
Motivation Solution Framework The Algorithm Conclusions

Automatic Generation of Local Repairs for

Boolean Programs

Roopsha Samanta,

Jyotirmoy V. Deshmukh and E. Allen Emerson

The University of Texas at Austin

November 20, 2008

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 1 / 35

Motivation Solution Framework The Algorithm Conclusions

Outline

Motivation

Solution Framework

The Algorithm

Conclusions

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 2 / 35

Motivation Solution Framework The Algorithm Conclusions

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 3 / 35

Motivation Solution Framework The Algorithm Conclusions

The road to correct programs . . .

Program synthesis

Correct by construction

Detailed specification

Hard

Also, legacy code?

Program verification

Program design + verification + fault localization + repair

Lengthy, iterative cycle

Long, unreadable error traces

Essentially manual debugging

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 4 / 35

Motivation Solution Framework The Algorithm Conclusions

The road to correct programs . . .

Program synthesis

Correct by construction

Detailed specification

Hard

Also, legacy code?

Program verification

Program design + verification + fault localization + repair

Lengthy, iterative cycle

Long, unreadable error traces

Essentially manual debugging

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 4 / 35

Motivation Solution Framework The Algorithm Conclusions

The road to correct programs . . .

Program synthesis

Correct by construction

Detailed specification

Hard

Also, legacy code?

Program verification

Program design + verification + fault localization + repair

Lengthy, iterative cycle

Long, unreadable error traces

Essentially manual debugging

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 4 / 35

Motivation Solution Framework The Algorithm Conclusions

The road to correct programs . . .

Program synthesis

Correct by construction

Detailed specification

Hard

Also, legacy code?

Program verification

Program design + verification + fault localization + repair

Lengthy, iterative cycle

Long, unreadable error traces

Essentially manual debugging

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 4 / 35

Motivation Solution Framework The Algorithm Conclusions

The road to correct programs . . .

Program synthesis

Correct by construction

Detailed specification

Hard

Also, legacy code?

Program verification

Program design + verification + fault localization + repair

Lengthy, iterative cycle

Long, unreadable error traces

Essentially manual debugging

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 4 / 35

Motivation Solution Framework The Algorithm Conclusions

The road to correct programs . . .

Program synthesis

Correct by construction

Detailed specification

Hard

Also, legacy code?

Program verification

Program design + verification + fault localization + repair

Lengthy, iterative cycle

Long, unreadable error traces

Essentially manual debugging

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 4 / 35

Motivation Solution Framework The Algorithm Conclusions

The road to correct programs . . .

Program synthesis

Correct by construction

Detailed specification

Hard

Also, legacy code?

Program verification

Program design + verification + fault localization + repair

Lengthy, iterative cycle

Long, unreadable error traces

Essentially manual debugging

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 4 / 35

Motivation Solution Framework The Algorithm Conclusions

The repair problem

Given a program P and a specification Φ such that P 2 Φ,

transform P to P ′ such that P ′ |= Φ

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 5 / 35

Motivation Solution Framework The Algorithm Conclusions

A specialization . . .

Program model: sequential Boolean programs [BallRaja00]

Specifications: Hoare-style pre-conditions, post-conditions

Permissible faults/repairs: incorrect Boolean expressions

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 6 / 35

Motivation Solution Framework The Algorithm Conclusions

Iterative (predicate) abstraction-refinement

Model
Checking

Theorem
Prover

Feasible
Error
Trace?

Yes

No

Yes

No

Correct! Bug!

Predicate
Abstraction

Refine

PC |= Φ PC 6|= Φ

PA PA |= Φ ?

PA

PC

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 7 / 35

Motivation Solution Framework The Algorithm Conclusions

Iterative (predicate) abstraction-refinement

Model
Checking

Theorem
Prover

Feasible
Error
Trace?

Yes

No

Yes

No

Correct! Bug!

Predicate
Abstraction

Refine

PC |= Φ PC 6|= Φ

PA PA |= Φ ?

PA

PC

Boolean program

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 7 / 35

Motivation Solution Framework The Algorithm Conclusions

What are Boolean programs?

