZATION

Verification

Testbench semantics: Does there exist a trace from an initial state,
consistent with driver, which violates any property?

9



Simulation� Numerous algos may be used to address the verification problem� Simulation is the most predominantly used algorithm

- Validates the design against specific sequences of input stimuli
- Non-exhaustive: do not confuse with simulation relation

- Useful for falsification only; proof-incapable� Suffers the so-called coverage problem

+ Evaluation against explicit tests enables high scalability

Bug

Random Sim

Unexplored
State Space

10



Simulation� Sim specs can be written using a variety of languages

– PSL, SVA are commonly-used assertion languages

– IBM often uses the VHDL-based testbench language BugSpray� Augmented with HDL, PSL asserts

– Simulation, however, often uses C/C++ type of languages� These type of languages cannot be readily reused in FV

11



Simulation� Despite advances in FV, sim retains predominant status due to

– Scalability: used for tasks too complex for FV� E.g., dispatch-to-completion checks for high-end processors

– Legacy: tools, skills, methodology using sim are well-established

– Reuse of verification IP: takes effort to re-write sim specs in a
formal language

12



Model Checking

+ Proof-capable, unlike simulation

+ Much more adept at finding corner-case bugs

+ Automated: easy to use, for smaller problems

- Substantial expertise, manual effort required for larger designs� Typically only applicable at block level� More difficult to cover (micro-)architectural properties� A different type of coverage problem

+ May be alleviated by abstraction, reduction algos

+ Semi-formal algos stretch capacity for bug-hunting

13



Theorem Proving

+ Proof-capable; can be much more scalable than model checking

- Though more difficult to use; often not a push-button solution

+ Can be used as front-end to model checking

+ Light-weight theorem proving can be fairly easy to use

+ Theorem prover used to decompose intractable high-level proof

- IBM is currently not extensively using theorem provers

* Fully-automated frameworks are the focus of this presentation

* Though - refer to Wednesday’s presentation by Sawada&Reeber

14



Functional Verification at IBM

15



Functional Verification at IBM� Simulation remains the most prevalent verification platform

– Scalable; flexible specification languages; legacy reasons� Model checking began to make an impact at IBM � 10 years ago

– RuleBase, developed by IBM Haifa Research Laboratory

– Used by a variety of projects, including POWER3-POWER6

– Quickly demonstrated its ability to expose corner-case bugs

16



Functional Verification at IBM� Model checking has been used as a complement to simulation� FV team much smaller than sim team

– Not enough FV resources to attempt to verify entire design

– Or even to formally touch each design component� Verif + design teams prioritize among design components

– Choose to deploy FV to most complex logic; hardest to test; ...� Also use FV for fire-fighting to cope with late design bugs

17



Functional Verification at IBM� Model checking was very effective at wringing out corner-case bugs

– Many projects will estimate saving �1 chip fabrication due to FV� Became clear that FV was a critical technology to be tapped into, to
some extent

– But how much?

18



Complexity of High-End Processors� POWER4 processor

– 1.5 million lines of VHDL 174 million transistors� Moore’s law: complexity increases for POWER5, POWER6, : : :
– Increase in # transistors / chip contributes somewhat to complexity� Modularity alleviates complexity / transistor ratio� Integrate N identical �proc cores on chip� Increased RAM size alleviates complexity / transistor ratio

– Increase in speed contributes significantly to HDL complexity� CEC methodology requires 1:1 latch correspondence between
circuit, HDL

19



Complexity of High-End Processors� CEC methodology forces HDL to acquire circuit characteristics

– Word-level operations, isomorphisms broken by self-test logic� Self-test logic: much more intricate than mere scan chains� And reused for functional obligations: initialization, reliability, : : :� Refer to Monday presentation by Glökler

Scan connection

Functional connection

20



Complexity of High-End Processors� CEC methodology forces HDL to acquire circuit characteristics

– Word-level operations broken; bit-level control coalesced due to
synthesis requirements� Use of common building-blocks alters vector bundling� E.g., project may provide highly-optimized 8-bit arrays

– Placement issues: redundancy added to HDL� E.g. lookup queue needs to route data to 2 locations which
reside in different areas of chip� Lookup queue may need to be replicated

