
Optimal Redundancy Removal without

Fixedpoint Computation

Michael Case Jason Baumgartner Hari Mony Robert Kanzelman

IBM Systems and Technology Group

Abstract— Industrial verification and synthesis tools routinely
identify and eliminate redundancies from logic designs. In the
former case, redundancy removal yields critical speedups to
the overall verification process. In the latter case, redundancy
removal constitutes a primary mechanism to optimize the final
fabricated circuit. Redundancy identification frameworks often
utilize a greatest-fixedpoint iteration, initially postulating a set of
candidate redundancies to be conjunctively proved then refining
candidates based upon failed proof attempts. Such procedures
generally do not yield any soundly-proved redundancies until a
fixedpoint is achieved. In this paper, we overcome this drawback
by augmenting the fixedpoint procedure with a set of efficient
techniques to track dependencies between candidate redundan-
cies. This approach enables the identification of an optimal
subset of valid redundancies before the fixedpoint is reached,
and may also be used to reduce the number of computations
within the fixedpoint procedure. We apply our techniques to
enhance k-induction as well as a more general transformation-
based verification flow. For induction, we demonstrate up to
75% reduction in runtime and 97% reduction in the number
of inductive proofs. For the more general flow, we demonstrate
up to 90% reduction in runtime and 80% reduction in the total
number of proof obligations.

I. INTRODUCTION

Industrial gate-level designs are often rife with redundancy.

Logic synthesis tools attempt to eliminate redundant structure

as a way of improving the area, delay, or power of the

final fabricated circuit. Verification tools eliminate redundancy

to reduce the size of the design under verification, often

yielding dramatic speedups to the overall verification process,

e.g. [1], [2]. In equivalence checking frameworks, internal

equivalences between two designs can be viewed as a set of

redundancies, which once identified and eliminated, effectively

decompose an otherwise intractable monolithic problem for

greater scalability.

Redundancy identification frameworks often operate

through a greatest-fixedpoint iteration to yield a maximal

set of equivalent gates which can be proved to assume

identical values in every reachable state1. Such frameworks

often postulate a superset of candidate equivalences, e.g.

identified using simulation signatures or structural heuristics,

then iteratively attempt to prove the conjunction of this

postulated set. Any inaccurate or unprovable equivalences

are discarded, and the process repeats until a fixedpoint is

achieved. The benefit of the fixedpoint procedure is that

it enables cross-leveraging postulated equivalences, i.e.,

assuming one set of postulated equivalences when proving

1Constant gates and antivalent gates may be identified using a straight-
forward extension of such frameworks.

another. This often yields dramatic speedups, e.g., through

enabling inductive proofs of redundancy which otherwise

may require reachability analysis [3], [4], [1]. Speculative

reduction may leverage assumptions to further reduce proof

complexity by merging fanout references of postulated-

equivalent gates, trivializing many proof obligations and

simplifying the remainder [2], [5]. The drawback of cross-

leveraging equivalences in this manner is that until a

fixedpoint is achieved, no redundancy may be inferred

because any successfully-completed equivalence proofs may

be jeopardized by inaccurate candidate equivalences.

k-Induction is commonly used to scalably prove candidate

equivalences [3], [1]. k-Induction first validates the base case

by checking that the postulated equivalences hold on every

state reachable in k or less steps from the initial states.

Next, the inductive step validates that for all sequences of k

consecutive states on which the postulated equivalences hold,

they also hold in all successor states. If either check fails, the

inaccurate or unprovable equivalences are discarded, and the

fixedpoint process is repeated on the remaining equivalences.

More generally, redundancies may hold in a design which

cannot be readily proved using induction. To identify such

redundancies, one may need to leverage an arbitrary sequence

of reduction, abstraction, and proof techniques to adequately

simplify and ultimately prove postulated gate equivalences –

often represented as verification properties termed miters. The

use of verification-oriented transformations such as min-area

retiming [6] and temporal decomposition [7] are particu-

larly valuable in a redundancy removal framework, as they

may eliminate structural differences between the logic being

checked for equivalence. Speculative reduction is furthermore

often critical to simplify the resulting set of proof obligations,

both in enhancing the utility of other transformations and

abstractions, as well as in simplifying the final proof obligation

for a technique such as interpolation [8]. We refer to such

a verification paradigm as Transformation-Based Verification

(TBV) [6]. As with induction, if any miter is falsified or un-

proved by a given TBV algorithm sequence, the corresponding

equivalences must be discarded, and the fixedpoint process is

repeated on the remaining equivalences.

In this work we address the optimal identification of

redundancies in an assume-then-prove framework without

requiring fixedpoint computations. In particular, we present

efficient techniques to track proof dependencies within in-

ductive and TBV-based redundancy identification frameworks.

