
Scaling Probabilistic Timing Verification of

Hardware Using Abstractions in Design Source

Code

Jayanand Asok Kumar, Lingyi Liu and Shobha Vasudevan

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

{jasokku2, liu187, shobhav}@illinois.edu

Abstract—Sources of randomness such as physical process
variations and input pattern variations make hardware timing
a statistical measure. It is desirable to verify statistical timing
properties at the higher levels of design such as the Register
Transfer Level (RTL). The RTL design can be modeled as a
Discrete Time Markov Chain (DTMC) and probabilistic model
checking then applied to verify that the DTMC satisfies a desired
timing specification. However, we find that such an approach
does not scale beyond 1010 states. In this paper, we introduce an
abstraction methodology to scale this approach to large designs.
Instead of considering the entire space of data values that can be
assigned to the design input variables, we perform a value-based
interval abstraction by considering only those intervals of input
values that are relevant to a given timing property. We employ
symbolic execution on the RTL source code to automatically derive
such intervals for the design inputs, with respect to a given timing
property. We use these intervals to construct smaller abstract
DTMCs and thereby make the corresponding probabilistic model
checking problems more tractable. We show that our abstraction
is sound since we do not remove any probabilistic behavior
that is relevant to the property of interest. We demonstrate
the effectiveness of our technique using multiple designs used
in communication systems such as FFT, filters and several
modules of a real world H.264 decoder. We use our technique
to successfully verify timing of an H.264 module, for which the
concrete model contains more that 1080 states, by constructing
an abstract model with approximately only 1010 states.

I. INTRODUCTION

Adaptive techniques like voltage and frequency scaling,

process variations that affect physical device parameters [1],

aging effects [2] and physical faults [3] contribute significantly

to the stochastic nature of contemporary hardware. As a

consequence, the timing associated with hardware computa-

tions is also statistical in nature. Recent high performance

designs [4] allow long computations to make timing errors

that can eventually be corrected. Therefore, contemporary

semiconductor environments are increasingly interested in the

question: “What is the probability that the correct hardware

output is available with a delay less than a timing specification

T?” . Such information, if available at the higher levels of

design such as Register Transfer Level (RTL), would facilitate

informed choices early in the hardware design cycle and avoid

oversights that may prove costly in the later stages.

Traditionally, RTL verification checks functional correctness

and adherence to timing specification is considered at the

lower, circuit level in the design cycle. Due to the growing

sources of variations in lower level hardware, it is desirable to

incorporate statistical timing into the definitions of correctness

at the higher, RTL. Viewing RTL designs as probabilistic

entities, with non-deterministic notions of correctness opens

the door to using formal verification for new sources of

uncertainty like process variation and aging.

Probabilistic model checking based techniques [5] [6] [7]

can be used for verifying timing properties of hardware

designs in the presence of statistical variations. However, from

our experience [8], we find that such an approach is limited

by the capacity of the probabilistic model checking engine to

less than 1010 states.

In this work, we present a value-based interval abstrac-

tion technique to mitigate the state space explosion during

probabilistic model checking of RTL designs. We perform our

abstraction with respect to the timing property P [Delay < T].
We treat RTL source code descriptions as “programs” [9]. As

in the case of non-probabilistic RTL verification [10] [11],

we perform our property-specific abstraction by using static

analysis at the RTL design source code level (Figure 1). Ab-

stractions performed in non-probabilistic verification produce

smaller Kripke structures. As an analogue, our abstraction pro-

duces smaller DTMCs that make probabilistic model checking

feasible for large RTL designs. In the abstract DTMC that we

obtain, all the states of the original DTMC that are not relevant

to the specified timing property are lumped together.

Fig. 1. Our value-based interval abstractions are applied at design source
code level, leading to smaller DTMCs.

