
An Incremental Approach to Model Checking

Progress Properties

Aaron R. Bradley, Fabio Somenzi, Zyad Hassan, Yan Zhang

Dept. of Electrical, Computer, and Energy Engineering

University of Colorado at Boulder

Email: bradleya@colorado.edu, fabio@colorado.edu

Abstract—An incremental algorithm for model checking
progress properties is proposed. It follows from the following
insight: any SCC-closed region of a system’s state graph can be
represented by a sequence of inductive assertions. Each iteration
of the algorithm selects a set of states, called a skeleton, that
together satisfy all fairness conditions; it then applies safety
model checkers to attempt to connect the states into a reachable
fair cycle. If this attempt fails, the resulting learned lemma
takes one of two forms: an inductive reachability assertion that
shows that at least one state of the skeleton is unreachable,
or an inductive wall that defines two SCC-closed regions of
the state graph. Subsequent skeletons must be chosen entirely
from one side of the wall. Because a lemma often applies more
generally than to the one skeleton from which it was derived,
property-directed abstraction is achieved. The algorithm is highly
parallelizable.

I. INTRODUCTION

An incremental-style analysis, one that generates many

intermediate lemmas on the way to a proof, yields property-

focused abstraction, speed, and the possibility of parallelism.

IC3 demonstrated the power of incrementality for safety model

checking [1]. In this paper, we introduce an incremental

algorithm for model checking progress properties [2] that

harnesses safety model checkers.

While alternatives exist for lifting safety model checkers to

progress properties [3], incrementality in itself is a worthwhile

goal—whether one is using parallel resources to implement

a portfolio of many safety model checkers [4] or applying

the resources to accelerate computation [1]. In addition to us-

ing computational resources well, an incremental-style model

checker generalizes from specific cases of why the property

might not hold to intermediate lemmas about aspects of the

system that are relevant to proving the property. In this way, it

achieves property-focused abstraction of the system, and like

a human verifier, it invests relatively little computation into

discovering each lemma.

An SCC-closed region of the state graph is such that

every SCC (strongly connected component) is either entirely

contained in the region or entirely disjoint from the region. The

fundamental insight for making an incremental progress model

checker is that any SCC-closed region of a system’s state graph

can be represented by a sequence of inductive assertions. In

other words, intermediate lemmas to characterize the SCCs

of the state graph can take the form of inductive assertions.

Each assertion defines a one-way wall that transects the state

SCC graph. Given a selection of states, called a skeleton,

that together satisfy the fairness conditions, one can prove via

safety queries that (1) at least one of the states is unreachable

from the system’s initial condition; that (2) one of the skeleton

states cannot reach another, providing a one-way wall; or that

(3) the skeleton can actually be completed to form a “lasso”-

shaped counterexample. How to use the second outcome is the

crux of the algorithm.

Suppose that P is the one-way wall, an inductive proof that

one skeleton state cannot reach another. Any fair cycle must

occur completely on one side of the wall: all of its states

must either satisfy P , or they must all satisfy ¬P . For once

a path crosses the wall, it cannot return. Hence, when finding

fair cycles, the transition relation can be strengthened by the

constraint P ↔ P ′, which excludes transitions that cross the

wall P . (Technically, because P is inductive, only ¬P → ¬P ′

is necessary.) This constraint is the incremental information

expressed by the lemma P . Subsequent skeletons must be

chosen from one side of the wall or the other, and eventually

every reachable arena defined by the sequence of walls must

become unfair, if the progress property indeed holds. A crucial

characteristic of a proof, when IC3 is used as the safety model

checker, is that it potentially splits many arenas, not just the

arena from which the skeleton was selected. Hence, not every

arena need be examined explicitly.

After introducing the problem domain (Section II), Section

III describes the algorithm in detail. Then Section IV relates

the proposed algorithm to previous work. Finally, Section

V investigates empirical characteristics of the algorithm in

relation to other well-known techniques.

II. BACKGROUND

Following standard practice, we represent a finite-state

system as a tuple S : (i, x, I(x), T (i, x, x′)) consisting of

primary inputs i, state variables x, a propositional formula

I(x) describing the initial configurations of the system, and

a propositional formula T (i, x, x′) describing the transition

relation. Primed state variables x′ represent the next state.

A state of the system is an assignment of Boolean values

to all variables x and is described by a cube over x, which,

generally, is a conjunction of literals, each literal a variable

or its negation. An assignment s to all variables of a formula

F either satisfies the formula, s |= F , or falsifies it, s 6|= F .

If s is interpreted as a state and s |= F , we say that s is

an F -state. A formula F implies another formula G, written

F ⇒ G, if every satisfying assignment of F satisfies G.

A clause is a disjunction of literals. A subclause d ⊆ c is a

clause d whose literals are a subset of c’s literals.

A run of S, s0, s1, s2, . . ., which may be finite or infinite in

length, is a sequence of states such that s0 |= I and for each

adjacent pair (si, si+1) in the sequence, ∃i.(i, si, s
′
i+1) |= T .

That is, a run is the sequence of assignments in an execution

of the transition system. A state that appears in some run of

the system is reachable.

An invariance property P (x), a propositional formula,

asserts that only P -states are reachable. P is invariant for

the system S (that is, S-invariant) if indeed only P -states

are reachable. If P is not invariant, then there exists a finite

counterexample run s0, s1, . . . , sk such that sk 6|= P . An

invariance property P (x) is inductive if

1) (initiation) every initial state satisfies the property:

I(x) ⇒ P (x); and
2) (consecution) every transition from a P -state leads to a

P -state: P (x) ∧ T (i, x, x′) ⇒ P (x′).

An assertion F is inductive relative to another assertion G,

possibly containing primed variables, if

1) every initial state satisfies F : I(x) ⇒ F (x); and
2) F satisfies consecution under assumption G:

G(x, x′) ∧ F (x) ∧ T (i, x, x′) ⇒ F (x′).

Relative induction is useful for gaining knowledge about a

system in an incremental fashion [2].

Checking a safety property of S is reducible to checking an

invariance property. While the work described in this paper

makes use of safety model checkers, the primary focus is on

analyzing progress properties [2]. For this purpose, we need

to introduce fairness into our system models. A Büchi fairness

condition B(x) of a system S is a propositional formula that

constrains the infinite runs of S: infinite run s0, s1, s2, . . . is a

computation of S if infinitely many si satisfy B, si |= B. We

represent a system with fairness conditions as the augmented

tuple S : (i, x, I(x), T (i, x, x′), B : {B1(x), . . . , Bℓ(x)}).
The fundamental question that this paper addresses is that of

language emptiness: Does S lack computations?

Model checking LTL properties of systems motivates this

problem. Deciding whether a system S satisfies LTL property

P is reducible to checking language emptiness of the system

constructed as the parallel composition of S and the Büchi

automaton A for ¬P . The resulting system inherits the fairness

conditions of S as well as one additional fairness condition,

the Büchi acceptance condition of A.