Our techniques enable the identification of a subset of true

redundancies before the fixedpoint is reached, despite any

Alg. 1 . Redundancy Removal Fixedpoint Algorithm

1: function identifyRedundancyFixedpoint()
2: Postulate redundancy candidates, represented as equivalence classes

3: loop

4: Attempt to prove each redundancy candidate as accurate
5: if (all redundancy candidates are proved) then

6: return equivalence classes as redundancies that may be merged
7: else

8: refine the equivalence classes
9: end if

10: end loop

11: end function

cross-leveraged assumptions. This has several benefits: (1) we

can soundly identify redundancies even when resource limits

prevent every candidate equivalence from being proved or

disproved; (2) we reduce effort within a fixedpoint procedure

by not requiring candidate equivalences to be repetitively

proved across iterations; and (3) within each iteration of

the fixedpoint computation, we allow the proofs of unsolved

equivalences to be deferred or discarded when we detect that

it is not possible to mark this redundancy as soundly proved.

Section II describes the preliminaries. Section III describes

the Proof Graph, our datastructure which tracks dependen-

cies among equivalences. Sections IV and V describe the

integration of Proof Graph techniques in inductive and TBV

frameworks, respectively. In Section VI we provide proofs

that our techniques are sound and optimal. Lastly, we provide

experimental results in Section VII.

II. PRELIMINARIES

We assume that the design under analysis is represented as a

gate-level netlist, consisting of combinational gates of various

types as well as sequential elements with associated initial

values and next-state functions. Our implementation uses an

And/Inverter Graph [9], [10] format, though our techniques

are applicable to other netlist formats as well. In a verifica-

tion setting, the netlist may also comprise logic expressing

environmental assumptions and correctness properties. In an

equivalence checking setting, the netlist may represent the

composition of two designs being compared, with safety

properties checking pairwise equivalence of primary outputs.

Algorithm 1 illustrates a traditional redundancy removal

fixedpoint algorithm [3], [1], [5]. Such algorithms first pos-

tulate a superset of redundancy candidates, represented as

equivalence classes wherein all gates within the same class

are postulated to behave identically in all reachable states. A

set of safety properties termed miters is constructed which

represent the underlying equivalences candidates, and a set

of proof techniques is then used to establish the validity of

the miters and the candidates they represent. If any candi-

dates are demonstrated to be inaccurate, or if the chosen

proof techniques cannot yield a conclusive result for some

candidates, the equivalence classes are refined by discarding

the unprovable equivalences. This process repeats until finally

all equivalence classes are demonstrated correct. When this

fixedpoint is reached, the netlist may be simplified by merging

gates which are proved equivalent. In particular, within each

A
1

B
1

A
2

B
2=

?

҂

Fig. 1. Speculative reduction simplifies the unrolled netlist.

equivalence class, a representative gate is chosen, and each

other gate in that equivalence class will be replaced with its

representative in the netlist.

There are two fundamental techniques to enable the scala-

bility of sequential redundancy removal. The first is the use

of induction to establish the correctness of the conjunction of

the postulated equivalences, which individually would often be

non-inductive and require substantially more expensive proof

techniques [3], [1]. Even if heavier-weight proof techniques

are ultimately needed for maximal redundancy removal, con-

junctive induction is often able to efficiently solve most of

the proof obligations. The second is the use of speculative

reduction, which reduces the size of the miter-annotated netlist

by reconnecting the fanout of a given candidate equivalence

gate (refer to gate B1 in Figure 1) to its representative (gate

A1). This reduces the complexity of the logic in the fanout of

the speculatively-merged gate and often trivializes downstream

miters. Speculative reduction is capable of yielding orders

of magnitude speedups in both inductive- and TBV-based

approaches for redundancy removal [2], [5]. However, as a

result of these two techniques, Algorithm 1 cannot generally

be used to identify redundancies before a fixedpoint is reached,

as one incorrect candidate may invalidate the soundness of the

proof of the other candidates.

III. THE PROOF GRAPH

To deduce sound redundancies prior to achieving a fixed-

point, we record dependencies between candidate equiva-

lences. Two sources of dependencies may arise in a sequential

redundancy removal framework. (1) Speculative reduction may

simplify the netlist under the assumption that A ≡ B, e.g. by

merging the fanout B onto A as in Figure 1. If the merged gate

B is in the cone-of-influence (COI) of some other postulated

equivalence C ≡ D, then C ≡ D depends on A ≡ B.

(2) If using induction, the inductive hypothesis constrains the

SAT solver to only explore state sequences where A ≡ B

and C ≡ D on the first k time steps. If the solver utilizes

these inductive hypotheses, then A ≡ B depends on C ≡ D

and vice-versa. If C ≡ D depends on A ≡ B and we can

Represents: Equiv Class 1

proved = 0

soundlyProved = 0

falsified = 0

Node 3

Node 2

Node 1

Represents: Equiv Class 2

proved = 0

soundlyProved = 0

falsified = 0

Represents: Equiv Class 3

proved = 1

soundlyProved = 1

falsified = 0

Fig. 2. An example Proof Graph

Alg. 2 . Proof callback function

1: function informProved(proofGraph, class)
2: ensure that the proofGraph is condensed
3: node = the Proof Graph node containing class

4: node.proved[class] = 1
5: if ((∀ classes C ∈ node, node.proved[C] == 1) and

(∀ children D of node, D.soundlyProved == 1)) then

6: node.soundlyProved = 1
7: inform the calling application that node’s classes are soundly proved
8: for all parents P of node, P .proved[*] == 1 do informProved(P)
9: end if

10: end function

demonstrate that A 6≡ B then a proof of C ≡ D does not

soundly indicate that C and D are equivalent.

