
© 2009 IBM Corporation

SAT-based Synthesis of Clock Gating Functions
Using 3-Valued Abstraction

Oleg Rokhlenko

Joint work with Eli Arbel and Karen Yorav

IBM Haifa Research Labs

© 2009 IBM Corporation �2009

� Saving power by stopping the clock

� Clocks consume up to 50% of dynamic power

� Clock gating

– Reduces dynamic power consumption

– Prevents unnecessary switching of parts of the clock network

� Fine-grained clock gating

– Analyze each latch/FF separately
• Gate-level analysis

Clock-Gating

�������

© 2009 IBM Corporation �2009

Clock gating analysis approaches

� Structural analysis

– RTL-coding/gate-level structures

– Scalable but limited in strength

� Functional analysis

– Simulation based
• Partial coverage of design behavior

– Formal
• Finds all opportunities but capacity is an issue

������ ���	�
��

���
�����
� �
�����

������ ���	�
��

���
�����
� �
�����

© 2009 IBM Corporation �2009

� Feedback Loop Elimination (combinatorial clock gating):

– Based on hold conditions

� A valid gating function – but may be infeasible

– E.g. timing/area constraints

� There are other types of clock gating

– Sequential clock gating, e.g. based on unobservability conditions

Typical (functional) clock-gating algorithm

© 2009 IBM Corporation �2009

BDD-based clock-gating

� Build the strongest function

– typically based on one or more copies
of the next-state function

� Minimize the function

– by building its BDD

� Synthesize a net-list implementation

– translation from BDD to net-list

� Timing constraint:

– a CG signal may arrive too late,
skewing the clock signal

© 2009 IBM Corporation �2009

� Build the strongest function

– typically based on one or more copies
of the next-state function

� Minimize the function

– by building its BDD

� Synthesize a net-list implementation

–translation from BDD to net-list

BDD-based clock-gating

BDD

BOOM!

� Approximate the function

–to allow for timing/area constraints

–e.g. by “trimming” the BDD

© 2009 IBM Corporation �2009

Our contribution: SAT-based clock-gating

Overview:

� Send the algorithmic gating function to a SAT-solver

– each satisfying assignment is a gating opportunity

� Use an “all-SAT-like” algorithm to produce assignments

– the result is the disjunction of all assignments

SAT
solver

Satisfying
assignment

jσ

)(jfCNF σ¬∧

f

What about the
depth problem?

�

© 2009 IBM Corporation �2009

Our contribution: SAT-based clock-gating

Overview:

� Send the algorithmic gating function to a SAT-solver

– each satisfying assignment is a gating opportunity

� Use an “all-SAT-like” algorithm to produce assignments

– the result is the disjunction of all solutions

� Make the solver produce bounded-size clauses

– directly generating the approximated solution

� Further optimize if needed

– possibly using BDD-based solutions

© 2009 IBM Corporation �2009

3-valued logic

� In 3-valued logic the value X stands for unknown

� If for some assignment , , then

� Since it’s a one way implication, it’s an approximation.

– Xs values imply universal quantification but not every
quantification can be done with Xs

Xi =)(σ

bfibf =∀→=)(:)(σσ }1,0{∈b

σ)(finputsi ∈

© 2009 IBM Corporation 	
2009

SAT-based Synthesis of Clock Gating Functions

i1

i2

i3

f

Xii ≠↔=1α

� ≤↔=
i

i ng α1

�i1

�i2

�i3

�

g

Ψ

© 2009 IBM Corporation 		2009

SAT-based Synthesis of Clock Gating Functions

i1

i2

i3

f
�i1

�i2

�i3

�

g

Ψ

SAT
solver

Satisfying
assignment

jσ

)(jCNF σ¬∧Ψ

© 2009 IBM Corporation 	�2009

Example

i1

i2

i3

f
�i1

�i2

�i3

�

g

Ψ

1

0

X

2=n

1

0

1

12 =→≤� g
i

iα

=1

=1

)(31 ii ∧

© 2009 IBM Corporation 	�2009

Example

i1

i2

i3

f
�i1

�i2

�i3

�

g

Ψ

X

X

1

2=n

0

1

0

12 =→≤� g
i

iα

=1

=1

)(31 ii ∧
)(2i

∨

© 2009 IBM Corporation 	�2009

Experimentation
Latches on which BDD timed-out We show only designs with > 10%

of hard latches

The SAT-based approach succeeded in finding a clock gating condition for more

than 73% of all the hard latches.

© 2009 IBM Corporation 	�2009

Over abstraction

� 3-valued abstraction is an approximation of universal
quantification, but is not exact.

– It is possible for there to be a term of size n that implies f while
there exists no satisfying assignment to �

� Example:

� Solution:

– use higher values of n than our actual depth limit and then use
BDD to optimize further

jiif ∧¬∨=)(

)1,(X=σ

X

1

X

X

j is a legal clock-gating function

For n=1 our approach won’t find it

© 2009 IBM Corporation 	�2009

Experimentation (over abstraction)

� For 27% of hard latches, the SAT solver reported
unsatisfiability.

� Using stronger machine with much more time and memory,
the BDD-based approach reported the following:

– 2% - no gating possible

– 78% - BDD exploded

– 20% - BDD solved, having an average depth 50.6. After
approximation (up to depth=6), only 2% remain having
on-set probability > 0.1

� All-in-all only 0.5% of hard latches were missed !

The probability of the clock
gating function evaluating to ’1’

© 2009 IBM Corporation 	�2009

Experimentation (iterative approach)

� Iterative approach for a specific latch, when n = 1 to 6
– Start with n=1 and increment by one each time we get UNSAT

� After 6 seconds, on-set probability is 93% of the optimum.

� The iterative approach allows us getting the strongest result.

© 2009 IBM Corporation 	�2009

Conclusion

� Using SAT when BDD fails allows handling much larger
designs than before.

� Using 3-valued abstraction, we are able to directly generate
the (strongest) approximation.

� Our approach produces partial results even if the
computation is not completed within a set time limit.

� Over approximation is present, but we are fine with it.
Moreover, extending n beyond our target depth overcomes
the over-approximation.

� In general, our approach allows universal quantification
using SAT.

© 2009 IBM Corporation 	�2009

Thank you !

Questions?