21



Complexity of High-End Processors� CEC methodology forces HDL to acquire circuit characteristics

– Timing issues: arithmetic ops pipelined asymmetrically� E.g. due to propagation delays from LSB to MSB

– Power-savings logic complicates even simple pipelines� Design HDL becomes difficult-to-parse bit-level representation� Industrial FPU example: 15,000 lines VHDL vs. 500 line ref model� Even RAM implementations tend to become very complex

– Refer to Thursday presentation by Jacobi for more examples

22



Can a High-End Processor be Fully Formally Verified?� SMT, word-level techniques are difficult to apply

– Abstraction inherent in uninterpreted functions, removal of
bitvector nonlinearity is lossy

– More critically: difficult to find places to attempt such abstractions� Need to operate on a more abstract model?

– Developing, maintaining such a model is very expensive

– Not clear that high-level proofs would be feasible even with such
an abstraction...� But would certainly help proof, and even falsification, efforts

23



Can a High-End Processor be Fully Formally Verified?� Can we efficiently obtain, maintain a more abstract model?� Emerging SEC technologies: a promising direction

– Can prove correspondence of abstract vs. CEC model� Else, we are not really verifying the implementation...

– Eliminate the need for CEC-compatible HDL?
+ Directly correspond abstract model to circuit
+ Saves development effort: simpler functional abstract model

- Though requires greater synthesis sophistication� Automated synthesis inadequate for POWER-style design

- And still requires validation of self-test logic� To be done on circuit model?

24



Can a High-End Processor be Fully Formally Verified?� Rigorous assertion-based, compositional methodologies may also be
used to “scale” FV to larger designs

– Adequate assertions may enable an inductive proof� And imply a proof decomposition strategy� Though no verif technique has scaled near a POWER processor� Tend to be very manually intensive for larger designs

25



Can a High-End Processor be Fully Formally Verified?� Simulation is easier to deploy

– No need for abstract model
– No need for manual decomposition
– No need for copious assertions� Though sim has its own limitations and drawbacks!

– Incomplete; misses bugs
– Methodologies to strive for high coverage are time-consuming in

themselves� Nonetheless: skills, experience, tools, perceived risk are all reasons
that sim remains predominant validation methodology

26



Can a High-End Processor be Fully Formally Verified?� Full FV of this type of design requires expensive, risky paradigm shift

– Likely a very good idea, though likely needs to be eased into...� How can we ease into a wide-spread FV paradigm?

– Offer tangible return on investment (ROI) and resource savings� Worst outcome: person-months spent developing formal specs,
merely to choke FV tool

– Enable non-experts to leverage the technology� Cannot expect large verif+design team to all have PhDs in FV!

– Do not require a radical change in design paradigm to enable FV� Need for reuse of IP, skills, tools, methodologies is a high barrier

27



Non-Intrusive Formal Verification� Rather than push (and wait) for a giant leap toward adoption of full-
blown FV, our philosophy is non-intrusive� Ease of use

– People accept the fact that they need to set up sim testbenches
– Goal: make formal “as easy” to use as sim� Requires scalability+automation, without altering design methodology

– Lessens risk of negative ROI to develop a formal spec, just to
choke FV tool

– Lowers required expertise for large-scale testbenches
– Enables reuse of specs across FV, sim� Refer to Tuesday panel discussion by Roesner

28



No, we’re not Crazy� Rather than push (and wait) for a giant leap toward adoption of full-
blown FV, our philosophy is non-intrusive� Improving design methodology through demonstrated cost effectiveness
is a slow but sure byproduct� And there are increasingly cases of systematic prethought proof
methodologies

– Which we wholeheartedly foster!

29



Scalable FV

30



So - how do we achieve scalability+automation?