Dependencies are recorded in a directed graph called the

Proof Graph. Each node in the Proof Graph represents a set of

one or more equivalences. An edge node1 → node2 represents

the dependency node1 “depends on” node2. An example Proof

Graph is shown in Figure 2.

We initially construct the Proof Graph to represent a single

equivalence class per node. The resulting Proof Graph is

cyclic in general, though we may render it acyclic without

jeopardizing the optimality of identified redundancies in two

ways. First, all strongly connected components (SCCs) [11]

are identified, and the graph is condensed by collapsing the

nodes in each SCC into a single Proof Graph node. Second,

self-edges are suppressed. In this way, each Proof Graph node

thus represents a set of equivalence classes.

We use the Proof Graph within a redundancy identification

framework to identify when a proof represents a soundly-

proved redundancy. In our algorithms we use three types

of flags within the Proof Graph: (1) proved means that

a given equivalence class has been proved relative to the

other (possibly incorrect) redundancy candidates; (2) sound-

lyProved means that the proof of the corresponding equiva-

lence class(es) is sound; and (3) falsified means that either

this node contains a falsified equivalence, or it has a falsified

dependency. A Proof Graph node has a single soundlyProved

and falsified flag, and a proved flag for each equivalence class

within that node. Because the topology of the Proof Graph

depends upon the nature of the equivalence classes, the Proof

Graph and its flags generally must be recomputed at each

iteration of the fixedpoint Algorithm 1.

Algorithm 2 is called when all miters corresponding to a

postulated equivalence class are proved. We set the proved

flag on this class and conclude that this proof is sound iff all

Alg. 3 . Falsification callback function

1: function informFalsified(proofGraph, class)
2: node = the Proof Graph node containing class

3: if (node.falsified == 1) then return

4: node.falsified = 1
5: for all parents P of node do informFalsified(proofGraph, P)
6: end function

classes in the same SCC are proved and all dependencies are

soundly proved. Whenever Algorithm 2 deduces that a proof

is sound, it recurses to the parents in the Proof Graph as the

proofs of these parent classes may now be sound as well. As

an example of Algorithm 2, if we call informProved on

Class 2 of Figure 2 then we deduce that this proof is sound

because all classes in Class 2’s SCC are proved and the only

dependency, Node 3, is soundly proved.

Algorithm 3 is called whenever an equivalence class is

falsified. This sets the falsified flag on the corresponding Proof

Graph node and propagates this flag to all ancestors in the

Proof Graph. This flag is used to inform the higher-level

algorithms that an equivalence class cannot be soundly proved

and therefore need not be checked. As an example, calling

informFalsified on Class 2 of Figure 2 will result in the

falsified flag being set on Proof Graph Nodes 2 and 1. Node

1 can thereafter never be soundly proved, and the higher-level

algorithms can use this information to forgo any attempts to

prove the equivalences from Node 1.

Using the Proof Graph within a redundancy removal frame-

work will not alter the set redundancies that are proved, as

will be established in Theorem 2. Instead, the Proof Graph is

used to improve the performance of the associated redundancy

removal framework.

The Proof Graph is a general way to track dependencies.

In this work, we apply this datastructure in the context of

induction (Section IV) and TBV (Section V).

IV. INDUCTION AND THE PROOF GRAPH

In this section we enhance inductive redundancy identifi-

cation frameworks using the Proof Graph. In induction, there

are two types of dependencies that must be recorded in the

Proof Graph: combinational structural dependencies, and proof

dependencies.

An inductive proof unrolls the transition relation, perform-

ing speculative reduction to simplify the unrolled logic [2]. For

example, in Figure 3A, the lower time frame will be simplified

by assuming A1 ≡ B1 and C1 ≡ D1. If these assumptions

are invalid, the behavior of the downstream logic may be

altered, implying that downstream miters are dependent on

these speculatively-reduced equivalences.

Algorithm 4 describes the process to infer such dependen-

cies, called combinational structural dependencies. Given an

equivalence class, the unfolding depth k used for induction,

and a set of gates whose fanout was merged due to speculative

reduction, we first mark the COI of all miters within the class.

Then within this COI, we find gates that have been merged

by speculative reduction. The given equivalence class will be

A
2

B
2=

?

=
?

C
2

D
2

A
1

B
1

C
1

D
1

҂

҂

A B=
?

=
?

C D

(A) (B)

Fig. 3. (A) A combinational structural dependency, affecting induction.
(B) A sequential structural dependency, affecting TBV.

Alg. 4 . Discovery of combinational structure dependencies

1: function getCombStructureDeps(class, k, specReduction)
2: coi = ∅
3: for all gate in class do

4: u = unrolled instance gate in frame k

5: coi = coi ∪ combinational cone of influence of u

6: end for

7: for all simplifiedGate in specReduction ∩ coi do

8: C = equivalence class that spec-reduces simplifiedGate

9: record the dependency “class → C”
10: end for

11: end function

marked as dependent upon all classes responsible for these

simplifications.

