
A Temporal Language for SystemC

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman

Rice University

Houston, TX

November 20, 2008

SystemC

System-level modeling language: C++ based, OO used for
abstraction, modularity, and compositionality

Rich set of data types: C++ plus hardware

Rich set of libraries for modeling at deferent levels: signals,
FIFOs, TLM (transaction-level modeling)

Processes; SC METHODs and SC THREADs

Simulation kernel – event driven

Processes run until suspension
Processes notify events (immediate, delta, timed)
Notified events wake suspended processes
Kernel manages scheduling of processes

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 2/ 22

SystemC

Producer Consumer
int

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 3/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 3/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 3/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 3/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip –

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 3/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed)

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 3/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed)

Kernel: make Producer active

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 3/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed) start ∆
Kernel: make Producer active end ∆

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 3/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed) start ∆
Kernel: make Producer active end ∆

write(1)

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 3/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed) start ∆
Kernel: make Producer active end ∆

write(1) notify(value changed)

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 3/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed) start ∆
Kernel: make Producer active end ∆

write(1) notify(value changed) sleeping

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 3/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed) start ∆
Kernel: make Producer active end ∆

write(1) notify(value changed) sleeping
Kernel: update value of signal

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 3/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed) start ∆
Kernel: make Producer active end ∆

write(1) notify(value changed) sleeping
Kernel: update value of signal

Kernel: Make Producer and Consumer active

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 3/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed) start ∆
Kernel: make Producer active end ∆

write(1) notify(value changed) sleeping start ∆
Kernel: update value of signal

Kernel: Make Producer and Consumer active end ∆

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 3/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed) start ∆
Kernel: make Producer active end ∆

write(1) notify(value changed) sleeping start ∆
Kernel: update value of signal update

Kernel: Make Producer and Consumer active end ∆

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 3/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed) start ∆
Kernel: make Producer active end ∆

write(1) notify(value changed) sleeping start ∆
Kernel: update value of signal update

Kernel: Make Producer and Consumer active end ∆

write(2)

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 3/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed) start ∆
Kernel: make Producer active end ∆

write(1) notify(value changed) sleeping start ∆
Kernel: update value of signal update

Kernel: Make Producer and Consumer active end ∆

write(2) 1

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 3/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed) start ∆
Kernel: make Producer active end ∆

write(1) notify(value changed) sleeping start ∆
Kernel: update value of signal update

Kernel: Make Producer and Consumer active end ∆

write(2) 1 read(1)

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 3/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed) start ∆
Kernel: make Producer active end ∆

write(1) notify(value changed) sleeping start ∆
Kernel: update value of signal update

Kernel: Make Producer and Consumer active end ∆

write(2) 1 read(1)
Kernel: Make Producer and Consumer active

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 3/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed) start ∆
Kernel: make Producer active end ∆

write(1) notify(value changed) sleeping start ∆
Kernel: update value of signal update

Kernel: Make Producer and Consumer active end ∆

write(2) 1 read(1) start ∆
Kernel: Make Producer and Consumer active end ∆

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 3/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed) start ∆
Kernel: make Producer active end ∆

write(1) notify(value changed) sleeping start ∆
Kernel: update value of signal update

Kernel: Make Producer and Consumer active end ∆

write(2) 1 read(1) start ∆
Kernel: Make Producer and Consumer active end ∆

.

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 3/ 22

SystemC

Producer Consumer
int

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 4/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 4/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

write(1);

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 4/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

write(1); write(2);

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 4/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

write(1); write(2); notify(value changed)

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 4/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

write(1); write(2); notify(value changed) wait()

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 4/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

write(1); write(2); notify(value changed) wait()
Kernel: update value of signal

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 4/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

write(1); write(2); notify(value changed) wait()
Kernel: update value of signal

Kernel: Make Producer and Consumer active

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 4/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

write(1); write(2); notify(value changed) wait()
Kernel: update value of signal

Kernel: Make Producer and Consumer active

skip

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 4/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

write(1); write(2); notify(value changed) wait()
Kernel: update value of signal

Kernel: Make Producer and Consumer active

skip 2

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 4/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

write(1); write(2); notify(value changed) wait()
Kernel: update value of signal

Kernel: Make Producer and Consumer active

skip 2 read(2)

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 4/ 22

SystemC

Producer Consumer
int

Producer signal Consumer

write(1); write(2); notify(value changed) wait()
Kernel: update value of signal

Kernel: Make Producer and Consumer active

skip 2 read(2)
.