Abstractions of concrete programs

Boolean variables

Similar control flow

Conditionals, loops, procedures

Nondeterminism

Some expressions may evaluate to either true or false

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 8 / 35

Motivation Solution Framework The Algorithm Conclusions

Example C program and Boolean program

while (x>0){

x := x-1;

}

p : x > 0

while (p){

p := nd(0,1);

}

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 9 / 35

Motivation Solution Framework The Algorithm Conclusions

Why Boolean programs?

Used as program abstractions for software verification

e.g., SLAM, BLAST, etc.

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 10 / 35

Motivation Solution Framework The Algorithm Conclusions

Repair of software programs

Model
Checking

Theorem
Prover

Feasible
Error
Trace?

Yes

No

Yes

No

Correct! Bug!

Predicate
Abstraction

Refine

PC |= Φ PC 6|= Φ

PA PA |= Φ ?

PA

PC

Boolean program

Repair

Translate to

Correct!

Repair PA

PC

P ′
C |= Φ

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 11 / 35

Motivation Solution Framework The Algorithm Conclusions

Why Boolean programs?

Used as program abstractions for software verification

e.g., SLAM, BLAST, etc.

Could be used to model some Boolean circuits

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 12 / 35

Motivation Solution Framework The Algorithm Conclusions

Program Syntax

Prog P = (V,main,F)

V = {v1, v2, . . . , vt}: Boolean vars

main = (S,V), S: s1; s2; . . . ; sn: stmts

F : functions, f = (Sf ,Vf ,l)

Expr E : Boolean expr + nd(0,1)

e.g., v2 ∧ nd(0,1)

Prog stmt si : function call or return or,

assignment: vj := E;

conditional: if (G) Sif else Selse;

loop: while (G) Sbody;

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 13 / 35

Motivation Solution Framework The Algorithm Conclusions

Program Syntax

Prog P = (V,main,F)

V = {v1, v2, . . . , vt}: Boolean vars

main = (S,V), S: s1; s2; . . . ; sn: stmts

F : functions, f = (Sf ,Vf ,l)

Expr E : Boolean expr + nd(0,1)

e.g., v2 ∧ nd(0,1)

Prog stmt si : function call or return or,

assignment: vj := E;

conditional: if (G) Sif else Selse;

loop: while (G) Sbody;

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 13 / 35

Motivation Solution Framework The Algorithm Conclusions

Program Syntax

Prog P = (V,main,F)

V = {v1, v2, . . . , vt}: Boolean vars

main = (S,V), S: s1; s2; . . . ; sn: stmts

F : functions, f = (Sf ,Vf ,l)

Expr E : Boolean expr + nd(0,1)

e.g., v2 ∧ nd(0,1)

Prog stmt si : function call or return or,

assignment: vj := E;

conditional: if (G) Sif else Selse;

loop: while (G) Sbody;

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 13 / 35

Motivation Solution Framework The Algorithm Conclusions

Example Boolean program and its state diagram

swap(x,y){

x := x ⊕ y;

y := x ∧ y;

x := x ⊕ y;

}

00

00

00

10

10

10

1001

11

11

01

00

00

01

11

00

s0

s1

s2

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 14 / 35

Motivation Solution Framework The Algorithm Conclusions

Specification

Total correctness: 〈ϕ〉P〈ψ〉

Pre-condition ϕ : init states of P

Post-condition ψ : desired final states

P is correct iff execution of P, begun in any state in ϕ,

terminates in a state in ψ, for all choices that P might make.

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 15 / 35

Motivation Solution Framework The Algorithm Conclusions

Specification

Total correctness: 〈ϕ〉P〈ψ〉

Pre-condition ϕ : init states of P

Post-condition ψ : desired final states

P is correct iff execution of P, begun in any state in ϕ,

terminates in a state in ψ, for all choices that P might make.

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 15 / 35

Motivation Solution Framework The Algorithm Conclusions

Example Boolean program with its specification

ϕ : true

x := x ⊕ y;

y := x ∧ y;

x := x ⊕ y;

ψ : y(f) ≡ x(0) ∧ x(f) ≡ y(0)

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 16 / 35

Motivation Solution Framework The Algorithm Conclusions

Fault/repair model

Extra statement (needs deletion)

Assignment: faulty LHS or RHS

Conditional: faulty G or faulty statement in Sif or Selse

Loop: faulty G or faulty statement in Sbody

Our algorithm seeks to repair only the above kinds of faults.