A second type of dependency arises from the inductive

hypothesis. In k-induction we hypothesize that all equivalences

hold at times 0, . . . , k− 1. These hypotheses are typically im-

plemented by passing additional constraints to the SAT solver,

causing it to only explore paths for which the equivalences

hold in the first k steps. If the proof of a miter depends

on the inductive hypothesis, then the miter and its associated

equivalence class have an additional dependency.

Algorithm 5 shows how to prove the miters from an equiv-

alence class and extract the resultant dependencies, termed

proof dependencies. A SAT solver is used to test the con-

junction of all miters along with all inductive hypotheses.

If the result is unsatisfiable, meaning the miters are proved,

we extract an unsatisfiable core from the solver and inspect

it to determine which hypotheses were utilized in the proof.

Alg. 5 . Discovery of proof dependencies

1: function proveAndGetDeps(class, hypotheses)
2: result = SAT solve(

V

miter∈class
miter ∧ hypotheses)

3: if (result is “unsatisfiable”) then

4: core = extract an unsatisfiable core from the SAT solver
5: for all hyp in hypotheses ∩ core do

6: C = equivalence class responsible for hyp

7: record the dependency “class → C”
8: end for

9: end if
10: return result

11: end function

Alg. 6 . Determining the order in which to prove equivalences

1: function getProofObligations(proofGraph)
2: ensure that the proofGraph is condensed
3: classesToProve = ∅
4: for all condensed node ∈ proofGraph, node.falsified == 0 do

5: if ∀ children C of node, C.soundlyProved == 1 then

6: classesToProve = classesToProve ∪ {node’s classes}
7: end if

8: end for

9: return classesToProve

10: end function

Each hypothesis has an associated equivalence class C, and

we record the dependence on each such C. Techniques to

minimize the unsatisfiable core [12] may be employed to

minimize these dependencies if desired.

Note that proof dependencies render the Proof Graph a

dynamic datastructure when it is used for induction. Edges

may be added after any single SAT call, and the topology of

the Proof Graph can thus change. This is why Algorithm 2

may need to re-condense the Proof Graph.

With combinational structural dependencies and proof de-

pendencies identified, we may use the Proof Graph tech-

niques from Section III to reason about the equivalences that

have been soundly proved in a single iteration of induc-

tion. Soundly-identified redundancies can be obtained despite

inaccurate or unproved candidate equivalences, before the

inductive fixedpoint is reached. This gives us partial results

in the case that computational resources are exhausted before

induction converges. In addition, if an equivalence is soundly

proved during one induction iteration, the equivalence doesn’t

need to be re-tested during later induction iterations. As our

experiments demonstrate, this dramatically reduces the number

of SAT calls without jeopardizing the optimality of the final

derived set of redundancies.

The Proof Graph can also be used to detect equivalence

classes that cannot be soundly proved because they have

a falsified dependency. We can skip these proof attempts

during induction, further reducing the overall number of SAT

calls without sacrificing the optimality of soundly proved

equivalences as per Theorem 2.

Algorithm 6 may be used to derive an optimal ordering of

equivalence classes to be proved by an induction framework.

The induction framework repeatedly calls this function until

no more equivalence classes need to be tested in the current

induction iteration. The algorithm traverses the Proof Graph

to look for nodes that are not falsified and have no unproved

children. These represent the equivalence classes that if proved

are most likely to yield sound equivalences, hence induction

is directed to test these classes first. Because the Proof Graph

is maintained to be acyclic, this algorithm is guaranteed to

return a nonempty set of equivalence classes if any unsolved

classes may yield a soundly-proved equivalence. Note that if

Algorithm 3 sets the falsified flag, then induction will entirely

skip any proof attempts for the corresponding candidate equiv-

alences.

Alg. 7 . Discovery of sequential structure dependencies

1: function getSeqStructureDeps(class, specReduction)
2: coi = sequential cone of influence of all gate in class

3: for all simplifiedGate in specReduction ∩ coi do

4: C = equivalence class that spec-reduces simplifiedGate

5: record the dependency “class → C”
6: end for

7: end function

V. TBV AND THE PROOF GRAPH

Like induction, TBV can be used to prove that equivalences

hold on every reachable state. Here the set of algorithms used

to carry out a proof may be arbitrary. The netlist is transformed

by adding miters for the suspected equivalences, speculatively

reducing the (sequential) netlist, and passing this sub-problem

to another user-specified algorithm or sequence of algorithms.

When the Proof Graph is used in a TBV context, there is

only one type of dependency: those arising from speculative

reduction. An example of this speculative reduction is shown

in Figure 3B, where (1) the netlist is simplified assuming A ≡

B and C ≡ D by moving fanouts of A to B and fanouts of

D to C, and (2) miters are added to test A ≡ B and C ≡ D.