Desideratum: Express properties at sub-∆-cycle resolution

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 4/ 22

SystemC Events

Three types of sc event

Immediate events have an immediate effect

Can cause deadlocks

Delta events

Accumulated while processes are running
Have an effect only after all immediate events

Timed events

Accumulated while processes are running
Have an effect only after all delta events

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 5/ 22

SystemC Events

Three types of sc event

Immediate events have an immediate effect

Can cause deadlocks

Delta events

Accumulated while processes are running
Have an effect only after all immediate events

Timed events

Accumulated while processes are running
Have an effect only after all delta events

Key observation: No canonical notion of a cycle

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 5/ 22

“Useful” SystemC properties: examples

A signal is written to at most once

The value of variable “balance” is always equal to
“deposits” - “withdrawals”

“Request” → within[3] “grant”

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 6/ 22

“Useful” SystemC properties: examples

A signal is written to at most once within . . .

. . . execution of an individual process

. . . a complete delta cycle

. . . between two clock ticks

The value of variable “balance” is always equal to
“deposits” - “withdrawals”

“Request” → within[3] “grant”

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 6/ 22

“Useful” SystemC properties: examples

A signal is written to at most once within . . .

. . . execution of an individual process

. . . a complete delta cycle

. . . between two clock ticks

The value of variable “balance” is always equal to
“deposits” - “withdrawals” . . .

. . . in all stable states (no process running)

. . . at beginning of each delta cycle

. . . at each clock tick

“Request” → within[3] “grant”

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 6/ 22

“Useful” SystemC properties: examples

A signal is written to at most once within . . .

. . . execution of an individual process

. . . a complete delta cycle

. . . between two clock ticks

The value of variable “balance” is always equal to
“deposits” - “withdrawals” . . .

. . . in all stable states (no process running)

. . . at beginning of each delta cycle

. . . at each clock tick

“Request” → within[3] “grant”

Within 3 “what”?

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 6/ 22

Temporal language for SystemC: Desiderata

Recognize of SystemC’s ability to bridge different levels of
abstraction

Specify clockless and clocked modules working together
Systematic way to refine properties as design is refined

Recognize SystemC’s unique simulation semantics

Expose notification of events
Allow different levels temporal resolution

Give precise definition of a trace

No existing language addresses this issue

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 7/ 22

A New Approach

Augment existing languages (PSL/SVA), not develop a new one

Define a precise notion of a trace of execution for SystemC
models

Identify important Boolean properties relevant to execution or
specification of SystemC

Plug-in our framework in existing specification languages

Richer set of Boolean properties

Much more flexible temporal resolution: by leveraging the
ability of temporal languages to use Boolean expressions as
clock expressions

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 8/ 22

Dealing with the kernel

Why deal with the kernel?

Many important properties at sub-∆ cycle resolution

Adapt specifications to level of abstraction

Example: Invariance properties, say, ALWAYS x > 10

Must hold at all times

Must hold when processes suspend

Must hold at delta-cycle boundary

Must hold at clock-cycle boundary

This is possible only if we require the kernel to expose information
about its internal state.

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 9/ 22

Dealing with the kernel

Complications

Many implementations

15K lines of code (in reference implementation)

What is the right abstraction?

Our solution

Follow the LRM

Abstract kernel’s implementations, but expose semantics

Enable coarser abstractions via clock expression

Expose event notifications

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 10/ 22

Dealing with the kernel

Complications

Many implementations

15K lines of code (in reference implementation)

What is the right abstraction?

Our solution

Follow the LRM

Abstract kernel’s implementations, but expose semantics

Enable coarser abstractions via clock expression

Expose event notifications

Bottom line: expose kernel state and event notifications

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 10/ 22

Dealing with user code

Code (Consumer.h)

while (true) {

wait(in.value_changed_event);

int x = in.read();

int y = f(x); // some one-way function

float z = 10/y;

...

}

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 11/ 22

Dealing with user code

Code (Consumer.h)

while (true) {

wait(in.value_changed_event);

int x = in.read();

int y = f(x); // some one-way function

float z = 10/y;

...

}

Desideratum: Statement-level assertions

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 11/ 22

Dealing with user code

Our approach

Each statement defines a new state

Expose protected and private variables (white box)

Expose properties of function calls (arguments and return
value)

Expose properties of SystemC primitives (e.g.. number of
elements in a sc fifo)

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 12/ 22

Traces

A SystemC trace is a sequence of states corresponding to
execution of model

Expose alternation of control

kernel
user code
libraries

“large-step semantics” vs “small-step semantics”

y = (x++) + (x--);

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 13/ 22

Refining specifications

Balance = Deposits - Withdrawals

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 14/ 22

Refining specifications

Balance = Deposits - Withdrawals

At end of all ∆ cycles

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 14/ 22

Refining specifications

Balance = Deposits - Withdrawals

At end of all ∆ cycles
When no process is running

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 14/ 22

Refining specifications

Balance = Deposits - Withdrawals

At end of all ∆ cycles
When no process is running
At end of a particular process

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 14/ 22

Refining specifications

Balance = Deposits - Withdrawals

At end of all ∆ cycles
When no process is running
At end of a particular process
When a particular function returns