A fairness condition B of S is weak [5] if for every

computation of S there exists k such that i ≥ k ⇒ si |= B.

Weak fairness conditions correspond to persistence properties

[2]. Multiple weak conditions can be reduced to just one weak

condition so that the search for fair cycles can be restricted

to the reachable states that lie on some cycle where the weak

condition holds globally. When a fairness condition of S is

inherited from a Büchi automaton, its strength is at most the

strength of the fairness condition of the automaton [6].

Because S is finite-state, a nonempty language described by

system S with fairness conditions must have a computation

that takes the form of a reachable fair cycle: a “lasso”

consisting of a “stem” (a finite run) from an initial state s0,

s0 |= I , to an intermediate state si, and a “loop” (also a finite

run) from si back to itself that contains at least one state sj

satisfying each fairness condition Bj . Our algorithm searches

for such reachable fair cycles.

III. Fair: AN INCREMENTAL ALGORITHM

A. The Basic Algorithm

The algorithm works in the following manner. It iteratively

executes a skeleton query to obtain a set of states that together

satisfy all fairness conditions. If the query is ever unsatisfiable,

the algorithm concludes that the language of S is empty. It

next attempts to complete the skeleton into a reachable fair

cycle by executing a set of safety model checking queries

to connect the initial states to one state of the skeleton, and

each state of the skeleton to another in such a way as to

create a cycle. If it succeeds, then it has found a reachable

fair cycle and thus concludes that the language of S is not

empty. Otherwise, one of the safety queries fails and returns an

inductive proof. If the stem query, which attempts to connect

an initial state to a skeleton state, fails, then the proof provides

new global unreachability information. If a cycle query, which

attempts to connect one skeleton state to another, fails, then the

proof yields new information about the SCC structure of S. In

particular, the proof says that a fair cycle, if one exists, must

occur completely on one side or the other of the inductive

proof (that is, all states of the cycle must satisfy the proof,

or all states must falsify it). Both situations thus cause the

algorithm to make progress, so that it eventually must find a

reachable fair cycle or conclude that one does not exist.

In detail, consider system S : (i, x, I(x), T (i, x, x′), B :
{B1, . . . , Bℓ}). Let R denote a growing list of global reacha-

bility assertions, each of which is inductive relative to its pre-

decessors and provides information about unreachable states.

Let W denote a growing list of walls that no fair cycle can

cross, each of which satisfies consecution relative to previously

generated walls and R, as discussed in detail later. Walls

represent learned information about the SCC structure of the

state graph of S. A set of walls W defines 2|W| (possibly

empty) arenas; each arena (and, consequently, any union of

arenas) is SCC-closed. Both lists are empty initially.

The skeleton query returns a skeleton or, if unsatisfiable,

indicates that the language of S is empty. A skeleton consists

of a set of states that together satisfy all fairness conditions.

The query requires (in its complete form, but see Section III-B)

one copy of x for each fairness condition B ∈ B:

∧

B∈B

B(xB) ∧
∧

R∈R

R(xB)

∧
∧

W∈W

(cW → W (xB)) ∧ (¬cW → ¬W (xB))

The first line of the query requires that the states of a model

be such that each fairness condition is represented by states

not known to be unreachable. The second line requires that all

states of a model come from the same arena, that is, are on

the same side of each wall W ∈ W . The choice variables cW

for W ∈ W achieve this requirement: a model can only have

one assignment to each choice variable, and that assignment

determines on which side of each wall the skeleton appears.

If the skeleton query is satisfiable, any model describes

some set of states {s0, . . . , sn−1}, where n ≤ |B|, that satisfy
the fairness conditions, that are not known to be unreachable,

and that are not separated by any previously discovered wall

(n < |B| if some state satisfies multiple fairness conditions

and appears more than once). The task, then, is to attempt

to complete the skeleton into a reachable fair cycle or, if

the attempt fails, to learn new information in the form of an

inductive reach assertion or a wall about why any reachable

cycle of S cannot contain all of the states of the skeleton.

Any safety model checker that produces counterexample

runs or inductive proofs can address this task, although we

discuss later why proofs from certain model checkers, like

IC3, make better walls. Let reach(S, C, F, G) be a function

that accepts a system S, a set of constraints C(x, x′) on the

transition relation, an initial condition F , and a target G; and

that returns either a counterexample run from an F -state to a

G-state, or an inductive proof P (x) separating F from G, that

is, such that

• F (x) ⇒ P (x),
• P (x) ⇒ ¬G(x), and
• C(x, x′) ∧ P (x) ∧ T (i, x, x′) ⇒ P (x′).

Notice that P is inductive relative to the constraints C.

For an n-state skeleton, n + 1 reach-queries are required.

One stem query determines if the skeleton is reachable, given

the learned reachability information R:

reach

(

S,
∧

R∈R

R(x), I, s0

)

. (1)

This query asks whether s0 is reachable from an I-state. While

the previous reachability information is not necessary, it is

provided to restrict the search. One could instead pose the

more general query in which the disjunction of all skeleton

states,
∨n−1

i=0 si, is the target; or pose n queries, one for each

state si, depending on computational resources. If an instance

of a stem query is unsatisfiable, the proof is added to R.

The remaining n queries are cycle queries, which determine

if each state si can reach a successor si⊕n1, where ⊕n is

addition modulo n. One can pose up to n2 queries if the

computational resources are available. These queries are more

complicated than the stem query because more previously-

derived information can be used.

A naive cycle query takes the following form:

reach (S, true, si, si⊕n1) . (2)

If si cannot reach si⊕n1, then the query returns an inductive

proof P : si ⇒ P , P ∧ T ⇒ P ′, and P ⇒ ¬si⊕n1. P is a

wall: no cycle can cross it because no P -state has a ¬P -state

successor. While a ¬P -state can have a P -state successor,

crossing the wall is pointless when searching for a cycle since

it cannot be crossed again. P can thus be added to W , the list

of walls that no fair cycle can cross.

However, this query does not exploit known information.

For a cycle query, each wall W ∈ W constrains the transition

relation as follows:

• If no W -skeleton (a skeleton whose states are W -states)

exists, then ¬W ∧ ¬W ′.

• If no ¬W -skeleton exists, then W ∧ W ′.

• Otherwise (if both sides contain skeletons), W ↔ W ′.

Unfortunately, encoding the full constraints in the cycle

queries requires a quantifier alternation. Instead, each new wall

W is tested to learn a new constraint on T ; such constraints

are collected in the constraint list C:

• If no W -skeleton exists, then add ¬W ∧ ¬W ′. (Techni-

cally, because W is inductive, ¬W ′ is sufficient.)

• If no ¬W -skeleton exists, then add W∧W ′. (Technically,

W is sufficient.)