Algorithm 7 is used to extract speculative reduction depen-

dencies, termed sequential structure dependencies, for TBV.

This function is called once on each equivalence class, and it is

passed the class and the set of gates merged using speculative

reduction. The sequential COI of all miters in the class is

marked, and simplifications within this COI are explored. For

each simplification, a dependence on the associated class C is

recorded.

As with Algorithm 6, it is advantageous to prove miters

associated with leaves of the Proof Graph before attempting

to prove other miters. In our implementation, we influence

the proof order by associating assigning a priority to each

miter. Additionally, we instruct downstream algorithms to skip

proofs of miters associated with Proof Graph nodes that have

the falsified flag set.

VI. SOUNDNESS AND OPTIMALITY

Our first theorem establishes the validity of any redundancy

identified using our techniques.

Theorem 1 (Soundness): Any redundancy identified as

“soundly proved” using the Proof Graph is valid.

Proof: If no speculative reduction or conjunctive induc-

tion is used within the underlying proof framework, the Proof

Graph is unconnected hence this theorem trivially holds.

Speculative reduction may jeopardize the validity of a proof,

since the corresponding fanout merge may alter netlist behav-

ior if the corresponding postulated equivalence is incorrect.

Note however that a speculative merge only may alter the

behavior of gates in the fanout of the merged gate: not the rep-

resentative onto which it was merged. Any miter in the fanout

of this merged gate will have an associated edge in the Proof

Graph, hence such fanout miters will be marked as falsified if

the speculatively-merged gate is demonstrated inaccurate. Fur-

thermore, no proved miter in the fanout of this speculatively-

merged gate will be identified as “soundly proved” until the

corresponding candidate equivalence is soundly proved and

it is thereby guaranteed that the speculative merge does not

alter netlist behavior. This theorem thus follows for speculative

reduction given the results of [2], particularly that speculative

reduction preserves the ability to identify invalid equivalences.

If using conjunctive induction, recall that a Proof Graph

edge is added to any postulated equivalence upon which

another equivalence proof is determined to rely. This will

ensure that no proved equivalence will be identified as sound

until the corresponding source of the necessary inductive

hypothesis has been proved as accurate, thereby validating the

soundness of using that hypothesis.

The following theorem establishes the optimality of the

identified redundancies when using fine-grained equivalence

classes, wherein each equivalence class contains a pair of

gates: one to be merged onto the other representative. Coarser-

grained equivalence classes are possible, though may trade

reduction optimality for performance.

Theorem 2 (Optimality): Given fine-grained equivalence

classes, the set of redundancies derived when using the Proof

Graph is optimal. In particular, any proof discarded via use

of the Proof Graph could not correlate to a soundly-identified

redundancy under the chosen proof framework.

Proof: First consider the use of speculative reduction.

Every miter in the fanout of a speculatively-merged gate will

have an associated dependency identified in the Proof Graph,

and thus will not be demonstrated as soundly proved until the

speculatively-merged gate itself is demonstrated accurate. We

note that this set of dependencies is minimal in that depen-

dencies are limited to precisely those gates whose behavior

would be altered if the corresponding postulated equivalence

is invalid. Note that collapsing SCCs within the Proof Graph

does not affect the minimality of this transitive dependency.

Next consider the use of conjunctive induction as the chosen

proof framework, where the Proof Graph might additionally

contain proof dependencies. If a candidate equivalence e1

cannot be proved, and another candidate proof e2 is proved

using the inductive hypothesis of e1, the proof of e2 will be

discarded along with all other candidates which transitively

depend on e1. Such invalidation is necessary for soundness,

since otherwise a potentially-invalid hypothesis would be

used as the basis of a proof. Use of an unsatisfiable core

furthermore ensures a minimal set of such dependencies and

hence invalidations, whereas a traditional framework would

require invalidating all proofs due to risk of such unsoundness.

In general, transitive dependencies may include edges of both

types. Optimality of identified redundancy follows noting that

both types of dependencies are minimally identified.

VII. EXPERIMENTAL RESULTS

All techniques described in this paper have been imple-

mented in the IBM internal verification tool SixthSense [9].

We utilize two disjoint benchmark suites:

• 1300 industrial property checking and sequential equiv-

alence checking benchmarks. These designs are derived

primarily from IBM high-performance microprocessors

 10

 100

 1000

 10 100 1000

In
d
u
c
ti
o
n
 w

it
h
 O

u
r

T
e
c
h
n
iq

u
e
s
,
R

u
n
ti
m

e
 (

s
e
c
)

Traditional van Eijk, Runtime (sec)

 10

 100

 1000

 10000

 100000

 10 100 1000 10000 100000

In
d

u
c
ti
o

n
 w

it
h

 O
u

r
T

e
c
h

n
iq

u
e

s
,

U
n

s
a

t
C

a
lls

Traditional van Eijk, Unsat Calls

Fig. 4. Finding redundancies with k = 1 induction on 1300 IBM designs. Left: runtime, Right: number of unsatisfiable miters

and range in size up to 5.3M AIG AND gates and 330k

registers.

• The publicly available HWMCC’10 benchmarks [10].

