A Temporal Language for SystemC

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman

Rice University
Houston, TX

November 20, 2008

System-level modeling language: C++ based, OO used for
abstraction, modularity, and compositionality

(]

Rich set of data types: C++ plus hardware

(]

Rich set of libraries for modeling at deferent levels: signals,
FIFOs, TLM (transaction-level modeling)

Processes; SC_.METHODs and SC_THREADs

Simulation kernel — event driven

(]

Processes run until suspension
Processes notify events (immediate, delta, timed)
Notified events wake suspended processes

]
)
)
o Kernel manages scheduling of processes

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

int
Producer Consumer

ian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

int
Producer Consumer

Producer ‘ signal ‘ Consumer

ian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

int
Producer Consumer

Producer ‘ signal ‘ Consumer

ian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

int
Producer Consumer

Producer ‘ signal ‘ Consumer

skip | \

ian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

int
Producer Consumer

Producer ‘ signal ‘ Consumer

skip | - \

ian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

int
Producer Consumer
Producer ‘ signal ‘ Consumer ‘
skip ‘ - ‘ wait (value_changed)

ian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

int
Producer Consumer
Producer ‘ signal ‘ Consumer ‘
skip ‘ - ‘ wait (value_changed)

ian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

int
Producer Consumer
Producer ‘ signal ‘ Consumer ‘
skip ‘ - ‘ wait (value_changed) | start A

end A

ian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

int
Producer e Consumer
Producer ‘ signal ‘ Consumer
skip ‘ - ‘ wait (value_changed) | start A
end A
write(1) | ‘

ian Tabakov, Moshe Y. Vardi, Gila Kamhi,

Singerman

A Temporal Language for SystemC

int
Producer Consumer
Producer ‘ signal ‘ Consumer ‘
skip ‘ - ‘ wait (value_changed) | start A

end A

write(1) | notify(value_changed) |

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Producer int Consumer
Producer ‘ signal ‘ Consumer ‘
skip ‘ - ‘ wait (value_changed) | start A
end A
write(1) | notify(value_changed) | sleeping

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Producer int Consumer
Producer ‘ signal ‘ Consumer ‘
skip ‘ - ‘ wait (value_changed) | start A
end A
write(1) | notify(value_changed) | sleeping

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Producer int Consumer
Producer ‘ signal ‘ Consumer ‘
skip ‘ - ‘ wait (value_changed) | start A
end A
write(1) | notify(value_changed) | sleeping

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Producer 1nt Consumer
Producer ‘ signal ‘ Consumer ‘
skip ‘ - ‘ wait (value_changed) | start A
end A
write(1) | notify(value_changed) | sleeping start A
end A

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Producer int Consumer
Producer ‘ signal ‘ Consumer ‘
skip ‘ - ‘ wait (value_changed) | start A
end A
write(1) | notify(value_changed) | sleeping start A
update
end A

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Producer int Consumer
Producer ‘ signal ‘ Consumer ‘
skip ‘ - ‘ wait (value_changed) | start A
end A
write(1) | notify(value_changed) | sleeping start A
update
end A

write(2) | ‘

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Producer int Consumer
Producer ‘ signal ‘ Consumer ‘
skip ‘ - ‘ wait (value_changed) | start A
end A
write(1) | notify(value_changed) | sleeping start A
update
end A

write(2) | 1 ‘

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Producer 1nt Consumer
Producer ‘ signal ‘ Consumer ‘

skip ‘ - ‘ wait (value_changed) | start A
end A
write(1) | notify(value_changed) | sleeping start A
update
end A

write(2) | 1 ‘ read(1)

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Producer 1nt Consumer
Producer ‘ signal ‘ Consumer ‘

skip ‘ - ‘ wait (value_changed) | start A
end A
write(1) | notify(value_changed) | sleeping start A
update
end A

write(2) | 1 ‘ read(1)