• Otherwise, add W ↔ W ′. (W ′ → W is sufficient.)

• Optionally, if W is determined (heuristically) to be un-

interesting for constraining T , do not add a constraint.

It is also possible to exclude regions defined by multiple

walls—even individual arenas—that lack fair skeletons. How-

ever, this more general heuristic, while potentially useful at the

beginning of the analysis, is too expensive for general use. The

list C is used to constrain T during the cycle query:

reach

(

S,
∧

R∈R

R ∧
∧

C∈C

C, si, si⊕n1

)

. (3)

This query is satisfiable precisely when the naive cycle

query (2) is satisfiable. However, a proof discovered during

evaluating this query need only be inductive relative to the

information contained in R and C rather than on its own.

There is one technicality: when there is only one state in

the skeleton, the form of the single cycle query is different. A

single-state skeleton cycle query determines if a state s0 can

reach itself nontrivially, which is stated as a query determining

whether the successors of s0 can reach s0:

reach

(

S,
∧

R∈R

R ∧
∧

C∈C

C, post(S, s0), s0

)

. (4)

(Safety model checkers such as IC3 can be modified in such

a way that the post-image does not have to be computed

explicitly.) Additionally, a proof P does not eliminate the same

skeleton from further consideration. P , as a wall, separates

s0 (which satisfies ¬P) from its successors (which satisfy

P). However, s0 can be selected as a skeleton again. There

are several solutions to avoid this nontermination situation:

(1) constrain the skeleton query so that only states with

some successors in the same arena can be selected, (2) for

a cycle proof P , construct a wall defined by W = P and

¬W = ¬P ∧¬s0 instead of the usual wall defined by W = P

and ¬W = ¬P . More powerful refinements of each of these

solutions are discussed in Sections III-B and III-C.

If all queries (1) and (3/4) return counterexamples, the runs

are assembled into a computation that takes the form of a lasso,

proving that the language of S is nonempty. Otherwise, a proof

P returned by the stem query provides new global reachability

information, so P is added to R; or a proof P returned by one

of the cycle queries provides new information about the SCC

structure of S, so P is added to the set of walls, W , and a

new constraint may be derived from P and added to C. Then
with this new information, the algorithm again executes the

skeleton query. The new information is sufficient to exclude

the same skeleton from being selected again.

Several aspects of this basic algorithm are nondeterministic

and thus invite further detail and heuristics:

• Selection of the skeleton (Section III-B).

• The order in which the stem query and cycle queries are

executed (Section III-F).

• The proofs themselves (Section III-D).

• Whether to derive a new constraint on T from a wall W .

Technically, none are required for completeness; using

some accelerates the search; and using all can slow the

search. Our implementation derives a new constraint from

W if one side of W lacks skeletons or if W consists of

a single clause.

Section III-E discusses an incomplete but effective method

of discovering information about the SCC structure indepen-

dently of skeletons.

B. Choosing Skeletons

We discuss two enhancements to the basic algorithm. The

first minimizes the number of states in skeletons by formu-

lating the skeleton query to force states to satisfy multiple

fairness conditions when possible. The intuition is that the

discovered walls might explain more if the separated states

satisfy multiple fairness conditions. The second enhancement

adds constraints to the skeleton query to force a selected state

to have at least K-step successor and predecessor sequences

of different states within the arena, unless some state in these

sequences is the state itself. This enhancement effectively

reduces the number of skeletons to consider. For K > 0,
single-state skeletons with no successors cannot be chosen, so

that this enhancement addresses the termination issue raised

in the previous section.

To (heuristically) minimize the number of states selected,

let j : B → {1, . . . , |B|} be a map from the Büchi fairness

conditions of S to indices, where j can map different fairness

conditions to the same index. The skeleton query then has the

following form:

∧

B∈B

B(xj(B)) ∧
∧

R∈R

R(xj(B))

∧
∧

W∈W

(cW → W (xj(B))) ∧ (¬cW → ¬W (xj(B)))

Potentially fewer copies of the assertions are required.

Of course, the query is only complete, in the sense that its

unsatisfiability implies the emptiness of the language of S,

when each condition is mapped to a unique index. Hence, the

modified algorithm finds a map j that (heuristically) minimizes

the number of unique indices while still producing a satisfiable

query. If because of new information the query becomes

unsatisfiable, a new map, which may have the same number of

unique indices but must at least combine conditions differently,

is generated. Only when the query corresponding to a bijective

mapping is unsatisfiable does the algorithm conclude that the

language of S is empty.

The second enhancement reduces the number of poten-

tial skeletons by requiring selected states to have nontrivial

sequences of successors and predecessors. For each unique

index, 2K unrollings of the transition system are asserted with

time-steps ranging from −K to K . An additional constraint

asserts that either the predecessor sequence or the successor

sequence includes x0
j(B) itself, or otherwise that the predeces-

sor sequence and the successor sequence are each loop-free,

yielding the following skeleton query:

∧

B∈B

B(x0
j(B)) ∧

∧

R∈R

R(x−K
j(B))

∧
∧

k∈{−K,...,K−1}

T (i
k

j(B), x
k
j(B), x

k+1
j(B))

∧

∨

k∈{−K,...,−1,1,...,K}

xk
j(b) = x0

j(b)

∨ (loopFree<0 ∧ loopFree>0)

∧
∧

W∈W

(cW → W (x−K
j(B))) ∧ (¬cW → ¬W (xK

j(B)))

where

loopFree<0 =
∧

k∈{−K,...,−2}

∧

ℓ∈{k+1,...,−1}

xk
j(B) 6= xℓ

j(B) ,

and loopFree>0 is similarly defined.

C. Single-State Skeletons

Recall that single-state skeletons must be handled via a

single-state cycle query (4) that determines whether the suc-

cessors of s0 can reach s0. If the query returns a proof P ,

then the successors of s0 must satisfy P since they define the

initial condition, while s0 itself must falsify P since it defines

the target. In other words, the proof P cuts the state space

directly through the transitions between s0 and its successors,

so that s0 is on the edge of an arena.

Consequently, the following propositional query, which asks

if s0 has any ¬P -successor, must be unsatisfiable:

s0 ∧ ¬P ∧ T ∧
∧

C∈C

C ∧
∧

R∈R

R ∧ ¬P ′ .

From the unsatisfiable core one can extract a cube d ⊆ s0

whose ¬P -states lack ¬P -state successors. Its negation can

be conjoined to ¬P to form one side of the wall: ¬P ∧ ¬d,

which eliminates at least s0 from consideration.

If a successor state t of s0 is known, for example, when

K > 0 (Section III-B), a similar query can test whether t has

P -predecessors. If not, one can extract a cube d ⊆ t from the

core and strengthen P with ¬d.