We demonstrate the application of our technique on multiple

practically useful designs that could not otherwise be verified

due to space limitations. Timing cannot be compromised in

microprocessor control logic. It is only in the datapath that

probabilistic timing is acceptable. Datapath verification is

notoriously hard [12] to get guarantees for. Our abstractions

are intended to verify probabilistic timing on the datapath of

RTL designs. We consider filters and FFT blocks that are

widely used in communication/DSP systems, as well as an

H.264 decoder. We show consistent and significant reductions

in state space which make probabilistic model checking of

these RTL designs feasible. For example, we are able to model

check a module in the H.264 decoder for which the concrete

model contains over 1080 states. The abstract DTMC contains

approximately 1010 states.

In previous work [8] [13], we introduced a methodology for

formally verifying the statistical timing properties of an RTL

design. We statically analyzed Verilog [14] RTL source code

to determine statistical correlation among the RTL signals (i.e,

variables in RTL). We combined this statistical information

with gate level delay models and represented RTL designs as

finite DTMCs. We then used the probabilistic model checking

tool, PRISM [15], to verify that an RTL DTMC M satisfies a

statistical timing property φ, denoted by M |= φ.

We use this framework to describe our value-based interval

abstractions. We are interested in properties φ of the form

P [exp(V) < T], where exp is a real valued function that

is defined over the set of RTL variables V and T is a user-

specified value. exp(V) < T is a predicate that evaluates to

TRUE or FALSE in a DTMC state depending on the numeric

values assigned to V in that state (for example, Delay <
T). When we verify M |= φ, we are actually computing the

probability of being in a DTMC state where the predicate is

TRUE. Therefore, among all possible concrete states of M ,

only those states where the predicate exp(V) < T evaluates

to TRUE are relevant. Each state of the DTMC M corresponds

to a unique assignment of values to the input variables in the

RTL design [8]. We restrict inputs to intervals of values (value-

based intervals) such that only the relevant states of M are

generated during DTMC construction. All the irrelevant states

are lumped together to a single representative state. Lumping

is a well-known abstraction approach for DTMCs [16] [17].

We show that, using this elegant abstraction, we are able to

handle complex RTL designs. The complexity of our technique

is not as much in the abstractions as in the process of obtaining

them automatically from hardware descriptions.

Value-based intervals for RTL inputs can be used to con-

struct an abstract DTMC MA by lumping the irrelevant

states together even at the model construction stage in the

probabilistic model checker. In order to derive these intervals,

we first consider the predicate exp(V) < T as a symbolic

constraint on the values of variables in V . We rewrite such

symbolic constraints as constraints that are expressed over

the input variables. We achieve this by performing symbolic

execution [18] on the RTL source code. We use an integer

constraint solver to obtain lower and upper bound values of

the intervals for these inputs by maximizing (or minimizing)

the value of the input for which the predicate exp(V) < T
is satisfied. We use these intervals while describing the model

in the probabilistic model checker which then constructs the

abstract DTMC MA and checks if MA |= φ. We show that

the abstract DTMC MA is an exact reduction of the concrete

DTMC M , i.e. MA |= φ iff M |= φ.

The value of our work is twofold. Firstly, we scale proba-

bilistic model checking, by adapting symbolic execution tech-

niques to hardware, and integrating them with other techniques

known in software. To the best of our knowledge, we are

the first to use these set of techniques in the context of

probabilistic model checking for RTL designs. Secondly, we

demonstrate that, using our technique, it is feasible to reason

reliably about very low level physical variations.

II. PRELIMINARIES: PROBABILISTIC MODEL CHECKING OF

RTL DESIGNS

We now describe the framework that we use for formally

representing RTL designs in order to employ probabilistic

model checking. We reuse some of the model definitions from

our previous work [13].

We shall use the following example RTL source code

in order to illustrate the steps of our abstraction technique

(Section IV).

always @(posedge clk)

if (sel)

O1 <= I1 + I2;

else

O1 <= 4*I2 + I3;

end

where I1, I2, I3 are the inputs, sel is a Boolean control

variable and O1 is the output. All input and output variables

are of 10 bits and can therefore be assigned 1024 different

numeric values.

The always @(posedge clk) blocks can be thought of as

processes that are executed in parallel at every rising edge of

the hardware clock signal which is considered as a time step.