1. Tuning the system for importing and manipulating LARGE designs

2. Integrate falsification as well as proof threads� Semi-formal falsification improves ROI of formal spec

3. Integrate a variety of algorithms� Every problem is different� Different proof algorithms have different strengths / weaknesses� Abstraction algorithms can yield HUGE reductions� Reduction / transformation algos can yield dramatic reductions

31



Semi-Formal Verification� A mechanism to leverage formal algos in a resource-bounded way� Refers to a hybrid search paradigm

– Often leverages simulation to reach deep states
– Formal search triggered from deep states
– Resource-bounded formal search amplifies simulation� Many intricacies in how to best orchestrate these algos

Bug

Random Sim

Exhaustive
Search

Completed

Unexplored
State Space

32



Semi-Formal Verification� Cynical view: merely prolongs the agony of sim-based methodology

– Since proof-incapable in itself� However, very useful in practice

– Extends bug-hunting power of BMC to deep bugs in large designs
– We view this as an enabling technology to wider-spread FV� Critical to convince people to develop formal vs. sim-only specs� Critical to disperse formal spec development, FV deployment� Even if a rigorous proof methodology is to be attempted, SFV

useful to wring out higher-level bugs earlier

33



Proof Algorithms� A robust set of proof engines is central to a formal toolset� BDD-based reachability is a cornerstone proof technique

– Prone to memout above a few hundred state variables� Often requires reduction / abstraction to bring down design size

– Despite advances in complete SAT-based techniques, BDDs are
often superior on reduced designs� SAT-based interpolation can outperform BDDs in cases

– Typically shallow, complex designs

34



Proof Algorithms� Induction is a critical proof technique

– Simplest variant: can “any state which does not violate property”
transition to one which violates property?� Fast and scalable: SAT check on unfolded design

– A robust tool needs to leverage induction to avoid excessive
resource consumption by falsification, reachability threads� Though unfortunately, often inconclusive

– Not reachability-based: cannot discern valid from unreachable fail

– Even with complete variant, fine line: inductive vs. intractable� Since completeness pushes from NP to PSPACE

35



Proof Algorithms

1. k-induction: can “any state which does not violate property within k
time-frames” transition to one which violates property in k + 1?

+ Tightens overapproximate starting states of simple induction

+ Can be made complete by unique-state constraints

- Though may require intractably large k
- And unique-state constraints dominate cost of SAT check

“Checking Safety Properties Using Induction and a SAT-Solver” FMCAD00

“Temporal Induction by Incremental SAT Solving” BMC03

36



Proof Algorithms

2. van Eijk-style induction

– Try to concurrently prove sets of invariants, e.g. register
equivalences at time 0

– If any invariant cannot be inductively proven, prune from the set
and repeat proof attempt

– Once terminates, can leverage proven invariants in various ways� Often a stronger proof technique than k-induction, since invariant
set prunes more unreachable states than property alone� Can be combined with k-induction

“Sequential equivalence checking without state space traversal” DATE98

“SAT-Based Verification without State Space Traversal” FMCAD00

37



Proof Algorithms� We have found van Eijk-style induction, augmented with a richer set
of algorithms, to be a very powerful proof technique

– Generalizes inductive proof frameworks

1. Use semi-formal analysis to guess gate-equivalence (modulo inversion)

2. Leverage an arbitrary set of algos to prove suspected equivalence� Induction filters out easy cases; abstraction / reduction then
reachability / interpolation discharge the rest

3. If any candidates cannot be proven, refine and goto 2; else break

“Exploiting Suspected Redundancy without Proving It” DAC05

38



Transformation Algorithms� Two classes: property-preserving reductions and abstractions� Both are extremely useful to proofs as well as falsification efforts� We will now discuss various example transformation algorithms

– These are some of the transforms we use within SixthSense

39



Combinational Optimization Algorithms� BDD- and SAT-sweeping, to merge gates equivalent modulo
inversion in arbitrary state

C

B

A

D

i1i2i3B

A

D

i1i2i3

o3o2
o1

o3o2
o1

� Can be enhanced through leveraging observability don’t cares
“Robust Bool. Reasoning for Equiv. Checking and Functional Pro. Verif” TCAD02

“Dynamic T.R. Simplification for Bounded Prop. Checking” ICCAD04

“SAT Sweeping with Local Observability Don’t-Cares” DAC06

40



Combinational Rewriting Algorithms� Logic rewriting algorithms, to simplify logic expressions

B

A

D

i1i2i3

o3o2
o1 B’