D. Refining IC3 Proofs

IC3 discovers inductive proofs P in CNF [1]. While ade-

quate as certificates of unreachability, which is what matters

in the context of safety model checking, the proofs can be

unnecessarily large and specific to the query. For example,

a proof from a cycle query contains the clause ¬si⊕n1. We

describe several methods of manipulating an IC3 proof to

make it more general and to reduce its size.

The property can be generalized. Let P = F ∧¬si⊕n1. The

MIC algorithm [7] is applied to ¬si⊕n1 in the context of P

to derive a subclause c ⊆ ¬si⊕n1, yielding proof P = F ∧ c.

The proof P can be strengthened by applying MIC itera-

tively to the clauses of P until no further changes are possible.

We apply this manipulation to global reachability proofs.

The proof P can be weakened. Again, let P = F ∧c, where

c ⊆ ¬si⊕n1. A MIC-like algorithm is applied to drop clauses

of F . First, observe that one can use the unsatisfiable core

of F ∧ c ∧ T ∧ ¬P ′, corresponding to consecution, to reduce

P : any clause of F that is not in the core is unnecessary.

Second, observe that dropping an arbitrary clause d can result

in a non-inductive assertion because d might be required to

support other clauses. In this case, consecution fails with

some counterexample states (t, t′). The set of clauses that

t′ falsifies in the next state must then be dropped, as they

are no longer supported. Dropping these clauses may in turn

require dropping other clauses, and so on. If ever c becomes

unsupported (that is t′ falsifies c′), the process must backtrack

to the last inductive assertion; there, the same steps can be

applied to a different clause unless all options have been

explored. Alternately, if the process converges on an assertion

for which consecution holds, the first observation can be used

to further reduce the clause set. Then the clause-dropping

process can be attempted again.

These manipulations can be combined to heuristically de-

rive a minimally-sized proof: iteratively apply strengthening

followed by weakening until no further changes can be made.

Strengthening may reduce the number of literals, while weak-

ening may reduce the number of clauses.

E. Skeleton-Independent Proofs

Skeletons serve to direct the exploration of the SCC struc-

ture of S; however, some important facts are not easily derived

by this property-directed method.

Consider, for example, a system consisting of a single n-

bit counter whose bits are named b0, . . . , bn−1, where bn−1

is most significant; an output bit o that switches to 1 the first

time that the counter reaches all 1s and then stays at 1; a

fairness condition that asserts that infinitely often ¬o; and an

initial condition in which all bits are 0. The system is unfair

because o = 0 only for the first iteration through the counter’s

values. An ideal proof is constructed as follows:

• Inductive assertion o, since once o becomes 1, it stays

1. No skeleton exists among the o-states, so ¬o ∧ ¬o′

constrains future cycle queries.

• Inductive (relative to ¬o) assertion bn−1, since once bn−1

becomes 1, it stays 1 in the ¬o arena. Both sides of the

proof have skeletons, so bn−1 ↔ b′n−1 constrains future

cycle queries.

• Inductive (relative to previous walls) assertion bn−2, since

once bn−2 becomes 1, it stays 1 in every arena defined

by the previous two proofs.

• Similarly, inductive assertions bn−3, . . . , b0 are derived in

that order, each holding relative to prior information.

When K > 0 (see Section III-B), the skeleton query becomes

unsatisfiable after these walls are generated: because of the

learned constraint b0 ↔ b′0, each arena has only one state, and

that state lacks a successor in its arena. The size of the proof

is thus linear in the size of the counter. This proof sequence

discovers the obvious ranking function.

Unfortunately, discovering the first fact with skeletons re-

quires stumbling fortuitously upon the skeleton in which all

bi = 1 and o = 0. This state’s only successor is the state

in which all bi = 0 and o = 1, so an inductive separating

wall is indeed o. However, no other fair state has a successor

in which o = 1, so the resulting walls cannot simply be

o (since the successor must satisfy it) or ¬o (since both

the fair state and its successor satisfy it and thus are not

separated). In other words, their walls must involve bi literals

and be less informative as a result. Discovering subsequent

facts via skeletons requires similarly, although decreasingly,

fortuitous selections; for example, to discover bn−1 requires

examining precisely the one state for which bn−1 = 0 and

whose successor has bn−1 = 1.
In contrast, iteratively testing whether any literal of the state

variables of the system is itself a proof (that is, satisfies conse-

cution relative to known information) produces the linear-sized

proof quickly. Let ℓ be such a literal. Then if the formula
∧

R∈R

R ∧
∧

C∈C

C ∧ T ∧ ℓ ∧ ¬ℓ′ (5)

is unsatisfiable, ℓ obeys consecution: once ℓ is true, it is true

henceforth. In this case, ℓ is a wall.

While this heuristic is incomplete, its effectiveness on

counters suggests that such simple queries should be exe-

cuted frequently, for example, after each addition to R or

C. Experiments show that on more complicated systems,

several iterations of skeleton-based wall construction create

opportunities to learn new non-skeleton-directed proofs.

In addition to counters, this technique quickly derives

information about property automata for favorable encodings

of the automata’s transition relations. A one-hot encoding,

for example, reveals structural information readily. Predicates

derived from the system description may also be effective

candidates for this heuristic.

F. Executing Queries

The ideal computational environment in which to run this

algorithm is a highly parallel one:

• n + 1 queries must be analyzed until either all yield

counterexample runs or one yields a proof.

• Each query can be analyzed by a portfolio of safety model

checkers, even incomplete methods: based on BDDs [8],

BMC [9], interpolation [10], IC3 [1], and simulation.

While any counterexample run is informative, only proofs

that are inductive are useful. However, proofs produced

by non-approximating safety checkers (e.g., BDD-based)

will cause fair to derive walls that are only useful in the

arena from which the skeleton was drawn, thus hindering

the algorithm’s ability to generalize from skeletons, a key

characteristic. Hence, we rely on IC3 for proofs.

• IC3 is itself parallelizable.

• As the overall methodology is incremental, multiple

skeletons can be analyzed simultaneously in the same

way that multiple counterexamples to induction can be

analyzed simultaneously in IC3.

However, if parallel resources are unavailable, one observa-

tion has become clear from experimentation: queries must be

analyzed in a time sharing fashion. Since only one query need

be unsatisfiable to rule out a skeleton, a poor time allocation

can cause excessive time to be wasted on finding irrelevant

counterexample runs. Varying the order in which queries are

executed also seems important, so that one fairness condition

is not favored over others or over the stem query.

G. A Summary of the Algorithm

Figure 1 lists pseudocode for the fair algorithm.

Two forms of the skeleton query (skelQ) are used: the

full query at lines 6, 44, and 46, based on the bijection ι

between B and {1, . . . , |B|} defined at line 4; and the skeleton-
minimization version (Section III-B) at line 10, based on the

map j defined at line 8. Notice that the latter version is only

used to enforce a preference on skeletons and not, for example,

to construct C at lines 44-49. In this pseudocode, all queries

use the same K; however, it would be reasonable for the

queries at lines 44 and 46 to use a different unrolling than

K . In particular, since the full version has as many copies of

T as 2K|B|, it may only be practical to use an unrolling of

0 or 1 for these queries, which are executed more frequently

than the one at line 6.