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Producer 1nt Consumer

Producer ‘ signal ‘ Consumer ‘
skip ‘ - ‘ wait (value_changed) | start A
end A
write(1) | notify(value_changed) | sleeping start A
update
end A
write(2) | 1 ‘ read(1) start A
end A

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Producer 1nt Consumer

Producer ‘ signal ‘ Consumer ‘
skip ‘ - ‘ wait (value_changed) | start A
end A
write(1) | notify(value_changed) | sleeping start A
update
end A
write(2) | 1 ‘ read(1) start A
end A

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

int
Producer Consumer

ian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

int
Producer Consumer

Producer signal Consumer

ian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

int
Producer Consumer

Producer signal Consumer
write(1);

ian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

int
Producer Consumer

Producer signal Consumer
write(1); write(2);

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

int
Producer Consumer

Producer signal Consumer
write(1); write(2); | notify(value_changed)

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

int
Producer Consumer

Producer signal Consumer
write(1); write(2); | notify(value_changed) | wait()

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

int
Producer Consumer

Producer signal Consumer
write(1); write(2); | notify(value_changed) | wait()

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

int
Producer Consumer

Producer signal Consumer
write(1); write(2); | notify(value_changed) | wait()

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

int
Producer Consumer

Producer signal Consumer
write(1); write(2); | notify(value_changed) | wait()

skip

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

int
Producer Consumer

Producer signal Consumer
write(1); write(2); | notify(value_changed) | wait()

skip 2

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

int

Producer

Producer

Consumer

signal

Consumer

write(1); write(2); | notify(value_changed) | wait()

skip

read(2)

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman

A Temporal Language for SystemC

int

Producer

Producer

Consumer

signal

Consumer

write(1); write(2); | notify(value_changed) | wait()

skip

read(2)

Desideratum: Express properties at sub-A-cycle resolution

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman

A Temporal Language for SystemC

SystemC Events

Three types of sc_event

@ Immediate events have an immediate effect
o Can cause deadlocks
@ Delta events

o Accumulated while processes are running
o Have an effect only after all immediate events

@ Timed events

¢ Accumulated while processes are running
o Have an effect only after all delta events

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

SystemC Events

Three types of sc_event

@ Immediate events have an immediate effect

o Can cause deadlocks
@ Delta events

o Accumulated while processes are running

o Have an effect only after all immediate events
@ Timed events

¢ Accumulated while processes are running
o Have an effect only after all delta events

Key observation: No canonical notion of a cycle

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman

A Temporal Language for SystemC

“Useful” SystemC properties: examples

@ A signal is written to at most once

@ The value of variable “balance” is always equal to
“deposits” - “withdrawals”

@ "Request” — within[3] “grant”

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

“Useful” SystemC properties: examples

@ A signal is written to at most once within ...

@ ...execution of an individual process
@ ...a complete delta cycle
@ ...between two clock ticks

@ The value of variable “balance” is always equal to
“deposits” - “withdrawals”

@ "Request” — within[3] “grant”

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

“Useful” SystemC properties: examples

@ A signal is written to at most once within ...
@ ...execution of an individual process
@ ...a complete delta cycle
@ ...between two clock ticks

@ The value of variable “balance” is always equal to
“deposits” - “withdrawals” ...

o ...in all stable states (no process running)
o ...at beginning of each delta cycle
¢ ...at each clock tick

@ "Request” — within[3] “grant”

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

“Useful” SystemC properties: examples

@ A signal is written to at most once within ...
@ ...execution of an individual process
@ ...a complete delta cycle
@ ...between two clock ticks

@ The value of variable “balance” is always equal to
“deposits” - “withdrawals” ...
o ...in all stable states (no process running)
o ...at beginning of each delta cycle
¢ ...at each clock tick
@ "Request” — within[3] “grant”
e Within 3 "what”?

