| Simulation-Based Verification Technologies

Building a Bridge: from Pre-Silicon
Verification to Post-Silicon Validation

FMCAD, 2008

Moshe Levinger

26/11/2008

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Talk Outline

= Simulation-Based Functional Verification

= Pre-Silicon Technologies
— Random Test Program Generators
— Model-Based, CSP-Driven Generation
— Coverage-Directed-Generation by Construction
— Coverage-Directed-Generation by Feedback

= Post-Silicon Validation

— Needs, Challenges, Trade-offs
— Post-Silicon Exercisers
— Directable Model-Based Exerciser

= Cross-Platform Functional Verification Methodology

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Talk Sources

“Directable Functional Exercisers”, Gil Shurek, GSRC Post
Silicon workshop, DAC 2008

“Challenges in Post Silicon Verification of IBM’s Cell/B.E. and
other Game Processors”, Shakti Kapoor, HLDVT 2007

“Random Test Generators for Microprocessor Design Validation”,
Joel Storm, EMICRO 2006

“Simulation-Based Functional Verification” course, Avi Ziv,
Technion 2007

“Simulation-Based Verification Technologies at IBM”, Moshe
Levinger, Intel Symposium 2007

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

i _'“ ALL OTHER WiNS
-* PAID Y ATTENDANT

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

The Yin-Yang of Verification

* Driving and checking are the yin and yang of
verification

— We cannot find bugs without
creating the failing conditions

— We cannot find bugs without
detecting the incorrect behavior

© 2008 IBM Corporation




| Simulation-Based Verification Technolo gies

Key Ingredients for Successful Verification

Automation

Quality ety

Shorter TTM
Lower Costs

Better Products




Simulation-Based Verification Technologies

Technology Score Card — Key Quality Dimensions

Sampling Size

Quality of each sample
- Scenario description power
- Testing know-how
- Domain expertise

- Bug awareness
Learning / improvement over time




Simulation-Based Verification Technologies

Pre-Silicon Verification Technologies

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Typical Flow of Simulation-Based Verification

Directives

Checking,
Assertions

Coverage

Design
Under Test

Simulator

Coverage
Information

Coverage
Analysis Tool

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Rudimentary Random Stimuli Generation (RTPG)

Input
Parameters

Test # 1
Test # 2
Test # 3

Fmul F1, F2, F3
Xor G6, G1, G2

The generated tests are
different |

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Example of Test Generator Output

Genesys Pro Test File
Produced on: Tue Oct 16 16:53:55 2001
Def filename: Safs/haifas/homesadir/vizit /01 b /seminar 407 /tutorial.def

- E : PowerP(O Version: Format @
IWITIALIZATIONS: DATA HEHORY (HEMORY
D AF988120 64DA4AZCE #« TABLE EA=43E4C120 WIMG=Z

= it CLUSTER 0
PROCESS 0
esource Initialization INITIALIZATIONS: REGISTERS
R OR OE9Y7168E
B CORD GOZEEGDT




| Simulation-Based Verification Technologies

RTPG: Technology Score Card

Low: simulation & generation speed
Sampling Size

Quality of each sample

Medium:

Hard-coded Testing Knowledge

Learning / Improvement .
Basic input parameters

None

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Model-Based Constraint-Driven Test Program Generator

* Model-based test-case generator which is applicable
for a variety of architectures and designs

= Generic architecture-independent generation engine

= External formal and declarative description of the
Design-Under-Verification (DUV)

= Powerful test description language
— Ranging from completely random to fully specified test cases

= Open architecture for incorporation of Testing
Knowledge

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Model-Based Test Generation — High Level Concept

i

Test Generator
Developer

Terminology 'nl

Application
Engineer

[ )
Inl Request
File
Verification
Engineer

CSP Solver

Test Generation Engine




| Simulation-Based Verification Technologies

Powerful Test Template Definition

= Allows the user to define
delicate verification
scenarios
using the full power of
programming-like language:

Process 1 Process 2 Process 3

Y
— Sequence permute Se'ect Select o Sequence Repeat while $A < 1000

. \/
repeat’ If_then_else ke LoadWord e LoadWord

— Variables, assignments,
expressions, conditions

Load $A

= StoreWord

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Constraint Programming Based Technology

= Allows the user to request any
possible set of constraints
defining a verification scenario

Provides uncompromising and
powerful solutions for complex
sets of constraints

Copes with unique CSP
characteristics:

— Random, uniform distribution
solution - as opposed to one,
all, or “best” solution

— Huge variable domains, e.g.,
address spaces

Test Definition
Requirements

Model of the World
What's valid: Specification of the System under test
¥Vhat's interesting: Testing Knowledge

CSP Solver

Ndistinctest programs (solutions)

*Valid, Interesting
sSatisfy user requirements

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Declarative, Form-based Modeling Environment

Class Property Editor

= A modeling environment for
. Class: REGISTER
- |nStrU CthnS, ReSOU rceS Instance: REGISTER:"Hachine_State_Register™

— Components, Interactions | ricte 21 | 0 vo riret
— Testing knowledge

MNEnONics

redefinition_sequence

Different ‘forms’ are provided
to describe various aspects reloading_sequence
of the design under

Verification storing_sequence

SYNONYKE

undefined_linits

— But, if needed - special
cases can be modeled
through C++ hooks

address_space

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Generic Testing Knowledge

= A set of mechanisms that aim at
iImproving test-case quality
Capitalize on recurring concepts:

— Address translation
— Pipelines
— Caches

The basic mechanism: Space of valid tests
non-uniform random choice + +

— Bias towards ‘interesting’ areas

Examples:

— Resource contention + +
— Translation table entry reuse

‘interesting’ areas
— Data placement

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Model-Based, CSP-Driven TG: Technology Score Card

Low: simulation and generation speed
Sampling Size

High: Testing Knowledge paradigm
Quality of each sample

Rich scenario language

Learning / Improvement
g P Powerful CSP engines

None

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Typical Flow of Simulation-Based Verification

Test

Plan Checking,

Design
Assertions Under Test

Directives

_ Pass
Knowledge Simulator
Generator

Fail

Coverage
Information
'il Coverage

Reports Coverage

Analysis Tool




| Simulation-Based Verification Technologies

Deep Knowledge, Coverage-based Test Generation

Coverage Model

Domain Knowledge

Constraint
Satisfaction

Engine

£

Complete
Coverage of
All Tasks

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

An Example: Deep-Knowledge Test Generator for
Floating-Point

FPgen — generic solution for floating-point verification

FPgen aims to fulfill comprehensive FP test plans:
— Definition of architecture tasks

— Definition of micro-architecture tasks
— Coverage model language

FPgen has a deep understanding of the floating-point world
— Enables the tool to fulfill complex FP tasks

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

FPgen Input: a Floating-Point Data-path Coverage Model

Operand1

+/- Infinity
+/- Zero
+/- Norm
+/- Denorm
+/- Large number
+/- Small number
+/- Min Denorm
+/- Max Denorm
+/- Min Norm
+/- Max Norm

Example: All Types model

Multiply

Operand2

+/- Infinity
+/- Zero
+/- Norm
+/- Denorm
+/- Large number
+/- Small number
+/- Min Denorm
+/- Max Denorm
+/- Min Norm
+/- Max Norm

+/- Infinity
+/- Zero
+/- Norm
+/- Denorm
+/- Large number
+/- Small number
+/- Min Denorm
+/- Max Denorm
+/- Min Norm
+/- Max Norm

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

FPgen Overall Solving Scheme Flow

Choose R Choose search
engine engine

—

Analytic

Not found Binary search Reduction

l l Stochastic
Search
Output no Output the

Output the Output no
solution solution

© 2008 IBM Corporat




| Simulation-Based Verification Technologies

Towards a Fully Automated Solution:
The Generic Test Plan

T i
' e F
e

Generic & = %5
alternative
Implementations

Test plans from users

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Deep Knowledge Generator: Technology Score Card