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 17 / 35

Motivation Solution Framework The Algorithm Conclusions

Fault/repair model

Extra statement (needs deletion)

Assignment: faulty LHS or RHS

Conditional: faulty G or faulty statement in Sif or Selse

Loop: faulty G or faulty statement in Sbody

Our algorithm seeks to repair only the above kinds of faults.

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 17 / 35

Motivation Solution Framework The Algorithm Conclusions

Algorithm sketch

Annotation:

Propagate ϕ and ψ through statements

Repair:

Use annotations to inspect statements for repairability

Generate repair if possible

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 18 / 35

Motivation Solution Framework The Algorithm Conclusions

Program annotation

ϕ0 : true
s0: x’ := x(0) ⊕ y(0);

s1: y’ := x ∧ y;

s2: x(f) := x ⊕ y;

Incorrect Program

ψ3 : x(f) ≡ y(0) ∧ y(f) ≡ x(0)

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 19 / 35

Motivation Solution Framework The Algorithm Conclusions

Program annotation

ϕ0 : true
s0: x’ := x(0) ⊕ y(0);

s1: y’ := x ∧ y;

s2: x(f) := x ⊕ y;

Incorrect Program

ψ3 : x(f) ≡ y(0) ∧ y(f) ≡ x(0)

Post-condition

propagation

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 19 / 35

Motivation Solution Framework The Algorithm Conclusions

Program annotation

ϕ0 : true
s0: x’ := x(0) ⊕ y(0);

s1: y’ := x ∧ y;

s2: x(f) := x ⊕ y;

Incorrect Program

ψ2

ψ3 : x(f) ≡ y(0) ∧ y(f) ≡ x(0)

Post-condition

propagation

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 19 / 35

Motivation Solution Framework The Algorithm Conclusions

Program annotation

ϕ0 : true
s0: x’ := x(0) ⊕ y(0);

s1: y’ := x ∧ y;

s2: x(f) := x ⊕ y;

Incorrect Program

ψ1

ψ2

ψ3 : x(f) ≡ y(0) ∧ y(f) ≡ x(0)

Post-condition

propagation

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 19 / 35

Motivation Solution Framework The Algorithm Conclusions

Program annotation

ϕ0 : true
s0: x’ := x(0) ⊕ y(0);

s1: y’ := x ∧ y;

s2: x(f) := x ⊕ y;

Incorrect Program

ψ0

ψ1

ψ2

ψ3 : x(f) ≡ y(0) ∧ y(f) ≡ x(0)

Post-condition

propagation

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 19 / 35

Motivation Solution Framework The Algorithm Conclusions

Program annotation

ϕ0 : true

Pre-condition

propagation

s0: x’ := x(0) ⊕ y(0);

s1: y’ := x ∧ y;

s2: x(f) := x ⊕ y;

Incorrect Program

ψ0

ψ1

ψ2

ψ3 : x(f) ≡ y(0) ∧ y(f) ≡ x(0)

Post-condition

propagation

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 19 / 35

Motivation Solution Framework The Algorithm Conclusions

Program annotation

ϕ0 : true

ϕ1

ϕ2

ϕ3

Pre-condition

propagation

s0: x’ := x(0) ⊕ y(0);

s1: y’ := x ∧ y;

s2: x(f) := x ⊕ y;

Incorrect Program

ψ0

ψ1

ψ2

ψ3 : x(f) ≡ y(0) ∧ y(f) ≡ x(0)

Post-condition

propagation

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 19 / 35

Motivation Solution Framework The Algorithm Conclusions

Backward propagation of ψi through si

Weakest pre-condition wp(si , ψi):
Set of all input states from which si is guaranteed to terminate

in ψi for all choices made by si .

To propagate ψi back through si , compute wp(si , ψi).

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 20 / 35

Motivation Solution Framework The Algorithm Conclusions

Details . . .

Assignments: vj := E;

ψi−1 = ψi [v
′

j → E , for each m 6= j , v ′

m → vm]

Rule for sequential composition:

wp((si−1; si), ψi) = wp(si−1,wp(si , ψi))

Conditionals: if (G) Sif else Selse;

ψi−1 = (G ⇒ wp(Sif , ψi)) ∧ (¬G ⇒ wp(Selse, ψi))

Loops: while (G) Sbody;

ψi−1 = (ψi ∧ ¬G) ∨
∨L

l=1 wp(Sbody ,Yl−1 ∧ ¬G)
where, Y0 = ψi , Yk = wp(Sbody ,Yk−1 ∧ ¬G)

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 21 / 35

Motivation Solution Framework The Algorithm Conclusions

Forward propagation of ϕi−1 through si

Strongest post-condition sp(si , ϕi−1):
Smallest set of output states in which si is guaranteed to

terminate, starting in ϕi−1, for all choices that si might make.