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Temporal language for SystemC: Desiderata

@ Recognize of SystemC's ability to bridge different levels of
abstraction

@ Specify clockless and clocked modules working together
@ Systematic way to refine properties as design is refined

@ Recognize SystemC's unique simulation semantics

o Expose notification of events
@ Allow different levels temporal resolution

o Give precise definition of a trace
o No existing language addresses this issue

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

A New Approach

Augment existing languages (PSL/SVA), not develop a new one
@ Define a precise notion of a trace of execution for SystemC
models
@ |dentify important Boolean properties relevant to execution or
specification of SystemC
Plug-in our framework in existing specification languages
@ Richer set of Boolean properties

@ Much more flexible temporal resolution: by leveraging the
ability of temporal languages to use Boolean expressions as

clock expressions

A Temporal Language for SystemC

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman

Dealing with the kernel

Why deal with the kernel?
@ Many important properties at sub-A cycle resolution
@ Adapt specifications to level of abstraction
Example: Invariance properties, say, ALWAYS x > 10
@ Must hold at all times
@ Must hold when processes suspend
@ Must hold at delta-cycle boundary
@ Must hold at clock-cycle boundary

This is possible only if we require the kernel to expose information
about its internal state.

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Dealing with the kernel

Complications
@ Many implementations
@ 15K lines of code (in reference implementation)
@ What is the right abstraction?
Our solution
@ Follow the LRM
@ Abstract kernel's implementations, but expose semantics
@ Enable coarser abstractions via clock expression

@ Expose event notifications

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Dealing with the kernel

Complications
@ Many implementations
@ 15K lines of code (in reference implementation)
@ What is the right abstraction?
Our solution
@ Follow the LRM
@ Abstract kernel's implementations, but expose semantics
@ Enable coarser abstractions via clock expression
@ Expose event notifications

Bottom line: expose kernel state and event notifications

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Dealing with user code

Code (Consumer.h)

while (true) {
wait(in.value_changed_event);
int x = in.read();
int y = £(x); // some one-way function
float z = 10/y;

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Dealing with user code

Code (Consumer.h)

while (true) {
wait(in.value_changed_event);
int x = in.read();
int y = £(x); // some one-way function

float z = 10/y;

}

Desideratum: Statement-level assertions

A Temporal Language for SystemC

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman

Dealing with user code

Our approach
@ Each statement defines a new state
@ Expose protected and private variables (white box)

@ Expose properties of function calls (arguments and return
value)

@ Expose properties of SystemC primitives (e.g.. number of
elements in a sc_fifo)

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Traces

@ A SystemC trace is a sequence of states corresponding to
execution of model
@ Expose alternation of control
o kernel
@ user code
o libraries
o “large-step semantics” vs “small-step semantics”
oy = (x++) + (x--);

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Refining specifications

@ Balance = Deposits - Withdrawals

ian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Refining specifications

@ Balance = Deposits - Withdrawals
@ At end of all A cycles

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Refining specifications

@ Balance = Deposits - Withdrawals

@ At end of all A cycles
@ When no process is running

ian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Refining specifications

@ Balance = Deposits - Withdrawals

@ At end of all A cycles
@ When no process is running
o At end of a particular process

A Temporal Language for SystemC

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman

Refining specifications

@ Balance = Deposits - Withdrawals

@ At end of all A cycles

@ When no process is running

o At end of a particular process

@ When a particular function returns

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Refining specifications

@ Balance = Deposits - Withdrawals
@ At end of all A cycles
@ When no process is running
o At end of a particular process
@ When a particular function returns

