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SystemC

System-level modeling language: C++ based, OO used for
abstraction, modularity, and compositionality

Rich set of data types: C++ plus hardware

Rich set of libraries for modeling at deferent levels: signals,
FIFOs, TLM (transaction-level modeling)

Processes; SC METHODs and SC THREADs

Simulation kernel – event driven

Processes run until suspension
Processes notify events (immediate, delta, timed)
Notified events wake suspended processes
Kernel manages scheduling of processes
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Producer Consumer
int
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int

Producer signal Consumer

Kernel: make all processes active
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SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip
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SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip –
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SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed)
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SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed)

Kernel: make Producer active
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SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed) start ∆
Kernel: make Producer active end ∆
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SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed) start ∆
Kernel: make Producer active end ∆

write(1)
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SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed) start ∆
Kernel: make Producer active end ∆

write(1) notify(value changed)
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SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed) start ∆
Kernel: make Producer active end ∆

write(1) notify(value changed) sleeping
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SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed) start ∆
Kernel: make Producer active end ∆

write(1) notify(value changed) sleeping
Kernel: update value of signal
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SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed) start ∆
Kernel: make Producer active end ∆

write(1) notify(value changed) sleeping
Kernel: update value of signal

Kernel: Make Producer and Consumer active
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SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed) start ∆
Kernel: make Producer active end ∆

write(1) notify(value changed) sleeping start ∆
Kernel: update value of signal

Kernel: Make Producer and Consumer active end ∆
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SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed) start ∆
Kernel: make Producer active end ∆

write(1) notify(value changed) sleeping start ∆
Kernel: update value of signal update

Kernel: Make Producer and Consumer active end ∆
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SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed) start ∆
Kernel: make Producer active end ∆

write(1) notify(value changed) sleeping start ∆
Kernel: update value of signal update

Kernel: Make Producer and Consumer active end ∆

write(2)
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SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed) start ∆
Kernel: make Producer active end ∆

write(1) notify(value changed) sleeping start ∆
Kernel: update value of signal update

Kernel: Make Producer and Consumer active end ∆

write(2) 1
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SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed) start ∆
Kernel: make Producer active end ∆

write(1) notify(value changed) sleeping start ∆
Kernel: update value of signal update

Kernel: Make Producer and Consumer active end ∆

write(2) 1 read(1)
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SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed) start ∆
Kernel: make Producer active end ∆

write(1) notify(value changed) sleeping start ∆
Kernel: update value of signal update

Kernel: Make Producer and Consumer active end ∆

write(2) 1 read(1)
Kernel: Make Producer and Consumer active
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SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed) start ∆
Kernel: make Producer active end ∆

write(1) notify(value changed) sleeping start ∆
Kernel: update value of signal update

Kernel: Make Producer and Consumer active end ∆

write(2) 1 read(1) start ∆
Kernel: Make Producer and Consumer active end ∆
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SystemC

Producer Consumer
int

Producer signal Consumer

Kernel: make all processes active

skip – wait(value changed) start ∆
Kernel: make Producer active end ∆

write(1) notify(value changed) sleeping start ∆
Kernel: update value of signal update

Kernel: Make Producer and Consumer active end ∆

write(2) 1 read(1) start ∆
Kernel: Make Producer and Consumer active end ∆

. . . . . . . . .
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Producer Consumer
int
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SystemC

Producer Consumer
int

Producer signal Consumer
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SystemC

Producer Consumer
int

Producer signal Consumer

write(1);
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SystemC

Producer Consumer
int

Producer signal Consumer

write(1); write(2);
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SystemC

Producer Consumer
int

Producer signal Consumer

write(1); write(2); notify(value changed)
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SystemC

Producer Consumer
int

Producer signal Consumer

write(1); write(2); notify(value changed) wait()
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SystemC

Producer Consumer
int

Producer signal Consumer

write(1); write(2); notify(value changed) wait()
Kernel: update value of signal
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SystemC

Producer Consumer
int

Producer signal Consumer

write(1); write(2); notify(value changed) wait()
Kernel: update value of signal

Kernel: Make Producer and Consumer active
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SystemC

Producer Consumer
int

Producer signal Consumer

write(1); write(2); notify(value changed) wait()
Kernel: update value of signal

Kernel: Make Producer and Consumer active

skip
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SystemC

Producer Consumer
int

Producer signal Consumer

write(1); write(2); notify(value changed) wait()
Kernel: update value of signal

Kernel: Make Producer and Consumer active

skip 2
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SystemC

Producer Consumer
int

Producer signal Consumer

write(1); write(2); notify(value changed) wait()
Kernel: update value of signal

Kernel: Make Producer and Consumer active

skip 2 read(2)

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 4/ 22



SystemC

Producer Consumer
int

Producer signal Consumer

write(1); write(2); notify(value changed) wait()
Kernel: update value of signal

Kernel: Make Producer and Consumer active

skip 2 read(2)
. . . . . . . . .