To propagate ϕi−1 forward through si , compute sp(si , ϕi−1).

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 22 / 35

Motivation Solution Framework The Algorithm Conclusions

Example program annotation

x’ := x(0) ⊕ y(0);
ϕ1: x ′ ≡ (x(0) ⊕ y(0))∧

y’ := x ∧ y;
ϕ2: x ′ ≡ (x(0) ⊕ y(0))∧

y ′ ≡ y(0)

y ′ ≡ (¬x(0) ∧ y(0))

x(f) := x ⊕ y;
ϕ3: x ′ ≡ (x(0) ∧ ¬y(0))∧

y ′ ≡ (¬x(0) ∧ y(0))

Pre-condition propagation

ϕ0: true ψ0: y(0) ≡ (x(0) ∧ ¬y(0))∧

ψ1: y(0) ≡ (x ∧ ¬y)∧

ψ2: y(0) ≡ x ⊕ y∧

ψ3: x(f) ≡ y(0)∧

Post-condition propagation

x(0) ≡ (¬x(0) ∧ y(0))

x(0) ≡ (x ∧ y)

x(0) ≡ y

y(f) ≡ x(0)

Incorrect Program

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 23 / 35

Motivation Solution Framework The Algorithm Conclusions

Local Hoare triples

s0: x’ := x(0) ⊕ y(0);

s1: y’ := x ∧ y;

s2: x(f) := x ⊕ y;

ϕ0

ϕ1

ϕ2

ϕ3

ψ0

ψ1

ψ2

ψ3

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 24 / 35

Motivation Solution Framework The Algorithm Conclusions

Local Hoare triples

s0: x’ := x(0) ⊕ y(0);

s1: y’ := x ∧ y;

s2: x(f) := x ⊕ y;

ϕ0

ϕ1

ϕ2

ϕ3

ψ0

ψ1

ψ2

ψ3

Local Hoare triple: 〈ϕ0〉s0〈ψ1〉

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 24 / 35

Motivation Solution Framework The Algorithm Conclusions

Local Hoare triples

s0: x’ := x(0) ⊕ y(0);

s1: y’ := x ∧ y;

s2: x(f) := x ⊕ y;

ϕ0

ϕ1

ϕ2

ϕ3

ψ0

ψ1

ψ2

ψ3

Local Hoare triple: 〈ϕ0〉s0〈ψ1〉

Local Hoare triple: 〈ϕ2〉s2〈ψ3〉

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 24 / 35

Motivation Solution Framework The Algorithm Conclusions

A key lemma

〈ϕ〉P〈ψ〉 false ⇔ all local Hoare triples false.

All local Hoare triples false ⇔ some local Hoare triple false.

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 25 / 35

Motivation Solution Framework The Algorithm Conclusions

What does this lemma mean for us?

If for some i , si can be fixed to make 〈ϕi−1〉si〈ψi〉 true,

then we have found P ′ such that 〈ϕ〉P ′〈ψ〉!

This is the basis for our repair algorithm.

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 26 / 35

Motivation Solution Framework The Algorithm Conclusions

What does this lemma mean for us?

If for some i , si can be fixed to make 〈ϕi−1〉si〈ψi〉 true,

then we have found P ′ such that 〈ϕ〉P ′〈ψ〉!

This is the basis for our repair algorithm.