Lines 13-16 correspond to finding a skeleton-independent

proof (Section III-E); if none exist, then this choice is disabled.

Lines 18-25 correspond to choosing a skeleton (Sections III-A

and III-B) and executing the one stem (stemQ) and m cycle

(cycleQ) queries (Section III-F).

Lines 27-50 act on the result of the search for a new proof.

If all (safety) queries returned counterexample runs, then they

can be formed into a “lasso” representing a computation of S

(lines 27-28). Otherwise, if stemQ returned proof P , then P

describes new reachability information (lines 30-32).

Otherwise, if either a skeleton-independent proof P is

discovered (Section III-E) or a cycle query returned proof P ,

then P is a wall, and P and ¬P are SCC-closed regions (lines

34-50). If the skeleton has just one state (m = 0) and K = 0,
then it is necessary to augment ¬P with additional information

(Section III-C), and it might be useful to do so if K > 0 as

well (lines 38-40). Line 40 takes liberties with logic: it says

that ¬P will henceforth be ¬P ∧¬d, so that ¬P is no longer

simply the negation of P . In other words, the list W of walls

1bool f a i r (S : system , K : u i n t) :

2R := ∅ , W := ∅ , C := ∅
3{ f o r f u l l s k e l e t o n query }
4ι := b i j e c t i o n between B and {1, . . . , |B|}
5

6whi le skelQ (R , W , ι , K) i s s a t :

7{ f o r s k e l e t o n−m i n im i z a t i o n (§B) }
8j := map (R , W , K)

9

10whi le skelQ (R , W , j , K) i s s a t :

11r e s u l t :=

12h e u r i s t i c a l l y choose :

13{ s k e l e t o n−i n d e p e n d e n t p r o o f (§E) }
14l e t ℓ be a l i t e r a l or o t h e r p r e d i c a t e

15such t h a t que ry (5) i s unsat

16P := ℓ

17a l t e r n a t e l y :

18{ s k e l e t o n−based a n a l y s i s (§A) }
19s0, . . . , sm−1 := skelQ (R , W , j , K)

20in p a r a l l e l do u n t i l

21a l l y i e l d c o u n t e r e x amp l e s

22or one r e t u r n s a p r o o f :

23stemQ (R , s0)

24f o r i ∈ {0, . . . , m − 1} :
25cycleQ (R , C , si , si⊕m1)
26

27i f r e s u l t i s a l l c o u n t e r e x amp l e s :

28re turn true {non−empty language}
29

30e l i f r e s u l t i s a p r o o f P f rom stemQ :

31{new r e a c h a b i l i t y i n f o rma t i o n }
32R := R∪ {P}
33

34e l i f r e s u l t i s a p r o o f P f rom

35a s k e l e t o n−i n d e p e n d e n t s e a r c h

36or a cycleQ :

37{P i s a wa l l : P , ¬P are SCC−c l o s e d }
38i f m = 1 : {§C}
39d := singleCube (R , C , s0 , P)

40¬P := ¬P ∧ ¬d

41W := W ∪ {P}
42i f h e u r i s t i c (P) :

43{cP i s t h e c h o i c e v a r i a b l e f o r P }
44i f skelQ (R , W , ι , K) ∧ cP i s unsat :

45C := ¬P ′

46e l i f skelQ (R , W , ι , K) ∧ ¬cP i s unsat :

47C := P

48e l s e

49C := P ′ → P

50C := C ∪ {C}
51

52re turn f a l s e { empty language}

Fig. 1. The fair algorithm: Does S have a computation?

must actually be implemented as two lists, one to hold positive

proofs and the other to hold possibly modified negative proofs.

If P is determined heuristically to be interesting (line 42), then

a C constraint is constructed and added to C (lines 42-50,

Section III-A). Lines 44-45 correspond to the case in which

no skeleton exists on the P side of the wall; lines 46-47

correspond to the case in which no skeleton exists on the ¬P

side of the wall; and lines 48-49 correspond to the typical

case in which both sides have skeletons but the wall cannot

be crossed.

If the skeleton-minimization version of the skeleton query

at line 10 is unsatisfiable, then the full version is tested at line

6; if it is satisfiable, then a new map is constructed at line 8. If,

however, the full skeleton query at line 6 is also unsatisfiable,

then S does not have a computation (line 52).

H. Correctness

We prove the correctness of the fair algorithm. The first

three lemmas formalize the assumption that the safety model

checker is correct.

Lemma 1: A proof is returned for query (1) iff s0 is

unreachable from I , and such a proof excludes s0 and is S-

inductive relative to R.

Hence, no subsequent skeleton contains s0.

Lemma 2: A proof is returned for query (3) iff si⊕n1 is

unreachable from si, and such a proof separates si from si⊕n1

and is S-inductive relative to R and C, with the exception that

it satisfies initiation with respect to si rather than I .

Hence, no subsequent skeleton contains both si and si⊕n1.

Lemma 3: A proof is returned for query (4) iff s0 is

unreachable from its successors, and such a proof separates

the successors of s0 from s0 and is S-inductive relative to R
and C, with the exception that it satisfies initiation with respect

to the successors of s0 rather than I .

Combined with either K > 0 for the technique of Section

III-B or the technique of Section III-C to exclude s0 from the

¬P side of the wall, no subsequent skeleton contains s0.

Besides progress criteria, these lemmas together imply that

a skeleton can be completed into a reachable fair cycle if and

only if all queries return counterexample runs.

Lemma 4: No transition excluded by a constraint C ∈ C is

on a reachable fair cycle.

This lemma is straightforward once one realizes that each

C is derived from (relatively) inductive information. A proof

W from a cycle query observes that no path allowed by the

current C that passes from a ¬W -state to a W -state can be

part of a cycle, as it can never return to a ¬W -state. This

observation is encoded as W ↔ W ′. Additionally, if W -states

(¬W -states) cannot satisfy every fairness condition, then no

path that has a W -state (¬W -state) can be part of a fair cycle.

This observation is encoded as W ∧W ′ (¬W ∧¬W ′). Hence,

induction on the list C proves the lemma.

Another perspective on this lemma is that a cycle query

proof W , by its inductiveness, describes regions W and ¬W

that are SCC-closed with respect to S constrained by C. The
resulting constraint C excludes only transitions leaving an

SCC-closed region or all transitions of an SCC-closed region

that does not intersect some fair condition; hence, no transition

of a fair cycle is excluded.

By similar reasoning, one concludes that, in general, any

fair cycle must be entirely contained in an arena defined by

W-constraints: for each W ∈ W , the entire cycle must satisfy

either W or ¬W . Hence we have the following lemma.