D o3o2
o1i2

i1i3� Lowering gate count greatly enhances SAT-based reasoning� Also tends to enhance reduction potential of other algorithms
“DAG-Aware Circuit Compression For Formal Verification” ICCAD04
“DAG-aware AIG rewriting: A fresh look at combinational logic synthesis” DAC06
“Factor Cuts” ICCAD06

41



Sequential Redundancy Removal� Use van Eijk induction to identify gates equivalent modulo inversion

– Unlike combinational variant, performs true sequential analysis
– Greater reduction potential at a greater cost� The resulting invariants correlate to safe merges� Simplifies design for subsequent reasoning

– A further generalization of induction

“SAT-Based Verification without State Space Traversal” FMCAD00

“Exploiting Suspected Redundancy without Proving It” DAC05

42



Min-area retiming� Relocate registers across gates to minimize their count� Enables dramatic reduction in register count

– Especially for highly-pipelined designs� Converts k-th invariants, which hold only after time k � 1, to true
invariants

“Transformation-Based Verification Using Generalized Retiming” CAV01

43



Min-area retiming

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

(a) (b)

(c) (d)

−1

−1

−1

−1
−1

−2

−1

−1

−2

−2

−2

−3

−2

44



Localization� Discards unnecessary logic by replacing gates with primary inputs

– Often yields dramatic reductions to netlist size� Overapproximate abstraction: may yield spurious fails

– Resolved by refinement, adding logic back to the abstraction

“Counterexample-Guided Abstraction Refinement” CAV00
“Automatic Abstraction without Counterexamples” TACAS04

Localizationcut-points

t

45



Input Elimination� Identifies a cut in the fanout of original inputs� Replaces that cut with trace-equivalent logic, with fewer inputs
– Input elimination helps BDD-based analysis
– Often reduces gate, register count as well

Cut to be reparameterized

In
pu

ts

I 1;:::;
I 10

R
ep

ar
am

et
er

iz
ed

in
pu

ts

I0 1;:::;I
0 3

Replacement logic

“Maximal Input Reduction of Sequential Netlists via Synergistic Reparameterization
and Localization Strategies” CHARME05

46



Target Enlargement� Replace property p by states which violate p within k transitions� Makes falsification easier for semi-formal search

– Eliminates probability bottlenecks during last k transitions
– Earlier falsification is also beneficial� May also reduce register count; enhance inductivity

”Bug” States

Enlarged Target
States

Initial State

“Property Checking via Structural Analysis” CAV02
“Increasing the Robustness of BMC by Computing Lower Bounds on the

Reachable States”, FMCAD04

47



State-folding Transformations� Sometimes referred to as phase abstraction

– Unfold next-state functions to reflect k transitions
– Enables elimination of oscillating clocks
– Reduces state element count with k-phase latching schemes

oscillator

“Automatic Generalized Phase Abstraction for Formal Verification” ICCAD05

48



Property Decomposition� If two properties are isomorphic, we only need to solve one

– If one is provably correct, the other must be as well
– If one falsified, can map counterexample to the other by input

substitution� Can furthermore combine with disjunctive property decompositiona(0; : : : ; n) 6� b(0; : : : ; n) rewritten as

Wni=0 ai 6� bi
– Each bit-slice can be checked independently

– And, if isomorphic, checking 1 suffices to solve the rest!� Isomorphisms exist in many designs, though often requires
sequential redundancy removal to prune iso-breaking self-test logic

“Structural Symmetry and Model Checking” CAV98

49



Sequential Rewriting� Eliminate registers expressible as deterministic functions of others

– Based upon approximate reachability� Complementary to retiming

– Gated-clock 
lkg entails feedback loops freezing registers in place

f f o3
o1

o2


lkg
i2

i1i1
i2

o1
o2

o3
lkg
“Functional dependency for verification reduction” CAV04

50



Transformation Algorithms assist Proofs� Reduction in state variables greatly helps enable reachability analysis� “Tightening” state encoding through redundancy removal, retiming
enhances inductivity

– Inductive proof analyzes 2N states, minus some that lead to fails
– Transformations themselves prune some unreachable states� Reduction alone may solve problems

– After all, an unreachable property is merely a redundant gate...