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 26 / 35

Motivation Solution Framework The Algorithm Conclusions

Sketch of repair algorithm

Choose promising order

Query stmts in turn for repairability

If yes, Repair stmt, return modified program

If not, move to next stmt

If Query fails for all stmts, report failure

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 27 / 35

Motivation Solution Framework The Algorithm Conclusions

Sketch of repair algorithm

Choose promising order

Query stmts in turn for repairability

If yes, Repair stmt, return modified program

If not, move to next stmt

If Query fails for all stmts, report failure

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 27 / 35

Motivation Solution Framework The Algorithm Conclusions

Sketch of repair algorithm

Choose promising order

Query stmts in turn for repairability

If yes, Repair stmt, return modified program

If not, move to next stmt

If Query fails for all stmts, report failure

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 27 / 35

Motivation Solution Framework The Algorithm Conclusions

Sketch of repair algorithm

Choose promising order

Query stmts in turn for repairability

If yes, Repair stmt, return modified program

If not, move to next stmt

If Query fails for all stmts, report failure

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 27 / 35

Motivation Solution Framework The Algorithm Conclusions

Sketch of repair algorithm

Choose promising order

Query stmts in turn for repairability

If yes, Repair stmt, return modified program

If not, move to next stmt

If Query fails for all stmts, report failure

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 27 / 35

Motivation Solution Framework The Algorithm Conclusions

Query for assignment statement

Let ŝi : vj := expr be potential repair for si

Use variable z to denote expr to enable formulation of

Quantified Boolean Formula (QBF)

Query returns yes iff following QBF is true for some j :

∀v1(0)∀v2(0) . . .∀vt(0)∃z ϕi−1 ⇒ ψ̂i−1,j

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 28 / 35

Motivation Solution Framework The Algorithm Conclusions

Query for assignment statement

Let ŝi : vj := expr be potential repair for si

Use variable z to denote expr to enable formulation of

Quantified Boolean Formula (QBF)

Query returns yes iff following QBF is true for some j :

∀v1(0)∀v2(0) . . .∀vt(0)∃z ϕi−1 ⇒ ψ̂i−1,j

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 28 / 35

Motivation Solution Framework The Algorithm Conclusions

Repair for assignment statement

Let mth QBF be true

Thus, ŝi : vm := z;

How do we obtain z in terms of variables in V?

∀v1(0)∀v2(0) . . .∀vt(0)∃z ϕi−1 ⇒ ψ̂i−1,m︸ ︷︷ ︸
T

z = T |z=1 is a witness to QBF validity

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 29 / 35

Motivation Solution Framework The Algorithm Conclusions

Repair for assignment statement

Let mth QBF be true

Thus, ŝi : vm := z;

How do we obtain z in terms of variables in V?

∀v1(0)∀v2(0) . . .∀vt(0)∃z ϕi−1 ⇒ ψ̂i−1,m︸ ︷︷ ︸
T

z = T |z=1 is a witness to QBF validity

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 29 / 35

Motivation Solution Framework The Algorithm Conclusions

Repair for assignment statement

Let mth QBF be true

Thus, ŝi : vm := z;

How do we obtain z in terms of variables in V?

∀v1(0)∀v2(0) . . .∀vt(0)∃z ϕi−1 ⇒ ψ̂i−1,m︸ ︷︷ ︸
T

z = T |z=1 is a witness to QBF validity

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 29 / 35

Motivation Solution Framework The Algorithm Conclusions

Example

x’ := x(0) ⊕ y(0);
ϕ1: x ′ ≡ (x(0) ⊕ y(0))∧

y’ := x ∧ y;
ϕ2: x ′ ≡ (x(0) ⊕ y(0))∧

y ′ ≡ y(0)

y ′ ≡ (¬x(0) ∧ y(0))

x(f) := x ⊕ y;
ϕ3: x ′ ≡ (x(0) ∧ ¬y(0))∧

y ′ ≡ (¬x(0) ∧ y(0))

Pre-condition propagation

ϕ0: true ψ0: y(0) ≡ (x(0) ∧ ¬y(0))∧

ψ1: y(0) ≡ (x ∧ ¬y)∧

ψ2: y(0) ≡ x ⊕ y∧

ψ3: x(f) ≡ y(0)∧

Post-condition propagation

x(0) ≡ (¬x(0) ∧ y(0))

x(0) ≡ (x ∧ y)

x(0) ≡ y

y(f) ≡ x(0)

Incorrect Program

QBF for ŝ2: ∀x(0)∀y(0)∃z ϕ1 ⇒ ψ̂1,y = true

Synthesized repair: y’ := x ⊕ y;