Lemma 5: If the skeleton query is unsatisfiable, then S does

not have a reachable fair cycle.

Together these lemmas imply correctness of the algorithm.

Theorem 1: The algorithm fair always terminates, and it

returns a reachable fair cycle iff the language of S is nonempty.

As suggested in Section III-A, the constraints C that are

used during cycle queries are unnecessary for completeness,

although crucial for the algorithm to be effective in prac-

tice. Lemma 4 states that these constraints do not destroy

soundness. In contrast, all constraints in the skeleton query

corresponding to the members of the sets R and W are

necessary for completeness, as suggested by Lemmas 1-3,

which state how the algorithm makes progress. Each new

reachability assertion R ∈ R eliminates at least one state from

being returned henceforth from a skeleton query; and each new

wall W ∈ W eliminates at least one pair of states (Lemma 2)

or one state (Lemma 3) from further consideration.

IV. RELATED WORK

Several fair cycle detection algorithms have been developed

for symbolic model checking. In this section we compare the

main ones to fair, focusing on two features: the identification

of SCC-closed sets and the ability to generalize from facts

learned about the model.

SCC decomposition algorithms [11]–[13] recursively divide

the states into SCC-closed sets. In that respect, they are the

closest to fair. However, the walls that they derive are local to

the arenas from which SCCs are extracted. Therefore, if the

language of a model is empty, SCC decomposition must break

up all reachable arenas until they become trivial or unfair.

In contrast, fair produces wall that transect the entire state

space; hence, it can prove language emptiness by considering

a number of skeletons that is much smaller than the number

of nontrivial SCCs.

SCC hull algorithms [14], [15] compute an SCC-closed set

that contains all fair SCCs and that is empty if no fair SCC

exists. In its simplest form, an SCC hull is defined by one wall.

(See [15] for hulls defined by two walls.) One side of the wall

is known to contain no fair SCC, and the algorithms move the

wall until the SCCs abutting the wall on the other side are all

fair. While the wall may be moved across very large numbers

of SCCs in one step of the procedure, the restriction to a

small, fixed set of walls prevents SCC hull algorithms from

learning important facts about the structure of the SCC graph.

In addition, SCC hull algorithms converge to a hull before

declaring a language nonempty. In contrast, fair is often able

to home in on a reachable fair SCC well before the entire state

space has been examined. Every skeleton that is examined

focuses the successive skeleton queries on where the fair SCCs

may lie.

Among the first algorithms for BDD-based cycle detection

is the one of [16] based on the computation of the transitive

closure of the state graph by iterative squaring. The approach

works well for counters, but unlike fair, it is often impractical

because it computes too much information about the model.

In Bounded Model Checking (BMC) [9] cycle detection can

be formulated as a SAT query such that a model of an appropri-

ate formula describes a lasso-shaped path of prescribed length

in the given finite-state system. Deciding that no lasso-shaped

path exists regardless of length requires the computation of

appropriate bounds (e.g., [17]). While this approach does not

fix a skeleton in advance, failure to find a path of a given

length does not directly translate into information about the

SCC-closed sets of the model. By separating the choice of

the skeleton from the attempt to flesh it out to a cycle, fair

incrementally learns inductive lemmas.

The liveness-to-safety conversion of [3] is the most common

approach to prove progress with interpolation-based model

checking [4], [10]. While safety checking is more developed

and arguably better understood than checking for progress

properties, the transformation to safety has several drawbacks:

first, the model’s doubled number of state variables nega-

tively affects some model checkers; second, the nature of

the problem—cycle detection—is not obvious to the model

checker from the encoding; third, the approach is inherently

non-incremental, because it asks the safety model checker for

a single, monolithic proof that there is no fair cycle.

In the D’n’C approach [18], SCC decomposition is applied

to a sequence of increasingly refined abstractions of a system.

If an effective way to choose the abstract models is given, this

approach may be profitably combined with fair to initially

provide it with simple lemmas about the abstractions. Both

methods can leverage the weakness of fairness conditions;

fair, however, can sometimes discover weakness even on large

structures—even, that is, when weakness is not inherited from

the acceptance condition of a small Büchi automaton.

V. EXPERIMENTAL EVALUATION

An implementation of fair was evaluated against other cycle

detection methods on a set of models. Even though fair is

highly parallelizable, the implementation uses only one thread

of execution but employs a time sharing scheme, as described

in Section III-F.

The implementation of skeleton queries differs from the

description of Section III-B: for K = 0, one forward and

no backward unrolling is used; for K = 1, two forward and

one backward unrollings are used; and so on. Therefore, it

only adds a clause as in Section III-C if it provides additional

information.

The skeleton-minimization heuristic of Section III-B is

implemented as a search: map construction is guided by

intermediate partial skeleton queries based on partial maps.

If a partial map corresponds to an unsatisfiable query, the last

assignment of an index to a fairness condition is incremented,

potentially extending the range of the partial map by one. Of

course, if the assignment is already onto {1, . . . , |B|}, then
the standard skeleton query is also unsatisfiable, and the proof

is complete. Once a map is constructed, it is used until the

corresponding skeleton query becomes unsatisfiable, at which

point a new map is constructed. A separate full skeleton query

is used throughout execution, as described in Section III-G.

The implementation also checks if each proof returned by

a cycle query is actually inductive with respect to the system,

and if so, the proof is upgraded to a reachability proof. While

the benchmarks did not reveal if this check is worthwhile, it is

inexpensive. Finally, only IC3 is used to answer safety queries,

and its proofs are refined as described in Section III-D.

Unlike the case of safety properties, there are no widely

accepted benchmark sets for progress properties. Moreover,

models of practical import are difficult to come by. The

evaluation therefore relies on models that have been identified

in the literature as challenging for certain approaches or

that present features that one may find combined in real-life

problem instances. The abq, cnt, and jc models were written

for this evaluation; the remaining ones were adapted from [19].

Table I reports the results of the experiments, which were

run on machines with one 2.67 GHz Intel Core i5 CPU and 8

GB of memory each. CPU times are in seconds. The timeout

was set at 7200 s. For each model, the table shows whether

the language is empty, the number of latches in the cone of

influence of the fairness conditions, the number of 2-input

AND gates after combinational simplification, and the number

of fairness conditions (with the number of weak conditions in

parentheses). Next, the results for fair are shown: in the latter

three columns, for 0 ≤ K ≤ 2 with the skeleton-minimization

heuristic enabled, the CPU time and the number of skeletons

examined are reported. If fair timed out (indicated by a dash)

the number of skeletons examined up to that point is given.

The first column for fair shows similar results for K = 0 with

the skeleton-minimization heuristic disabled.