“Transformation-Based Verification Using Generalized Retiming” CAV01

“Exploiting state encoding for invariant generation in induction-based property
checking” ASPDAC04

51



Transformation Algorithms assist Falsification� The smaller the netlist, the faster algos like sim within SFV run� A smaller netlist often yields exponential improvements to SAT� Reducing sequential netlist creates amplified improvement to SAT

– Simplify once, unfold many times

– Transforms enable deeper exhaustive search

“Dynamic T.R. Simplification for Bounded Property Checking” ICCAD04

“Exploiting Suspected Redundancy without Proving It” DAC 2005

52



Transformation Algorithms assist Falsification� Reduction of sequential netlist, prior to unfolding, is very useful� Further reducing of the unfolded netlist is also beneficial

– Unfolding opens up additional reduction potential

– We leverage a hybrid SAT solver which integrates rewriting and
redundancy removal algos with core SAT search� All reasoning is time-sliced for global optimality

“Robust Bool. Reasoning for Equiv. Checking and Functional Pro. Verif” TCAD02

“Improvements to Combinational Equivalence Checking” ICCAD06

53



Transformation Algos assist Transformation Algos!� Certain synthesis-oriented transform synergies have been known
more than a decade

– Retiming and resynthesis

– Resynthesis enables more optimal register placement for retiming

– Retiming eliminates “bottlenecks” for combinational resynthesis� Many verification-oriented transforms have been discovered more
recently

54



Transformation Algos assist Transformation Algos!� Localization introduces cut-points, enabling peripheral retiming� Phase abstraction eliminates feedback loops which prevent retiming� Localization and retiming enhance potential for input elimination� Input elimination simplifies logic for localization and retiming� Redundancy removal reveals isomorphisms hidden by self-test logic� Rewriting algos open up greater reduction potential for other rewriting
algos

55



SixthSense� SixthSense is a system of cooperating algorithms

– We already introduced several of them:� Transformation engines� Falsification engines� Proof engines� Transformation-based verification framework

– Modular engine API enables arbitrary sequencing

– Exploits maximal synergy between various algorithms� Incrementally chop problems into simpler sub-problems until
tractable for formal reasoning

56



SixthSense

140627 registers

Checker
Driver +
Design +

SixthSense

57



SixthSense

140627 registers

119147 registers

Combinational
Optimization

Engine

Checker
Driver +
Design +

SixthSense

58



SixthSense

Retiming
Engine

140627 registers

119147 registers

Combinational
Optimization

Engine

Checker
Driver +
Design +

100902 registers

SixthSense

Problem decomposition via
synergistic transformations

59



SixthSense

Retiming
Engine

140627 registers

119147 registers

Combinational
Optimization

Engine

Checker
Driver +
Design +

100902 registers

Engine

Localization
132 registers

SixthSense

60



SixthSense

Retiming
Engine

140627 registers

119147 registers

Combinational
Optimization

Engine

Checker
Driver +
Design +

100902 registers

Engine

Localization

Engine

132 registers

Reachability

SixthSense

61



SixthSense

Retiming
Engine

140627 registers

119147 registers

Combinational
Optimization

Engine

Checker
Driver +
Design +

100902 registers

Engine

Localization

Engine

132 registers

optimized, retimed,
localized trace

Reachability

SixthSense

62



SixthSense

Retiming
Engine

140627 registers

119147 registers

Combinational
Optimization

Engine

Checker
Driver +
Design +

100902 registers

Engine

Localization

Engine

132 registers

optimized, retimed
trace

optimized, retimed,
localized trace

Reachability

SixthSense

suppressed

Note: if result cannot be
consistently lifted, it must be

63



SixthSense

Retiming
Engine

140627 registers

119147 registers

Combinational
Optimization

Engine

Checker
Driver +
Design +

100902 registers

Engine

Localization

Engine

132 registers

optimized trace

optimized, retimed
trace

optimized, retimed,
localized trace

Reachability

SixthSense

64



SixthSense

140627 registers

Combinational
Optimization

Engine

Checker
Driver +
Design +

Engine
Reachability

Trace consistent
with original design

SixthSense

All results are in terms of original design

completely transparent to the user
These transformations are

65



Synergistic Transformations
RING Initial COM EQV RET COM CUT COM EQV BMC 192
Registers 50988 20768 2320 1932 1930 1930 1930 1841 FAIL
Gates 412804 137588 15434 18114 15691 15467 15086 14194 24028s
Inputs 5313 2730 572 1419 1172 851 850 850 2.5GB