Very Low: slow generation speed
Very High:

Sampling Size Generic Test Plan concept

Quality of each sample Deep FP knowledge

Learning / Improvement Powerful FP solvers

Bug-driven models in GTP
None

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Typical Flow of Simulation-Based Verification

Test

Plan CheCking, Design

Assertions Under Test

AV N
Test

Directives I I Simulator

Reports Coverage
Analysis Tool

(1 ‘ Coverage




| Simulation-Based Verification Technologies

CDG -- Coverage-Directed-Generation:
using Machine Learning Techniques

= Motivation
Coverage analysis tools can assess the quality of
a set of test cases but cannot recommend how to
improve the set

Objectives
Introduce a feedback loop to tune test generation

— Stimulate hard-to-reach coverage events
— Improve rate of coverage
— Control coverage space distribution

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Coverage-Directed-Generation:
Closing the Loop using Machine Learning Techniques

Approach

How to construct a Bayesian network

= Use Bayesian networks to p—— J—
cp_cmd_enable= | e
represent the CDG {il slft relative ‘-LK}

."I mode welght

ingredients b £ g

{ 0x2,
{ ox1, 00}
:[ OxE_ 110}
= A natural and compact ’ .|—‘

cp_core_enable= |

representation of the (i sift Tolative

I mode weight

distribution space -

{ 0x1. 10-1003,
{ 0x2, 10-100},

}_{ 0x3, 10-100} Coverage Report

= Enables encoding of
essential domain knowledge

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Employing Bayesian Networks for CDG

Test
Directive — mmmmd Simulator Emme Coverage

— Events
Generator Tool

Directive Space Coverage Space

Mapping 7 Mapping

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

CDG by Feedback: Technology Score Card

Sampling Size Low: simulation and generation speed

Quality of each sample Moderate: Depending on the case

Learning / Improvement High: Machine Learning scheme

© 2008 IBM Corporation




Simulation-Based Verification Technologies

Post Silicon Validation Technologies

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

End-to-End View:
From Pre-Silicon Verification up to Production Testing

production testing

. virtual
verification .
bringup

Environments: verification, virtual bringup, bringup, production testing

Platforms: simulation, acceleration, silicon, on wafer

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Growing Need for Post Silicon Verification

* Increasing complexity of h/w designs
— Multi Core/Multi Threads on Chip
— Heterogeneous processors
— Size of the chip

= Pre-Silicon Limitations
— Only a small fraction of the state-space is covered

» Very slow execution speed
 Size of the model
— Does not predict post silicon behavior

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Reminder: Simulation-based Test Generation Methodology

Test
Plan

Simulator /
Templates Accelerator

Coverage
Reports Coverage
Analysis

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Platform Performance

~500B simulation cycles available to verify a processor
SW simulator with 10-100 cyc/sec  : ~1500-150 years
HW accelerator with 10k-50k cyc/sec: 580-115 days
4GHz processor silicon : 125 sec

Test
Plan _

. _ Fass
IS 8l==p Biased-Random . [uy¥s; By Simulator/ N

Test Generator Fail

Templates Accelerator
-~ Coverage
@ Coverage
ln'<_ Reports . II Analysis

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Can we just Replace the Simulator with Silicon?

« High test loading/result off-loading overhead =
low silicon utilization

 Alternatively, need a program to run and check the results =

Test
Plan

i

Test o Test Generator =

Templates

Biased-Random

¢ Coverage

Analysis

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Controllability and Observability

= Controllability - Indicates the ease at which the
verification engineer creates the specific
scenarios that are of interest

= Observability - Indicates the ease at which the
verification engineer can identify when the design
acts appropriately versus when it demonstrates
incorrect behavior

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Platform Tradeoffs

ideal speed

total model control/visibility with | very limited
control/visibility some penalty

relatively expensive very expensive as a
inexpensive functional
verification platform




| Simulation-Based Verification Technologies

Hardware Exercisers: Technology Challenges

= Limited observability
— Challenging checking, debugging and coverage measurement

= On-line generation
— Limiting generation scheme complexity

= OS dependency prevents early deployment, restricts machine access
— Prefer a bare-metal setup or a test-oriented OS

= Acceleration
— Throughput is an issue, also - how to exploit the better observability?