All experiments were run on a cluster of 16 GB, 2 GHz

POWER 5 workstations.

A. Induction Results

We first examine the impact of the Proof Graph on in-

duction. We preprocessed each netlist with combinational

simplifications [13], light-weight sequential simplifications,

phase abstraction [14], transient elimination [7], and input

reparameterization [15]. Next, we use 640 passes of 32-cycle

random simulation to derive candidate gate equivalences, and

we use k = 1 induction to prove these equivalences. This

flow was repeated twice: with the techniques presented in this

paper, and without our techniques in a more traditional flow

referred to as “van Eijk” below.

Figure 4 shows the difference in induction runtime of the

van Eijk flow vs. our proposed algorithms on the IBM designs.

Our techniques improve the runtime on almost all designs, and

the maximum reduction in runtime is 75%. The occasional

slowdowns are cases where the order of SAT calls imposed

by the Proof Graph (Algorithm 6) is disadvantageous2. With

our proposed methods, the order in which the miters are tested

is influenced by the structure of the Proof Graph, while in the

van Eijk flow we test the miters in topological order. In our

implementation, we utilize incremental SAT which makes the

ordering significant.

The runtime improvement is primarily due to the reduction

in the number of SAT calls made by the induction package.

Methods exist to reduce the number of SAT calls that are

satisfiable – re-simulation of inductive counterexamples to

quickly detect satisfiable miters [5]. Using the techniques

described in this paper we are able to furthermore reduce

the number of unsatisfiable calls. We do this by (1) avoiding

2Note that there is overhead associated with maintaining the Proof Graph. In
our implementation, this overhead is minimal, and the change in the ordering
of SAT calls is responsible for any slowdowns in the cases have studied.

re-testing soundly proved equivalences in the later induction

iterations, and (2) skipping SAT calls for equivalences that

cannot be soundly proved. Figure 4 shows a comparison of

the number of unsatisfiable SAT calls on the IBM designs.

Our techniques reduce the number of unsatisfiable calls by

25% on average and 97% in cases3.

Figure 5 analyzes the performance of our induction imple-

mentation on a subset of the most challenging HWMCC’10

benchmarks. In most cases, our techniques improves runtime

significantly, by 11% on average and 70% in cases. As with

the IBM benchmarks, the runtime improvement is primarily

due to a reduction in the number of unsatisfiable SAT calls,

37% on average and 92% in cases.

When we enable our Proof Graph algorithms the number of

iterations increases slightly, 17% on average. The reason is that

because SAT calls are skipped, inductive counterexamples may

not be seen in the earlier iterations. This causes the equivalence

classes to not be refined as aggressively as in a traditional flow.

However, the net decrease in the number of SAT calls makes

up for the slight increase in induction iterations.

Figure 5 also shows the number of merges. When our induc-

tion package deduces that an equivalence is soundly proved, it

merges the equivalence and simplifies the design. Early merges

are merges that are performed before the fixedpoint is reached.

We can perform a significant percentage of the merges early,

37% on average. In one case, bjrb07amba10andenv, we

hit an induction timeout of 1200 seconds and thus all merges

were early merges – there was no fixedpoint.

B. TBV Results

Next we examine the impact of our algorithms on TBV. As

in Section VII-A we aggressively pre-process the design and

use random simulation to postulate register equivalences. We

prove these suspected equivalences with 1-induction and apply

TBV on those equivalences which are suspected to hold but

3Because other aspects of the redundancy removal framework consume
significant runtime, e.g. formulation of the SAT problem and resimulation of
counterexamples, the reduction in the number of unsatisfiable SAT calls is
not directly proportional to the reduction in the total runtime.

Preprocessed Size van Eijk Our Techniques
Total Unsat. Total Total Unsat. Early

Benchmark Ands Reg. Time Iter. Sat Calls Sat Calls Merges Time Iter. Sat Calls Sat Calls Merges