IU Initial COM EQV LOC COM MOD LOC CUT EQV
Registers 239898 141987 71788 50404 50033 37022 593 582 PASS
Gates 1154650 565513 299243 202935 198512 127826 2356 1905 2378s
Inputs 5548 3020 3018 1775 1775 2905 605 370 2.9GB

MMU Initial COM LOC CUT LOC CUT RET COM CUT RCH
Registers 124297 67117 698 661 499 499 133 131 125 PASS
Gates 763475 397461 9901 8916 5601 6605 16381 4645 1300 1206s
Inputs 1377 162 1883 809 472 337 1004 287 54 436MB

COM comb. optimization / rewriting EQV sequential redundancy removal
RET retiming CUT input elimination
MOD state folding BMC bounded model checking
RCH reachability

66



Transformation Algo Power� Redundancy is quite prevalent in high-end designs

– E.g., lookup queue replication due to placement issues� Redundancy also arises between design and testbench

– Reference-model type of verification may be viewed as SEC� High-performance designs greatly benefit from retiming, state-folding

– Though these transforms are useful on virtually all designs

67



Why is TBV so Effective?� Property checking is PSPACE-complete

– Casting proof as redundant gate detection does not alter this fact
– Clearly, certain transforms are also PSPACE-complete� Many transforms require only polynomial resources

– Retiming, phase abstraction, : : :� Many others can be applied in resource-bounded manner

– Redundancy removal, sequential rewriting, input elimination, : : :

– Trade reduction potential for efficient run-time

68



So, Why is TBV so Effective???� Different algorithms are better-suited for different problems

– Feed-forward pipeline can be rendered combinational by retiming� NP-complete problem hiding in a PSPACE-complete “wrapper”� More generally: transforms may eliminate facets of design which
constitute bottlenecks to formal algorithms

– Often a variety of logic within one industrial testbench� Arithmetic for address generation� Queues for data-routing� Arbitration logic to select among requests

– Intuitively, optimal solution may rely upon multiple algos

69



Why TBV is So Effective� Optimal solution often requires a time-balance between algorithms

– Algorithmic synergy is key to difficult proofs

– Like time-sliced integration of redundancy removal and SAT

– Given complexity of property checking, the proper set of algos
often makes the difference between solvable and intractable� Transforms have substantially simplified almost every problem we

have encountered

– Though clearly a limit to reduction capability of a given set of
transforms

– Then rely upon a strong proof + falsification engine set

70



Is it Difficult to Find an Optimal (Enough) Algo Flow?� Countably infinite number of algo configurations� For the most difficult problems, may require dozens of nested engines� Finding the best-tuned config is a very difficult problem� How can we make this technology as easy to use as sim?

– Cannot require users to learn about algos
– Cannot require people to hand-tune configs

71



Automation in TBV� SixthSense users ask for assistance tuning configs, if default run
does not solve problem� We could not pre-package a specific config set as effective as our
expert hand-tuning

– Customization of configs necessary for difficult problems
– Yet - the “algo” used to manually tune configs not too complex...� Solution: develop expert system engine to automate config
experimentation, customization

– We still teach rules to the expert system (and vice versa)
– Though expert system substantially reduced need for hand-tuning

“Scalable Automated Verification via Expert-System Guided Transformations”
FMCAD04

72



Reusable Testbenches

73



Increasing Verification ROI� Human resources are the most expensive aspect of HW design

– Tightening resources necessary to sustain any business� Verification is increasingly becoming dominant factor

– Expensive to have 2 people specify same design (1 sim, 1 formal)

– Goal: reuse spec for both domains

– Reuse is cost-effective

– Also enables sim team, designers to write formal specs

74



Sim / (S)FV Testbench Reuse� Requires scaling to unit-level testbenches

– More meaningful than block-level testbenches� Better-documented interfaces to drive� More encompassing properties to check