At any time step t, the <= operator evaluates the right-hand

side (RHS) value and assigns it to the left-hand side (LHS)

variable in the next step t + 1. Typical data intensive RTL

designs that are used in communication/DSP systems mostly

perform arithmetic operations.

A. Variables in RTL designs

In RTL source code, variables are used to represent the data

that is processed in hardware. A variable v can be assigned

integer values in the range [l u] where l and u denote the

lower and upper bound, respectively. For an N -bit variable,

we assume the default range of values to be [0 2N -1]. We

refer to the probability distribution of v as the PMF of v.

We define a set of variables V to be independent if all the

variables in V are mutually independent. The joint PMF of an

independent set V is simply a product of the individual PMFs

of the variables v ∈ V .

We assume knowledge of the distribution of primary input

variables and that they are independently distributed. However,

our approach is not limited to designs with independent

primary inputs. We also assume stationary∗ probability dis-

tributions for our inputs, and therefore for all variables in

the system. Such an assumption is reasonable since statistical

timing/aging analysis of hardware datapaths is often per-

formed by considering time-invariant statistical distributions

for input data [2] [20]. The PMFs of stationary variables

are independent of time. Therefore, the values assigned to

stationary variables in two different time steps are statistically

independent of each other.

Let V be the set of all variables in a system and I ⊂ V
be the set of input variables. In order to find the PMFs of

a variable v ∈ V from the PMFs of I , we need to find the

function f such that v = f(I). We call f a system function.

For a variable v, f(I) is the symbolic expression that includes

inputs, or the “formula” that corresponds to its evaluation. f(I)
may comprise Boolean or arithmetic operators that are allowed

in the source code. The support of v, denoted by Sup(v), is

the set of all input variables in the expression corresponding

to f(I). Sup(v) is a subset of I , i.e. Sup(v) ⊆ I .

The values assigned to the control variables activates/selects

one among several possible paths in the RTL design. Each path

may result in a different assignment to a variable. Therefore,

for each path i, a system function fi needs to be defined

for each variable v that is of interest. However, Sup(v)
is computed by considering all possible paths. In the RTL

example, there are two possible paths (sel=0 and sel=1) and

Sup(O1) = {I1, I2, I3}.

B. Modeling RTL designs as DTMCs

In an extension of [9], we model both input and process

variations. Since our abstraction technique is not dependent

on the type of variation, we consider only input variations in

this work. Therefore, the probabilistic behavior of a variable

of interest, v, can be completely represented by the inputs

Sup(v), along with their joint PMF. We now describe the

process of representing an RTL design by using a finite-state

probabilistic system, namely a finite DTMC.

A DTMC can be completely specified by using a triple (S,

Trans, µ0) where S is the set of state variables, Trans is the

probabilistic state transition relation and µ0 is the initial state.

Each state µ of the DTMC corresponds to a unique assignment

of values to the variables in S.

We construct the DTMC model M for a variable v, with the

support of v being the state variables (S = Sup(v)). We define

the initial state by setting the value of all state variables to 0.

Each hardware clock cycle corresponds to a time step in which

new values are assigned to the variables. Therefore, each such

time step corresponds to a DTMC transition from one state µ
to another state µ′ that corresponds to the new assignment of

values to Sup(v).
The probability of a transition to a new state µ′ is equal

to the probability with which the corresponding new values

∗A function of stationary variables is also stationary [19].

of the state variables are assigned to Sup(v). Since all the

variables in the Sup(v) are assumed to be independent, we

obtain the state transition probabilities by taking the product

of the individual probabilities of all variables (Section II.A).

If we do not assume independence for the inputs, we would

use the specified joint PMF of Sup(v). All such possible

state transitions labeled with the corresponding probabilities

constitute Trans for the DTMC M .

If a set of variables Π are of interest, we construct the

corresponding DTMC M such that

S = Sup(Π)

= ∪
v∈Π

Sup(v) (1)

In the RTL example, O1 is the variable of interest. Therefore,

we construct the corresponding DTMC with Sup(O1) =
{I1, I2, I3} as state variables.