bj08amba5g62 12411 39 91.6 4 27639 27490 4532 59.0 5 20237 20095 0
bjrb07amba10andenv 63127 58 1204.5 2 38230 38066 138 1200.3 3 29634 29454 138
bjrb07amba3andenv 5473 30 8.1 3 7727 7697 1912 8.4 3 4691 4662 12
bjrb07amba4andenv 13478 33 30.5 3 7955 7926 2473 14.5 4 4207 4175 2463
bjrb07amba5andenv 15063 38 134.0 4 22827 22738 4234 78.0 4 12786 12718 23
bjrb07amba6andenv 23622 41 295.9 3 26527 26437 5759 299.1 4 22323 22228 32
bjrb07amba7andenv 22198 45 173.0 3 16493 16383 4113 188.3 4 12285 12174 40
bjrb07amba9andenv 45539 52 1200.5 5 81087 80956 11065 657.7 5 43015 42894 106
bob1u05cu 12201 2146 6.7 34 25027 24305 746 5.2 87 15177 14753 63
bobmitersynbm 31015 5984 43.3 31 79981 78684 3225 43.7 58 15152 13905 3223
bobsmcodic 18447 1850 15.6 5 6212 6056 954 6.0 8 596 507 954
bobsmmem 55105 3584 18.0 8 13021 12740 1873 15.6 10 4350 4063 1852
bobsmrisc 9422 1323 2.7 5 8666 8587 7329 8.4 5 6813 6732 0
bobsynthetic2 2387 24 161.5 45 85792 85706 1345 111.6 44 60293 60208 0
bobuns2p10d20l 2229 20 351.7 2 226 223 283 414.5 2 231 228 0
mentorbm1and 17628 3138 9.4 44 41483 40990 3536 8.8 44 21372 21105 3536
mentorbm1p02 12255 2111 10.3 42 38285 37746 1231 6.2 43 22532 21954 252
mentorbm1p03 12254 2111 7.1 43 39087 38578 1229 8.9 42 22750 22186 252
mentorbm1p04 12282 2117 8.6 43 39012 38495 1260 5.6 42 22742 22177 252
mentorbm1p05 12290 2119 7.3 43 39415 38891 1270 5.8 43 22823 22258 252
mentorbm1p07 17465 3109 11.3 40 37433 36960 3413 9.0 41 23033 22490 280
mentorbm1p08 12273 2115 7.4 44 39863 39342 1251 6.2 42 22711 22147 252
mentorbm1p09 12253 2111 7.8 43 39104 38576 1230 5.9 43 23114 22533 252
mentorbm1p10 12253 2111 6.8 42 38176 37646 1225 4.9 45 22079 21790 1225
mentorbm1p12 12288 2114 7.5 43 39069 38575 1231 5.8 43 21421 21149 1231
neclaftp1001 35903 5360 204.2 7 78296 77352 24234 207.1 8 71842 70920 96
neclaftp1002 35734 5360 280.8 8 86909 85985 24167 251.7 8 79691 78766 287
neclaftp2001 21240 3478 12.2 4 29614 29596 23381 11.0 4 28528 28510 0
neclaftp2002 21891 3478 4.0 4 29112 29095 23682 4.7 4 27802 27785 0
pdtpmsviper 15066 574 10.1 2 10364 10277 5960 17.9 3 9396 9304 0
pj2002 16769 686 4.6 3 9766 9756 3250 1.4 3 3882 3872 2935
pj2003 16769 686 4.4 3 9766 9756 3250 1.7 3 3882 3872 2935
pj2006 16855 702 4.5 3 9773 9756 3248 1.8 3 3589 3572 2935

1.00 1.00 1.00 1.00 1.00 0.89 1.17 0.63 0.62 0.37

Fig. 5. Finding redundancies with k = 1 induction on a subset of the HWMCC’10 designs

were unproved with induction. This TBV flow speculatively

reduces the sequential netlist, annotates it with miters, and

passes it downstream to first a combinational simplification

engine and then an interpolation engine. We repeat this flow

twice: once using our new techniques, and again with the Proof

Graph disabled.

Figure 6 shows the TBV runtime on 93 of the most difficult

IBM designs4. Nearly all runtimes are greatly improved by

our Proof Graph techniques. We improve the runtime by

90% in cases and 18% cumulatively. The primary causes for

these improvements are: (1) early merging prevents later TBV

iterations from needing to re-prove what was soundly proved

in earlier iterations, and (2) we use the proof graph to guide

the downstream algorithms, only attempting proofs where a

proved equivalence can lead directly to a merge, similar to

Algorithm 6.

Figure 6 also shows the number of times interpolation was

used to solve a miter. Our techniques are able to reduce the

number of properties that interpolation attempts to prove by

80% in cases, 13% on average. Because each interpolation

call has a 30-second time limit, by reducing the number of

interpolation calls we improve the runtime substantially.

4Our aggressive pre-processing proves all properties in many of our
benchmark designs.

VIII. RELATED WORK

There has been much work in the field of sequential

redundancy identification. Due to space limitations, we limit

our focus to more recent work which transitively subsumes

prior foundational work.

[16] proposes an incremental version of a redundant latch

fixedpoint similar to Algorithm 1, using 1-step induction

to correlate latches for combinational equivalence checking

(CEC) frameworks. The induction itself is performed using an

off-the-shelf CEC tool. The authors propose that the effort

of the CEC tool in finding internal equivalence points at

each iteration may be simplified by avoiding re-verification

of internal equivalence points driven solely by latches which

did not change in correlation since they were last proved.

This result relates to our ability to infer soundly-proved

equivalences before all proofs are completed. However, there

are several differences from our work: (1) We may soundly

identify and leverage redundancy even before a fixedpoint is

reached, whereas their technique requires a fixedpoint in being

leveraged solely for CEC. (2) Our approach is designed to

handle general k-induction as well as arbitrary TBV flows to

identify redundancies over arbitrary gates in the netlist, while

their approach is focused upon 1-induction to identify latch

equivalence using a CEC tool. (3) Our approach is robust

enough to handle inductive hypothesis constraints while their

 10

 100

 1000

 10000

 10 100 1000 10000

T
B

V
 w

it
h
 O

u
r

T
e
c
h
n
iq

u
e
s
,
R

u
n
ti
m

e
 (

s
e
c
)

Traditional TBV, Runtime (sec)

 10

 100

 1000

 10000

 10 100 1000 10000

T
B

V
 w

it
h
 O

u
r

T
e
c
h
n
iq

u
e
s
,
#
 I
n
te

rp
o
la

ti
o
n
 C

a
lls

Traditional TBV, # Interpolation Calls

Fig. 6. Finding non-inductive redundancies with TBV on the 93 most difficult IBM designs. Left: runtime, Right: number of calls to interpolation [8]

approach need not consider them, as such hypotheses in their

more limited settings are effectively “latch mappings.”