Desideratum: Express properties at sub-∆-cycle resolution
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SystemC Events

Three types of sc event

Immediate events have an immediate effect

Can cause deadlocks

Delta events

Accumulated while processes are running
Have an effect only after all immediate events

Timed events

Accumulated while processes are running
Have an effect only after all delta events
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SystemC Events

Three types of sc event

Immediate events have an immediate effect

Can cause deadlocks

Delta events

Accumulated while processes are running
Have an effect only after all immediate events

Timed events

Accumulated while processes are running
Have an effect only after all delta events

Key observation: No canonical notion of a cycle
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“Useful” SystemC properties: examples

A signal is written to at most once

The value of variable “balance” is always equal to
“deposits” - “withdrawals”

“Request” → within[3] “grant”
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“Useful” SystemC properties: examples

A signal is written to at most once within . . .

. . . execution of an individual process

. . . a complete delta cycle

. . . between two clock ticks

The value of variable “balance” is always equal to
“deposits” - “withdrawals”

“Request” → within[3] “grant”
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“Useful” SystemC properties: examples

A signal is written to at most once within . . .

. . . execution of an individual process

. . . a complete delta cycle

. . . between two clock ticks

The value of variable “balance” is always equal to
“deposits” - “withdrawals” . . .

. . . in all stable states (no process running)

. . . at beginning of each delta cycle

. . . at each clock tick

“Request” → within[3] “grant”

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 6/ 22



“Useful” SystemC properties: examples

A signal is written to at most once within . . .

. . . execution of an individual process

. . . a complete delta cycle

. . . between two clock ticks

The value of variable “balance” is always equal to
“deposits” - “withdrawals” . . .

. . . in all stable states (no process running)

. . . at beginning of each delta cycle

. . . at each clock tick

“Request” → within[3] “grant”

Within 3 “what”?
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Temporal language for SystemC: Desiderata

Recognize of SystemC’s ability to bridge different levels of
abstraction

Specify clockless and clocked modules working together
Systematic way to refine properties as design is refined

Recognize SystemC’s unique simulation semantics

Expose notification of events
Allow different levels temporal resolution

Give precise definition of a trace

No existing language addresses this issue
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A New Approach

Augment existing languages (PSL/SVA), not develop a new one

Define a precise notion of a trace of execution for SystemC
models

Identify important Boolean properties relevant to execution or
specification of SystemC

Plug-in our framework in existing specification languages

Richer set of Boolean properties

Much more flexible temporal resolution: by leveraging the
ability of temporal languages to use Boolean expressions as
clock expressions
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Dealing with the kernel

Why deal with the kernel?

Many important properties at sub-∆ cycle resolution

Adapt specifications to level of abstraction

Example: Invariance properties, say, ALWAYS x > 10

Must hold at all times

Must hold when processes suspend

Must hold at delta-cycle boundary

Must hold at clock-cycle boundary

This is possible only if we require the kernel to expose information
about its internal state.
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Dealing with the kernel

Complications

Many implementations

15K lines of code (in reference implementation)

What is the right abstraction?

Our solution

Follow the LRM

Abstract kernel’s implementations, but expose semantics

Enable coarser abstractions via clock expression

Expose event notifications

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 10/ 22



Dealing with the kernel

Complications

Many implementations

15K lines of code (in reference implementation)

What is the right abstraction?

Our solution

Follow the LRM

Abstract kernel’s implementations, but expose semantics

Enable coarser abstractions via clock expression

Expose event notifications

Bottom line: expose kernel state and event notifications
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Dealing with user code

Code (Consumer.h)

while ( true ) {

wait(in.value_changed_event);

int x = in.read();

int y = f(x); // some one-way function

float z = 10/y;

...

}
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Dealing with user code

Code (Consumer.h)

while ( true ) {

wait(in.value_changed_event);

int x = in.read();

int y = f(x); // some one-way function

float z = 10/y;

...