= Wafer testing
— Size of exerciser image (need to fit into L2), throughput

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Checking Schemes for Hardware Exercisers

Based on machine behavior
— Machine hang
— “Bad machine” mechanisms

Self checking: the test does what it’s supposed to do
— Test invariants: Collier scenarios, sorting algorithms, etc.

Built-in reference model

Compare consistency of results & behavior over multiple
runs

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Checking Schemes for Hardware Exercisers (Cont.)

Two Pass Comparison

= First Pass

— Run test in single step mode
— Save state data at periodic checkpoints

» Second Pass

— Reset all data
— Run test normally (no single step)

— Check state data at periodic checkpoints

* Registers
+ Exceptions taken

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Basic Hardware Exercisers: Example #1

Smart generator, simulator and result checker on the processor
— Delicate memory scenarios, fixed point and floating point, etc.

— Limited control and testing-knowledge compared to the
simulation-platform generators

Architectural result-prediction and generation-scheme using an
internal reference model

Challenging maintenance: complexity and architecture, internal
reference model

Utilizing a special tiny OS

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Basic Hardware Exercisers: Example #2

Family of lightweight, bare-metal exercisers
Random, brute-force generation of code-streams

Each exerciser is focusing on selected aspects of the hardware
functionality employing hard-coded internal testing knowledge

Checking: mainly two-pass approach

Limited user control specifying a mix of instruction-patterns, macros,
and functions

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Basic Hardware Exerciser: Technology Score Card

High: hardware speed, fast generation
Sampling Size

Quality of each sample

Low-Medium:

Dedicated Testing Knowledge

Learning / Improvement .
Basic input parameters

None

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Basic Hardware Exercisers — What's Missing

Limited confidence in the combined coverage provided by a
mosaic of overlapping means

— Functional and physical aspects

— Coverage goals and measurement methods only partially
available

Difficulty to reproduce simulation and field failures

Re-use of pre-silicon verification knowledge and IP

Tool Productivity aspects

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Can we Just Run the Generator as a H/W Exerciser?

« Bare metal implies no file handling for templates/tests
* Need to keep the generator simple
* Need to handle the model-based nature

Plan

Architectural Model

Test Directable Tes t
T I Biased-Random
emplates Test Generator
s Coverage Coverage
'n'<_ Reports Analysis
”

\ 4

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

ThreadMill: a Directable Model-Based Exerciser

= Platform to demonstrate and enable
cross-fertilization of silicon and
simulation-based verification
methodology

Simple to maintain, functional-
coverage oriented exerciser

Targeting
multithreading/multiprocessor
configurations on silicon and
acceleration platforms

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Architecture of a Directable Model-Based Exerciser

Symmetric Multi-Processor Test
Program Generator Exerciser Exerciser Image

Generator
:

Kernel

Architectural
@ Model

S
Test Template RGN & ﬂ ............... ﬁ
::> BUiIder ::> ' ::> -

System Topology
& Configuration ﬁ . Executlon
-  Checking |

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Example: Test Template

File Edit Insert Mew Tools Windows Help

o > | 4 B B~
> 2l > 2 ~ [0 > [0 [ B v v [

Events Classes Include L _ _
v R ? 1 & Repeat Mhemonic Data RA Code RA

E [l CONCURREMT

Eh 22 PROCESS (0,0)

O lwa lwa (58
El g8 One of

(T 10 st St ()
D 10 lwa lwa  (FA)

= 22 PROCESS (0,1)
D) stw [M100200]  stw_ (§A

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Example: Model of the Power IS

% Eile Edit ¥ew Tools Window Help
B @? Ry ) In 3() 3’\ 7,!?' <« =>4 Current model: PLD

Types Al |' Name |Lnad_Wnrd_and_Zero

Name 2! Parents IBaseLoad\nstruction

® add_To_Minus_One_Extended [Instructions_Embecdded]