[2] discusses how one may leverage postulated equivalences

through speculative reduction, enabling greater simplification

of the resulting netlist for enhanced bounded or unbounded

proof analysis. However, this work does not provide a method

to soundly simplify the netlist until all equivalence proof

obligations are proved – hence does not offer early merging

capability. In addition [2] is typically implemented by using a

SAT solver test each suspected equivalence at every iteration

of the fixedpoint procedure, a complexity we strive to avoid.

[5] describes a method to minimize the number of satisfiable

SAT calls through re-simulation of induction counterexamples,

which combined with speculative reduction yields up to 5

orders of magnitude speedup on a cumulative benchmark suite.

However, aside from eliminating “implied” proofs via specula-

tive reduction, this work does not address how to minimize the

number of unsatisfiable calls, which is a primary contribution

of this paper. This work is nonetheless complementary to ours,

as we have also found it useful to aggressively resimulate

induction counterexamples to rule out satisfiable induction

queries.

IX. CONCLUSION

We have presented a method to improve the efficiency of

redundancy identification frameworks by tracking dependen-

cies between redundancy candidates. The dependencies are

tracked using a datastructure called the Proof Graph, which

is applied to enhance both inductive and transformation-based

redundancy identification frameworks. Our techniques provide

numerous benefits to redundancy identification frameworks.

• Many redundancies may be determined to be soundly

proved before reaching a fixedpoint, allowing for useful

reduction in the design size in the event that computa-

tional resources are exhausted, or an incomplete proof

method is used.

• The total proof burden is reduced because soundly proved

redundancies need not be re-proved in later fixedpoint

iterations.

• The proof burden is additionally reduced because the

Proof Graph allows us to identify redundancies which can

never be soundly proved under a given set of candidates.

The proofs of such redundancies can be skipped.

Experiments confirm that our techniques reduce the number

of attempted proofs by up to 97%, and improve runtime by up

to 75%, for redundancy identification frameworks on industrial

as well as public benchmark sets.

REFERENCES

[1] P. Bjesse and K. Claessen, “SAT-based verification without state space
traversal,” in FMCAD, Nov. 2000.

[2] H. Mony, J. Baumgartner, V. Paruthi, and R. Kanzelman, “Exploiting
suspected redundancy without proving it,” in DAC, June 2005.

[3] C. A. J. van Eijk, “Sequential equivalence checking without state space
traversal,” in DATE, Feb. 1998.

[4] D. Stoffel and W. Kunz, “Record & play: A structural fixed point
iteration for sequential circuit verification,” in Int’l Conference on

Computer-Aided Design, Nov. 1997.
[5] H. Mony, J. Baumgartner, A. Mishchenko, and R. K. Brayton, “Spec-

ulative reduction-based scalable redundancy identification,” in DATE,
pp. 1674–1679, IEEE, 2009.

[6] A. Kuehlmann and J. Baumgartner, “Transformation-based verification
using generalized retiming,” in CAV, July 2001.

[7] M. Case, H. Mony, J. Baumgartner, and R. Kanzelman, “Enhanced
verification through temporal decomposition,” in FMCAD, Nov. 2009.

[8] K. McMillan, “Interpolation and SAT-based model checking,” in CAV,
July 2003.

[9] H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman, and A. Kuehlmann,
“Scalable automated verification via expert-system guided transforma-
tions,” in FMCAD, Nov. 2004.

[10] A. Biere and K. L. Claessen, “Hardware Model Checking Competition
(HWMCC) 2010 benchmarks.” http://fmv.jku.at/hwmcc10, 2010.

[11] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM

Journal on Computing, vol. 1, no. 2, pp. 146–160, 1972.
[12] L. Zhang and S. Malik, “Extracting small unsatisfiable cores from

unsatisfiable boolean formula,” in SAT, 2003.
[13] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG

rewriting: A fresh look at combinational logic synthesis,” in DAC, 2006.
[14] P. Bjesse and J. Kukula, “Automatic generalized phase abstraction for

formal verification,” in ICCAD, Nov. 2005.
[15] J. Baumgartner and H. Mony, “Maximal input reduction of sequential

netlists via synergistic reparameterization and localization strategies,” in
CHARME, Oct. 2005.

[16] K. Ng, M. R. Prasad, R. Mukherjee, and J. Jain, “Solving the latch map-
ping problem in an industrial setting,” in Design Automation Conference,
June 2003.