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 30 / 35

Motivation Solution Framework The Algorithm Conclusions

Complexity

Worst-case complexity is exponential in # Boolean predicates

In practice, most computations are efficient using BDDs

Symbolic storage

Efficient manipulation of pre-/post-conditions

Efficient computation of fix-points

Easy QBF validity checking

Easy cofactor computation

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 31 / 35

Motivation Solution Framework The Algorithm Conclusions

Complexity

Worst-case complexity is exponential in # Boolean predicates

In practice, most computations are efficient using BDDs

Symbolic storage

Efficient manipulation of pre-/post-conditions

Efficient computation of fix-points

Easy QBF validity checking

Easy cofactor computation

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 31 / 35

Motivation Solution Framework The Algorithm Conclusions

Extant work

Error localization based on analyzing error traces:

[Zeller02], [Ball+03], [Shen+04], [Groce05]

Repair of Boolean programs: [Griesmayer+06]

Sketching: [Solar-Lezama+06]

Repair of circuits using QBFs: [StaberBloem07]

Dynamic repair of data structures: [DemskyRinard03]

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 32 / 35

Motivation Solution Framework The Algorithm Conclusions

Contributions

Novel application of Hoare logic

Identification of program model, fault model and

specification logic for tractable repair algorithm

Framework for repair without prior fault localization

Exponentially lower complexity than existing algorithm

([Griesmayer+06]) for our fragment

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 33 / 35

Motivation Solution Framework The Algorithm Conclusions

Contributions

Novel application of Hoare logic

Identification of program model, fault model and

specification logic for tractable repair algorithm

Framework for repair without prior fault localization

Exponentially lower complexity than existing algorithm

([Griesmayer+06]) for our fragment

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 33 / 35

Motivation Solution Framework The Algorithm Conclusions

Contributions

Novel application of Hoare logic

Identification of program model, fault model and

specification logic for tractable repair algorithm

Framework for repair without prior fault localization

Exponentially lower complexity than existing algorithm

([Griesmayer+06]) for our fragment

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 33 / 35

Motivation Solution Framework The Algorithm Conclusions

Contributions

Novel application of Hoare logic

Identification of program model, fault model and

specification logic for tractable repair algorithm

Framework for repair without prior fault localization

Exponentially lower complexity than existing algorithm

([Griesmayer+06]) for our fragment

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 33 / 35

Motivation Solution Framework The Algorithm Conclusions

The road ahead . . .

More general fault models

e.g., swapped statements, multiple incorrect expressions

Boolean programs with arbitrary recursion

Bit-vector programs

VHDL or Verilog programs

Software programs with small integer domains

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 34 / 35

Motivation Solution Framework The Algorithm Conclusions

Roopsha Samanta Automatic Generation of Local Repairs for Boolean Programs 35 / 35

Program Annotation Proof Functions

Post-condition propagation

Assignments:

E contains nd(0,1):
Compute conjunction of wps over v ′

j := E |0 and v ′

j := E |1

Conditionals: G = nd(0,1):
Compute wp(Sif , ψi) ∧ wp(Selse, ψi)

Loops: G = nd(0,1):
ψi−1 = false, or,

ψi−1 =
∧L′

l=0 Zl

Z0 = ψi , Zk = wp(Sbody ,Zk−1)

1 / 5

Program Annotation Proof Functions

Proof of lemma

Image/sp

φ

S1

S2

S3
ψ , i.e., Desired Final State

Initial State

Final State

2 / 5

Program Annotation Proof Functions

Proof

φ, i.e., Given Initial State

Image/sp Preimage/wlp

ψ, i.e., Desired Final State

S1 S−1
1

S2 S−1
2

S3 S−1
3

3 / 5

Program Annotation Proof Functions

Proof

S3 S−1
3

A

B

D A D

B

S3 S−1
3

C C

4 / 5

Program Annotation Proof Functions

Functions

Non-recursive and tail-recursive functions

Compute functions summaries

Compute forward summary by sp propagation thru f

Assume inital pre-condition is
∧

y (argy ≡ xy)

Compute backward summary by wp propagation thru f

Assume final post-condition is the return value

Use summaries for propagation thru the call-site of f

To repair, replace suspect expression by z

Reannotate program before solving for z

5 / 5

	Motivation
	Solution Framework
	Program Model
	Specification
	Fault Model

	The Algorithm
	Program Annotation
	Synthesis of Repairs
	Complexity Analysis

	Conclusions
	Extant Work
	Contributions
	Future Work

	Program Annotation
	Proof
	Functions