– Verify functionality vs. verify blocks

– More cost-effective� Fewer testbenches necessary to cover design� Refer to Tuesday panel discussion by Roesner

75



Testbench Reuse vs. Proof Strategy� Reusable TBs developed for “ease of specification” vs “ease of proof”

– If proofs vs. SFV is (realizable) goal, is this wasted effort?� High cost associated with manual decomposition of complex proofs

– SFV, multi-algo proof solution is very powerful to address

– Falsification wrings out early bugs quickly

– Proofs are also often possible even on large testbenches� When proofs go through, no need for manual decomposition!� Else, manual decomposition done after wringing out bugs with SFV

76



Scaling to Sim-Sized Testbenches� Scaling to sim-sized testbenches has many advantages� However, even with SFV and multi-algo solution, still falls short of
sim-sized testbenches

– Sim can be done at �proc core level, chip level, system level!

– Sim tricks like logic folding / parallel evaluation, abstract RAM
representation, : : : difficult to exploit in unbounded model checking� Much room for improvement in automated (S)FV technologies

– HW verification is not a solved problem!� Refer to Thursday presentation by Jacobi

77



SixthSense Applications

78



SixthSense Applications

1. Sequential equivalence checking

– IBM uses Verity for CEC

– SixthSense used for SEC� Validate sequential optimizations for timing, power, : : :� Check conditional equivalence between design evolutions� Quantify, validate late design fixes

– Saves verification resources; enables greater design optimality

– Refer to Thursday presentation by Paruthi

79



SixthSense Applications

2. Designer-level applications

– Assertion-based verification

– SEC for exploring optimal design space

– Leveraging FV feedback for design optimization� Unreachable states; redundancy; power optimization potential

– Scalability important in these applications� Testbenches created with little thought of “proof strategy”� Users have lesser experience with FV, toolset� RuleBase also used for such applications

80



SixthSense Applications

3. Block-level verification

– Traditional FV deployment

– Dedicated testbenches, often developed by verification team

– Due to scarce resources, blocks selected by prioritization� Most complex� Recent / late modifications� Hardest to test� In response to bug curve

– Sometimes result from decomposition of unit-level testbenches� RuleBase also used for such applications

81



SixthSense Applications

4. Unit-level verification

– Matches the level at which a sim testbench is developed

– Synthesizable testbench used for FV enables optimal reuse� (S)FV, sim, emulation

– Scalability critical due to size

– Many proofs are achievable even on unit-level testbench� No need to even reuse in sim, or decompose to block-level!

– Refer to Monday presentation by Glökler

82



SixthSense Applications

5. Lab fail recreation: When a chip misbehaves...

– (S)FV increasingly relied upon for such applications� Invariably a corner-case bug to have evaded so much validation� If sim could not find original bug, how much confidence would it
yield that the fix is robust?

– On-chip debug facilities offer partial insight into cause

– Usually have a good idea of property to check and “buggy region”

– Scalability critical since often requires a fairly large design slice� SFV useful since bug-hunting vs. proving is “the mission”

83



Conclusion

84



Conclusion� IBM has successfully used model checking for � 10 years

– Nonetheless, sim remains predominant validation methodology� Open question whether a design as complex as POWER can be fully
formally verified

– Very large and complex design

– HDL acquires circuit characteristics due to CEC reliance

– SEC may ultimately help augment this complexity

85



Conclusion� SixthSense philosophy: non-intrusive FV

– Scale FV to sim-sized testbenches� Integrate SFV algorithms� Integrate a variety of synergistic proof + transform algos

– Ensure high automation, ease of use� Push for reusable testbenches across sim + FV

– Greater ROI of specification investment� Result: substantially wider-spread use of FV

86



Future Work� HW verification is not a solved problem� MUCH room for improvement in automated proof algorithms,
abstraction / reduction algorithms, semi-formal algorithms

– Ideal if applicable to bit-level netlists
– We consider this to be the most critical direction� Additional insight into methodologies for verifying a wider variety of
industrial-complexity designs� Additional insight into how to effectively leverage, automate light-
weight theorem proving for a wider variety of problems

87