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 14/ 22

Refining specifications

Balance = Deposits - Withdrawals

At end of all ∆ cycles
When no process is running
At end of a particular process
When a particular function returns

Process A must execute

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 14/ 22

Refining specifications

Balance = Deposits - Withdrawals

At end of all ∆ cycles
When no process is running
At end of a particular process
When a particular function returns

Process A must execute

Every delta cycle

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 14/ 22

Refining specifications

Balance = Deposits - Withdrawals

At end of all ∆ cycles
When no process is running
At end of a particular process
When a particular function returns

Process A must execute

Every delta cycle
Every clock cycle

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 14/ 22

Refining specifications

Balance = Deposits - Withdrawals

At end of all ∆ cycles
When no process is running
At end of a particular process
When a particular function returns

Process A must execute

Every delta cycle
Every clock cycle
Every 10 clock cycles

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 14/ 22

Refining specifications

Balance = Deposits - Withdrawals

At end of all ∆ cycles
When no process is running
At end of a particular process
When a particular function returns

Process A must execute

Every delta cycle
Every clock cycle
Every 10 clock cycles
Only once

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 14/ 22

Software Verification Perspective

HW/SW co-design: Treating SystemC as software

Pre- and post- conditions

Properties about the actual parameters of function calls

Properties about the return values of function calls

Library state only via APIs

Relevant prior work

SLIC and Blast allow the specification of C interfaces via
specifying properties related to function calls

Blast allows access to syntax of executing statements

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 15/ 22

Software Verification Perspective

HW/SW co-design: Treating SystemC as software

Pre- and post- conditions

Properties about the actual parameters of function calls

Properties about the return values of function calls

Library state only via APIs

Relevant prior work

SLIC and Blast allow the specification of C interfaces via
specifying properties related to function calls

Blast allows access to syntax of executing statements

Key Observation: Expose the syntax

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 15/ 22

Conclusion and Discussion

Summary

Precise definition of an execution trace

A family of expressions that enrich the Boolean layer of any
specification language

Mechanism for sampling underlying trace at different levels of
abstraction without changing language

SystemC as software

Discussion

Framework applicable to formal and dynamic verification

Our approach requires very small modifications of SystemC
kernel

Current focus: translate specifications into SystemC monitors
and instrument user code

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 16/ 22

Appendix

Appendix

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 17/ 22

Semantics of SystemC Simulation I

1: PC ← all primitive channels
2: P ← all processes
3: R ← P /* Set of runnable processes */
4: D ← ∅ /* Set of pending delta notifications */
5: U ← ∅ /* Set of update requests */
6: T ← ∅ /* Set of pending timed notifications */
7: for all chan ∈ PC do

8: run chan.update()
9: for all p ∈ R do

10: if p is initializable then
11: run p
12: for all d ∈ D do
13: D ← D \ d
14: for all p ∈ P do
15: if n triggers p then
16: R ← R ∪ p

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 18/ 22

Semantics of SystemC Simulation II

17: repeat
18: while R 6= ∅ do /* New delta cycle begins */

19: for all r ∈ R do

20: R ← R \ r
21: run r until it invokes wait() or returns

22: for all chan ∈ U do /* Update phase */

23: run chan.update()

24: for all d ∈ D do /* Delta notification phase */

25: D ← D \ d
26: for all p ∈ P do
27: if d triggers p then
28: R ← R ∪ p /* p is now runnable */

29: /* End of delta cycle */

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 19/ 22

Semantics of SystemC Simulation III

30: if T 6= ∅ then
31: Advance clock to earliest timed delay t.
32: T ← T \ t
33: for all p ∈ P do

34: if t triggers p then
35: R ← R ∪ p /* p is now runnable */

36: until end of simulation

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 20/ 22

Semantics of SystemC Simulation - Kernel Phase

Our approach: keep track of current phase

Updating
a channel

Delta
noti f ication

Timed
Notif ication

End of
Simulation

Start of
Simulation

Selecting
next channel

Update
phase

Initialization
Phase

Running
Process

Selecting
Process

Evaluation
phase

Update
phase

Updating
a channel

Selecting
next channel

Delta
noti f ication

Figure: Captured Kernel States

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 21/ 22

Kernel States in Moy’s Abstraction

Time
Elapse

Selecting
Process

Notify
Selected
Process

Process
Running

Update
Delta

Figure: Kernel states proposed by Moy et al.

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 22/ 22

	SystemC
	Producer-Consumer
	Two writes

	SystemC Events
	Motivating examples
	Desiderata
	Our approach
	Dealing with the kernel
	Dealing with user code
	Software Verification Perspective
	Conclusion and Discussion
	Appendix
	Semantics of SystemC Simulation