}

Desideratum: Statement-level assertions
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Dealing with user code

Our approach

Each statement defines a new state

Expose protected and private variables (white box)

Expose properties of function calls (arguments and return
value)

Expose properties of SystemC primitives (e.g.. number of
elements in a sc fifo)
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Traces

A SystemC trace is a sequence of states corresponding to
execution of model

Expose alternation of control

kernel
user code
libraries

“large-step semantics” vs “small-step semantics”

y = (x++) + (x--);
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Refining specifications

Balance = Deposits - Withdrawals

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 14/ 22



Refining specifications

Balance = Deposits - Withdrawals

At end of all ∆ cycles

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 14/ 22



Refining specifications

Balance = Deposits - Withdrawals

At end of all ∆ cycles
When no process is running

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 14/ 22



Refining specifications

Balance = Deposits - Withdrawals

At end of all ∆ cycles
When no process is running
At end of a particular process
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Refining specifications

Balance = Deposits - Withdrawals

At end of all ∆ cycles
When no process is running
At end of a particular process
When a particular function returns
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Refining specifications

Balance = Deposits - Withdrawals

At end of all ∆ cycles
When no process is running
At end of a particular process
When a particular function returns

Process A must execute
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Refining specifications

Balance = Deposits - Withdrawals

At end of all ∆ cycles
When no process is running
At end of a particular process
When a particular function returns

Process A must execute

Every delta cycle

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 14/ 22



Refining specifications

Balance = Deposits - Withdrawals

At end of all ∆ cycles
When no process is running
At end of a particular process
When a particular function returns

Process A must execute

Every delta cycle
Every clock cycle
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Refining specifications

Balance = Deposits - Withdrawals

At end of all ∆ cycles
When no process is running
At end of a particular process
When a particular function returns

Process A must execute

Every delta cycle
Every clock cycle
Every 10 clock cycles
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Refining specifications

Balance = Deposits - Withdrawals

At end of all ∆ cycles
When no process is running
At end of a particular process
When a particular function returns

Process A must execute

Every delta cycle
Every clock cycle
Every 10 clock cycles
Only once
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Software Verification Perspective

HW/SW co-design: Treating SystemC as software

Pre- and post- conditions

Properties about the actual parameters of function calls

Properties about the return values of function calls

Library state only via APIs

Relevant prior work

SLIC and Blast allow the specification of C interfaces via
specifying properties related to function calls

Blast allows access to syntax of executing statements
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Software Verification Perspective

HW/SW co-design: Treating SystemC as software

Pre- and post- conditions

Properties about the actual parameters of function calls

Properties about the return values of function calls

Library state only via APIs

Relevant prior work

SLIC and Blast allow the specification of C interfaces via
specifying properties related to function calls

Blast allows access to syntax of executing statements

Key Observation: Expose the syntax
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Conclusion and Discussion

Summary

Precise definition of an execution trace

A family of expressions that enrich the Boolean layer of any
specification language

Mechanism for sampling underlying trace at different levels of
abstraction without changing language

SystemC as software

Discussion

Framework applicable to formal and dynamic verification

Our approach requires very small modifications of SystemC
kernel

Current focus: translate specifications into SystemC monitors
and instrument user code
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Appendix

Appendix
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Semantics of SystemC Simulation I

1: PC ← all primitive channels
2: P ← all processes
3: R ← P /* Set of runnable processes */
4: D ← ∅ /* Set of pending delta notifications */
5: U ← ∅ /* Set of update requests */
6: T ← ∅ /* Set of pending timed notifications */
7: for all chan ∈ PC do

8: run chan.update()
9: for all p ∈ R do

10: if p is initializable then
11: run p
12: for all d ∈ D do
13: D ← D \ d
14: for all p ∈ P do
15: if n triggers p then
16: R ← R ∪ p
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Semantics of SystemC Simulation II

17: repeat
18: while R 6= ∅ do /* New delta cycle begins */

19: for all r ∈ R do

20: R ← R \ r
21: run r until it invokes wait() or returns

22: for all chan ∈ U do /* Update phase */

23: run chan.update()

24: for all d ∈ D do /* Delta notification phase */

25: D ← D \ d
26: for all p ∈ P do
27: if d triggers p then
28: R ← R ∪ p /* p is now runnable */

29: /* End of delta cycle */

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC 19/ 22



Semantics of SystemC Simulation III

30: if T 6= ∅ then
31: Advance clock to earliest timed delay t.
32: T ← T \ t
33: for all p ∈ P do

34: if t triggers p then
35: R ← R ∪ p /* p is now runnable */

36: until end of simulation
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Semantics of SystemC Simulation - Kernel Phase

Our approach: keep track of current phase

Updating
a channel

Delta
noti f ication

Timed
Notif ication

End of
Simulation

Start of
Simulation

Selecting
next channel

Update
phase

Initialization
Phase

Running
Process

Selecting
Process

Evaluation
phase

Update
phase

Updating
a channel

Selecting
next channel

Delta
noti f ication

Figure: Captured Kernel States
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Kernel States in Moy’s Abstraction

Time
Elapse

Selecting
Process

Notify
Selected
Process

Process
Running

Update
Delta

Figure: Kernel states proposed by Moy et al.
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