® Add_To_Minus_One_Extended_OWF [Instructions_Embedded] I~ Meta I instantiatable I~ Abstract
® Add_To_Minus_One_Extended_OWF_REC [Instructions_Embedded]
® add_To_Minus_One_Extended_REC [Instructions_Embedded)] Data Members
® add_To_Zero_Extended [Instructions_Embedded)

® add_To_Zero_Extended_OWF [Instructions_Embedded]

® add_To_Zero_Extended_OWF_REC [Instructions_Embeddecd]

® add_To_Zero_Extended_REC [Instructions_Embedded)

-® Baseloadinstruction

% Load_Byte_and_Zero

M Load_Byte_and_Zero_Indexed

% Load_Byte_and_Zero_with_Update [Instructions_Embedded]

T Load_Byte_and_Zero_with_Update_Indexed [Instructions_Embed. |
T Load_Halfword_algebraic

T Load_Halfword_algebraic_Indexed

T Load_Halfword_algebraic_with_Update [Instructions_Embedded]

T Load_Halfword_algebraic_with_Update_indexed [Instructions_Err
| oad_Halfword_Byte_Reverse_Indexed

| oad_Halfword_and_Zero [Instructions_Embedded)

| oad_Halfword_and_Zero_Indexed [Instructions_Embedded)]

| oad_Halfword_and_Zero_with_Update [Instructions_Embedded)]
| oad_Halfword_and_Zero_with_Update_Indexed [Instructions_Err
1 oad_Multiple_Word [Instructions_Embedded]

| oad_string_Word_Immediate [Instructions_Embedded]

| oad_striing_word_Indexed [Instructions_Embedded]

| oad_word_and_Reserve_Indexed [Instructions_Embedded)]

| oad_word_Byte_Reverse_indexed [Instructions_Embedded]

ML oad Word_and Zero [Instructions Embeddec]

L oad_word_and_Zero_Indexed [Instructions_Embedded)]

L oad_word_and_Zero_with_Update [Instructions_Embedded)]
®Load_word_and_Zero_with_Update_Indexed [Instructions_Embet
-®BaseStorelnstruction

#®Branch [Instructions_Embedded]

) Branch_aABS [Instructions_Embedded]

) Branch_conditional [Instructions_Embedded)]

) Branch_conditional_ABS [Instructions_Embedded)]

| Actual Domain

c ands record<Operand>
BhaseOrZeroD MemdBaseOrZeroDByteSource

Universal set, 32 hit width

-

Int: {1 elements) 2

1 hit stream items: OxFF
f <) 4

EEEREEEEEE

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Threadmill Testing Knowledge Example:
Memory map, collision scheme

shared code/data
Memory Image

data
test code

data
test code

data
test code

scratch area

collision area

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

ThreadMill Deployment

« Significant role within the functional verification
methodology of IBM’s Power processors

« High-end server processor

« Multi-processor, multi-threading

* Powerful test template language has proven effective for
bug recreation on silicon

« May also be used to assist production testing

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

ThreadMill: Technology Score Card

Sampling Size
Quality of each sample

Learning / Improvement

High: hardware speed, fast generation
High: Testing Knowledge
Rich input language

Reuse of pre-silicon scenarios
None

© 2008 IBM Corporation




| Simulation-Based Verification Technologies

Cross-Platform Functional Verification Methodology

Functional Verification Plan

l Coverage analysis

Pre-Silicon Test Templates /—\
— Verification on Simulator

I
Adaptation |

| Coverage analysis

Post-Silicon Test /\ L
Templates —_— Verification on Accelerator

Post-Silicon Verification

| © 2008 IBM Corporation




| Simulation-Based Verification Technologies

Building a Bridge: Summary

« A functional verification methodology based on
« A simulation platform
« A directable test program generator
« A set of test templates covering the functional verification plan

« Coverage measurement and feedback

« Can be extended from pre-silicon to post-silicon by the use of
a directable hardware exerciser

© 2008 IBM Corporation




Thank you