@ Process A must execute

ian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Refining specifications

@ Balance = Deposits - Withdrawals

@ At end of all A cycles

@ When no process is running

o At end of a particular process

@ When a particular function returns
@ Process A must execute

o Every delta cycle

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Refining specifications

@ Balance = Deposits - Withdrawals
@ At end of all A cycles
@ When no process is running
o At end of a particular process
@ When a particular function returns
@ Process A must execute

o Every delta cycle
o Every clock cycle

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Refining specifications

@ Balance = Deposits - Withdrawals

@ At end of all A cycles

@ When no process is running

o At end of a particular process

@ When a particular function returns
@ Process A must execute

o Every delta cycle
o Every clock cycle
o Every 10 clock cycles

A Temporal Language for SystemC

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman

Refining specifications

@ Balance = Deposits - Withdrawals

@ At end of all A cycles

@ When no process is running

o At end of a particular process

@ When a particular function returns

@ Process A must execute

o Every delta cycle

o Every clock cycle

o Every 10 clock cycles
@ Only once

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Software Verification Perspective

HW/SW co-design: Treating SystemC as software
@ Pre- and post- conditions
@ Properties about the actual parameters of function calls
@ Properties about the return values of function calls
@ Library state only via APls
Relevant prior work

@ SLIC and Blast allow the specification of C interfaces via
specifying properties related to function calls

@ Blast allows access to syntax of executing statements

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Software Verification Perspective

HW/SW co-design: Treating SystemC as software
@ Pre- and post- conditions
@ Properties about the actual parameters of function calls
@ Properties about the return values of function calls
@ Library state only via APls
Relevant prior work

@ SLIC and Blast allow the specification of C interfaces via
specifying properties related to function calls

@ Blast allows access to syntax of executing statements

Key Observation: Expose the syntax

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Conclusion and Discussion

Summary
@ Precise definition of an execution trace
@ A family of expressions that enrich the Boolean layer of any
specification language
@ Mechanism for sampling underlying trace at different levels of
abstraction without changing language
@ SystemC as software
Discussion
@ Framework applicable to formal and dynamic verification
@ Our approach requires very small modifications of SystemC
kernel

@ Current focus: translate specifications into SystemC monitors
and instrument user code

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Appendix

Appendix

ian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal L.

Semantics of SystemC Simulation |

PC « all primitive channels
P « all processes
R « P /* Set of runnable processes */
D «— () /* Set of pending delta notifications */
U « () /* Set of update requests */
T «— () /* Set of pending timed notifications */
for all chan € PC do
run chan.update ()
for all p € R do
if p is initializable then
run p
: for all d € D do
D~ D\d
for all p € P do
if n triggers p then
R—RUpD

© XN a s

e e e
UL S el

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Semantics of SystemC Simulation Il

17: repeat

18: while R # () do /* New delta cycle begins */
19: for all r € R do

20: R—R\r

21: run r until it invokes wait () or returns
22: for all chan € U do /* Update phase */
23: run chan.update ()

24: for all d € D do /* Delta notification phase */
25: D~ D\d

26: for all p € P do

27: if d triggers p then

28: R — RUp /* p is now runnable */

29: /* End of delta cycle */

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Semantics of SystemC Simulation Il

30 if T # () then

31: Advance clock to earliest timed delay t.
32: T— T\t

33: for all p e P do

34: if t triggers p then

35: R — RUp /* p is now runnable */

36: until end of simulation

Deian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

Semantics of SystemC Simulation - Kernel Phase

Our approach: keep track of current phase

Start of
simulation

A4—___Initialization
Update Phase
nase

Evaluation
= ~«—phase
/ Running N
(Process) Update
7 phase

Timed
Notification
Delta
notification

Figure: Captured Kernel States

End of
Simulation

ian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal La

Kernel States in Moy's Abstraction

Notify
Selected
Process

Process
Running

Selecting
Process

Time
Elapse

Figure: Kernel states proposed by Moy et al.

ian Tabakov, Moshe Y. Vardi, Gila Kamhi, Eli Singerman A Temporal Language for SystemC

	SystemC
	Producer-Consumer
	Two writes

	SystemC Events
	Motivating examples
	Desiderata
	Our approach
	Dealing with the kernel
	Dealing with user code
	Software Verification Perspective
	Conclusion and Discussion
	Appendix
	Semantics of SystemC Simulation