C. Model checking a statistical timing property in RTL

We now describe the notion of delay in RTL presented in [8]

and how we formally represent a statistical timing property.

1) Modeling delay in RTL: We consider delay in terms of

RTL assignment statements. The delay of an RTL assignment

depends on the operator and the values of the operands in the

RHS. We consider real-valued analytical functions exp, which

we call macromodels [8], that estimate the delay of an operator

based on the value of the operands.

For each RTL operator, we derive the macromodel exp by

performing extensive simulations of a gate-level implementa-

tion of the operator. We repeat this for several possible im-

plementations of each RTL operator and construct a library of

macromodels. We perform this whole macromodeling process

offline for a given technology library.

In the RTL example, the delay of I1+ I2 can be computed

by using the macromodel exp(I1, I2) corresponding to the

specified adder implementation. With a Ripple Carry Adder

implementation, exp is a polynomial function of the number

of carry bits in the addition of I1 and I2. Further details of

the macromodeling process can be found in [8].

Each state in the RTL DTMC is associated with an RTL

delay which can be computed based on the values of the RTL

inputs (i.e., state variables) in that state. We “tag” each state

with the associated RTL delay which we compute by using the

appropriate macromodel. Each DTMC transition represents a

change in value of the RTL inputs and does not contain any

information regarding the RTL delay.

2) Specifying an RTL timing property: We wish to compute

the probability that the RTL delay meets a timing requirement

T . The delay of an RTL block can be expressed as a com-

bination of the macromodels of all the operators in the block

[8]. Let this RTL delay be denoted by exp(Π), which is an

expression defined over a set of variables, Π ⊆ V . We define

probabilistic invariants Γ [21] based on the timing requirement

of the design, given by

Γ , P [exp(Π) < T] † (2)

†In place of <, we allow for the use of other relational operators as well.

where T is a real-valued constant and exp(Π) < T is the

predicate that is of interest to us. P [Predicate = TRUE]

denotes the probability that the predicate is satisfied (i.e.

TRUE) by an assignment of concrete numeric values to Π.

Γ is the probability of being in a state (i.e., an input pattern)

where the tagged delay is less than T .

We formally define probabilistic timing properties φ of the

form,

φ , Γ ≤ p (3)

where p ∈[0,1] is a specification of the design. We allow

logical comparison operators other than ≤ to be used for

comparing the probabilistic invariant with p.

We are interested in computing Γ for values of Π at some

time step t. For all the variables in Π, we consider the values

assigned to them in the same time step. Since we assume the

probabilities to be stationary, the value of t does not affect

the correctness of our approach. In this paper, we omit the

index t in order to simplify our notation. In this regard, our

properties can be thought of stationary/steady-state properties

that are not dependent on time.

We employ probabilistic model checking and verify that

a DTMC M satisfies a property φ, denoted by M |= φ.

The model checking procedure for properties described in

Equation 3 involves the computation of the invariant Γ and

comparing it with p. If p is not specified, verifying M |= φ
is equivalent to the computation of Γ. In this paper, we use

PRISM [15] as the probabilistic model checking engine.

Probabilistic model checking explores all possible behaviors

of the DTMC (i.e. all values of RTL inputs) and therefore,

computes the exact probability with which the timing require-

ment is met.

D. Describing DTMC models in PRISM

In PRISM, we describe a DTMC M by defining the assign-

ments to each state variable sv ∈ Sup(Π), independently. Let

sv correspond to an N -bit input variable in RTL. sv can be

assigned a value j ∈ 0, 1, ..2N − 1 with probability pj . We

model this in PRISM by the statement,

pj : (s
′
v = j);

Therefore, there are 2N statements corresponding to the de-

scription of sv. If there are K such N -bit variables, 2N ∗K as-

signment statements are required. PRISM supports assignment

statements for multiple state variables. However, this approach

would require 2NK statements, which is inefficient.

III. OUR ABSTRACTION USING VALUE-BASED INTERVALS

In this section, we define and establish criteria for per-

forming value-based interval abstractions on probabilistic sys-

tems of our interest, namely RTL designs. We perform our

abstraction by statically analyzing the RTL source code. In

our approach, we directly generate the abstract DTMC MA

without generating the concrete DTMC M first.