The remaining columns show results for other language

emptiness algorithms. GSH, LS, and DnC are the SCC hull

method of [15], the SCC decomposition method of [12],

and the D’n’C algorithm of [18] as implemented in the

lang empty command of VIS 2.3 [20] (run with dynamic

variable ordering enabled and default settings except that

D’n’C is run without preliminary reachability analysis). These

three methods were chosen for inclusion in the table because

they represent well the gamut of BDD-based algorithms and

because GSH and D’n’C without reachability performed better

than the others that were tried.

Finally, the group of columns under LTS refers to the

liveness-to-safety approach of [3], with reachability checked

with interpolation as implemented in ABC [4] (ITP), with

IC3, and with ABC. For ITP, the parameters controlling ABC

were set to disable its IC3 implementation and to reduce

the chance of inconclusive runs. A question mark in the ITP

column signals that ABC nevertheless reported the problem as

“undecided” before its time was up. For ABC, the parameter

controlling its use of its IC3 implementation was set to allow

TABLE I
EXPERIMENTS

fair BDD-based LTS
model empty latches gates |B| K = 0∗ K = 0 K = 1 K = 2 GSH LS DnC ITP IC3 ABC

abq2mf yes 35 383 4(1) 1/24 1/12 1/8 1/5 1 1 1 – 2 8
abq4mf yes 67 745 6(1) 3/37 3/39 2/8 3/9 3 – 7 – 11 40
abq8mf yes 131 1469 10(1) 23/182 168/67 16/14 21/14 2794 – – – 373 157
abq2f yes 61 747 4(1) 3/30 3/55 2/9 4/3 4 10 1 – 10 20
abq4f yes 119 1471 6(1) 423/221 31/106 13/28 34/46 2890 – 213 – 388 –
abq8f yes 235 2923 10(1) –/75 –/116 5730/84 4384/65 – – – – 6330 –

cnt12 yes 12 68 1(1) 1/0 1/0 1/0 1/0 1 1 0 1 1761 1
cnt32 yes 32 188 1(1) 1/0 1/0 1/0 1/0 – – – ? – –
cnt128 yes 128 764 1(1) 1/0 1/0 1/0 1/0 – – – ? – –

jc12 yes 13 231 1(1) 1/0 1/0 1/0 1/0 1 1 0 9 93 9
jc32 yes 33 631 1(1) 1/0 1/0 1/0 1/0 – – – 16 – –
jc128 yes 129 2551 1(1) 2/0 2/0 2/0 3/0 – – – 805 – –
jc128f no 129 2170 1(1) 2/1 2/1 2/1 2/1 2 2 2 1 1 1

om1 yes 29 810 16(16) –/99 –/202 –/244 –/274 272 – 356 – – –
om2 yes 29 806 16(16) 42/2082 39/2077 42/2083 45/2071 192 – 8 – 236 –
om3 yes 29 803 16(16) 1/0 1/0 2/0 5/0 35 – 25 – 105 –

nim1 yes 27 769 2(2) 1/29 1/32 1/0 1/0 1 174 1 – 20 117
nim2 yes 29 788 2(2) 1309/28 1264/28 1157/18 1457/18 2 120 1 – 1192 177
nim3 no 29 788 2(2) 1/32 1/28 1/3 1/3 1 309 1 1 1 1

gbak yes 37 677 10(1) 25/182 12/172 74/184 26/125 3 7 14 – 97 90

tarb16 yes 79 1109 17(1) 18/166 15/101 17/72 70/79 – – – 60 58 31
tarb32 yes 159 2269 33(1) 146/582 75/204 214/146 956/147 – – – ? – 209

sarb16 yes 50 141 1(1) 1/0 1/0 1/0 1/0 1 1 3 ? 5 7
sarb32 yes 98 269 1(1) 1/0 1/0 1/0 1/0 3 1 – ? 157 79

tf1 yes 30 452 2(1) 1949/5174 393/2222 285/1278 288/1213 8 – 2 – – 281
tf2 no 30 384 2(1) 1/9 1/5 1/2 1/2 2 60 1 1 1 1
tq1 yes 55 756 3(1) 2267/3072 3143/4208 2690/2775 5434/3172 1645 – 3 – – 737
tq2 no 60 771 4(2) 5/27 4/28 4/22 5/26 3056 – 5 2 27 2
fq1 yes 105 1365 5(1) –/2920 –/2596 –/2485 –/1771 – – 336 – – –
fq2 no 120 1546 8(4) 21/41 15/39 25/55 29/44 – – – – 374 30

it to run through the two-hour time limit.

The abq models are interconnected queues with bounded

sources. The cnt models are counters and the jc models are

the “forward jumping counters” of [3]. The om models are

used in [15] to prove lower bounds on SCC hull algorithms.

The nim models are NIM players. The gbak model is a finite-

state version of the bakery protocol. The tarb models are tree

arbiters, while the sarb models are McMillan synchronous

arbiters. The tf, tq, and fq models are versions of the two-

queue example in [21].

The cnt models illustrate fair’s ability to find linear-size

proofs for counters as discussed in Section III-E. This ability

accounts for the good performance of fair on models like

the om and nim (NIM player) sets—in which the original

state graph has many SCCs—or like the jc and tarb (tree

arbiter) sets, in which the composition with a Büchi automaton

breaks the single SCC of the model into a myriad of SCCs.

While computing the transitive closure would be effective for

counters, it would not work on more complex examples.

The om set contains three models that differ only in the

transitions out of unreachable states. For om3, fair quickly

produces an inductive proof that there are no fair SCCs; for

the other two models, however, it has to prove, at a much

higher cost, that such fair SCCs are unreachable. Combining

fair with a global reachability engine, perhaps based on BDDs,

would benefit the analysis for om1 and om2, but was outside

the scope of this evaluation. Yet not relying on full reachability

analysis is partly responsible for fair’s speed in detecting

nonemptiness for tq2 and fq2.

For all four configurations, fair decided either 27 or 28 of

the 30 language emptiness problems and was the only model

checker to solve two of the problems. Behind it, each of GSH,

DnC, and LTS/IC3 solved 21 problems, and LTS/ABC solved

20 problems. Together the BDD methods solved 22 problems,

and the LTS methods solved 26 problems. On 11 models, one

of the fair configurations, typically K = 1, was decidedly

faster than the other methods; on 8 models, one of the other

six methods was decidedly faster. Overall, fair was the clear

winner on this set of models.

It is worth noting that the two models that fair failed to

prove—om1 and fq1—were solved by BDD methods but not

by LTS methods. Furthermore, fair generally dominated the

LTS methods, with the exception of nim2 and tq1, both of

which were, in any case, trivial for at least one BDD method.

In short, fair seems to complement BDD methods and to

dominate LTS methods.

As expected, LS suffered on models with many SCCs, while

LTS/ITP had rather unpredictable performance. For many

models the number of skeletons examined by fair decreased

with increasing K , with the largest jump usually occurring

between K = 0 and K = 1; however, on tarb16 and tarb32,

which have many fairness conditions and thus require large

skeleton queries, fair suffered as K increased.

The skeleton-minimization heuristic of Section III-B is

effective at finding small skeletons. For K = 0, six of the

models on which the analysis finished required examining

skeletons that have more than one state: nim1 (≤ 2), gbak

(always 3, as there are three disjoint fairness conditions),

tarb32 (≤ 2), tq1 (≤ 2), tq2 (≤ 2), fq2 (≤ 4). Furthermore, it

typically resulted in fewer skeletons, as hypothesized; tarb32

and tf1 are extreme cases.

These illustrative benchmarks indicate the potential of the

fair algorithm. However, only practical experience with a suite

of industrial benchmarks will reveal the best use of skeleton-

minimization, a method for choosing K dynamically, and a

heuristic for choosing when to enrich the C constraint set.

VI. CONCLUSION

We have presented a new incremental algorithm for model

checking progress properties that selects skeletons for fair

cycles and, if it fails to flesh them out, learns inductive

lemmas that divide the states into SCC-closed sets. An initial

implementation shows promise, especially when one considers

that one of the strengths of the proposed approach—that of be-

ing highly parallelizable—was not brought into play. Another

important aspect that awaits exploration is the integration of

the new approach into a multi-engine framework, which has

been shown to be key to robust performance in the case of

safety properties.

Acknowledgments. The first author thanks Barbara Jobstmann

for a collaboration that inspired this work while the two were

post-docs in Tom Henzinger’s group at EPFL. Thanks also

to the reviewers for their specific questions and suggestions,

which aided us in improving the presentation. This material

is based upon work supported in part by the National Science

Foundation under grant No. 0952617 and by the Semiconduc-

tor Research Corporation under contract GRC 1859. Any opin-

ions, findings, and conclusions or recommendations expressed

in this material are those of the authors and do not necessarily

reflect the views of the National Science Foundation.

REFERENCES

[1] A. R. Bradley, “SAT-based model checking without unrolling,” in
Verification, Model Checking, and Abstract Interpretation (VMCAI’11),
Austin, TX, 2011, pp. 70–87, lNCS 6538.

[2] Z. Manna and A. Pnueli, Temporal Verification of Reactive Systems:
Safety. Springer-Verlag, 1995.

[3] V. Schuppan and A. Biere, “Efficient reduction of finite state model
checking to reachability analysis,” Software Tools for Technology Trans-

fer, vol. 5, no. 2–3, pp. 185–204, Mar. 2004.
[4] R. K. Brayton and A. Mishchenko, “ABC: An academic industrial-

strength verification tool,” in Twentysecond Conference on Computer

Aided Verification (CAV”10). Edinburgh, UK: Springer, 2010, pp. 24–
40, lNCS 6174.

[5] D. E. Muller, A. Saoudi, and P. E. Schupp, “Weak alternating automata
give a simple explanation of why most temporal and dynamic logics
are decidable in exponential time,” in Proceedings of the 3rd IEEE
Symposium on Logic in Computer Science, Edinburgh, UK, Jul. 1988,
pp. 422–427.

[6] R. Bloem, K. Ravi, and F. Somenzi, “Efficient decision procedures for
model checking of linear time logic properties,” in Eleventh Conference

on Computer Aided Verification (CAV’99), N. Halbwachs and D. Peled,
Eds. Berlin: Springer-Verlag, 1999, pp. 222–235, lNCS 1633.

[7] A. R. Bradley and Z. Manna, “Checking safety by inductive generaliza-
tion of counterexamples to induction,” in Formal Methods in Computer

Aided Design (FMCAD’07), Austin, TX, 2007, pp. 173–180.

[8] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang,
“Symbolic model checking: 1020 states and beyond,” Information and

Computation, vol. 98, no. 2, pp. 142–170, 1992.
[9] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model check-

ing without BDDs,” in Fifth International Conference on Tools and
Algorithms for Construction and Analysis of Systems (TACAS’99),
Amsterdam, The Netherlands, Mar. 1999, pp. 193–207, lNCS 1579.

[10] K. L. McMillan, “Interpolation and SAT-based model checking,” in
Fifteenth Conference on Computer Aided Verification (CAV’03), W. A.
Hunt, Jr. and F. Somenzi, Eds. Berlin: Springer-Verlag, Jul. 2003, pp.
1–13, lNCS 2725.

[11] A. Xie and P. A. Beerel, “Implicit enumeration of strongly connected
components and an application to formal verification,” IEEE Transac-

tions on Computer-Aided Design, vol. 19, no. 10, pp. 1225–1230, Oct.
2000.

[12] R. Bloem, H. N. Gabow, and F. Somenzi, “An algorithm for strongly
connected component analysis in n log n symbolic steps,” Formal Meth-

ods in System Design, vol. 28, no. 1, pp. 37–56, Jan. 2006.
[13] R. Gentilini, C. Piazza, and A. Policriti, “Symbolic graphs: Linear

solutions to connectivity related problems,” Algorithmica, vol. 50, no. 1,
pp. 120–158, 2008.

[14] E. A. Emerson and C.-L. Lei, “Efficient model checking in fragments
of the propositional mu-calculus,” in Proceedings of the First Annual

Symposium of Logic in Computer Science, Jun. 1986, pp. 267–278.
[15] F. Somenzi, K. Ravi, and R. Bloem, “Analysis of symbolic SCC hull

algorithms,” in Formal Methods in Computer Aided Design, M. D.
Aagaard and J. W. O’Leary, Eds. Springer-Verlag, Nov. 2002, pp.
88–105, lNCS 2517.

[16] H. J. Touati, R. K. Brayton, and R. P. Kurshan, “Testing language con-
tainment for ω-automata using BDD’s,” Information and Computation,
vol. 118, no. 1, pp. 101–109, Apr. 1995.

[17] M. Awedh and F. Somenzi, “Termination criteria for bounded model
checking: Extensions and comparison,” Electronic Notes in Theoretical
Computer Science, vol. 144, no. 1, pp. 51–66, 2006, presented at the
Third International Workshop on Bounded Model Checking (BMC’05).

[18] C. Wang, R. Bloem, G. D. Hachtel, K. Ravi, and F. Somenzi, “Divide
and compose: SCC refinement for language emptiness,” in International
Conference on Concurrency Theory (CONCUR01). Berlin: Springer-
Verlag, Aug. 2001, pp. 456–471, lNCS 2154.

[19] “VIS verification benchmarks. http://vlsi.colorado.edu/∼vis,” University
of Colorado at Boulder.

[20] “URL: http://vlsi.colorado.edu/∼vis.”
[21] H. Jin, K. Ravi, and F. Somenzi, “Fate and free will in error traces,”

Software Tools for Technology Transfer, vol. 6, no. 2, pp. 102–116, Aug.
2004.