Let Λ be the predicate that is specified in the property φ.

Let Π be the set of RTL variables over which Λ is expressed.

We construct the DTMC M using Sup(Π) as state variables.

Fig. 2. a) Exact constraint for values of inputs x,y b) Conservative value-
based intervals for inputs x,y

We wish to verify whether M satisfies φ, denoted by M |= φ.

In other words, we wish to compute the probability of being

in a DTMC state where Λ is TRUE. This can be achieved by

considering a smaller DTMC MA that contains all the states

of M where Λ = TRUE. MA is the abstract DTMC model

corresponding to the concrete DTMC M . Since each state of

M corresponds to a unique assignment of concrete numeric

values to the input variables Sup(Π), the construction of MA

corresponds to retaining only those values of inputs for which

Λ = TRUE. All other values of the inputs are inconsequential

and can be lumped together by using a single representative

value. This forms the basis of our data abstraction technique.

Λ = TRUE imposes a constraint on the values that can be

assigned to the variables in Π. In order to construct an abstract

DTMC MA, we wish to use this constraint to determine the

concrete values of the input variables Sup(Π) that need to be

considered. We achieve this by using RTL symbolic execution

[18] to rewrite the constraint on variables Π as a constraint

on inputs Sup(Π). Symbolic execution statically explores

all possible paths through the RTL design and determines a

constraint Ci on the values of Sup(Π), for each path i.
Each constraint Ci specifies an exact bound on the values

of Sup(Π) for which Λ =TRUE on path i. However, in

general, Ci is specified jointly over multiple input variables

in Sup(Π). Ci cannot be included in the PRISM model

description since we define assignments to input variables

independently (Section II.D). Therefore, we use a constraint

solver (ILP) with Ci to derive value-based intervals for each

input variable in Sup(Π). Since we wish to compute the

probability of Λ = TRUE for all paths through the design,

we construct an abstract interval ψabs for v that includes all

the values from the intervals computed using each Ci.

Finally, we use the abstract intervals for each v ∈ Sup(Π)
in order to construct the abstract DTMC MA. We then verify

M |= φ by checking MA |= φ
For each v ∈ Sup(Π), we consider all values of v such that

there is a possible assignment of values to the other input

variables ∈ Sup(Π) \ {v} that would satisfy Λ =TRUE.

Therefore, the value-based intervals that we construct are

conservative (Figure 2). MA may contain states from M in

Fig. 3. Block diagram showing the stages of our predicate-based data abstraction technique. The labels on the arrows show the outputs of each stage.

which Λ=FALSE. However, we do not discard any state from

M in which Λ= TRUE. We show that our abstraction is sound

with respect to the probabilistic property of interest.

Most existing abstractions for probabilistic model checking,

excepting a few recent ones such as [22] [23], operate on the

concrete DTMC. Instead, we perform our abstraction entirely

at the RTL source code level prior to DTMC construction.

Since we specify the abstracted intervals in the PRISM model

description, we directly generate the abstract DTMC and

circumvent the capacity issues of PRISM that are associated

with generating the larger concrete DTMC.

IV. ALGORITHM FOR VALUE-BASED INTERVAL

ABSTRACTION

We wish to construct an abstract DTMC MA in order to

determine P [(exp(Π) < T)], where exp(Π) < T is the

predicate of interest, Λ. Figure 3 shows the different steps

in our abstraction technique. We now describe each of these

steps in detail.

We shall illustrate our technique using the RTL example in

Section II. Let P [O1 < 100] be the invariant that we wish to

compute.

A. Symbolic execution to generate constraints

We use symbolic execution to explore each possible path

i in the RTL design and generate a corresponding constraint

Ci on the input variables. For each path i, let v=fi(Sup(v))
where fi is the system function for variable v. Therefore, a

predicate exp(v) < T can be written as exp(fi(Sup(v))) < T
which is a constraint Ci on the values of the input variables

Sup(v).
Symbolic execution refers to the execution of a single path

with symbolic inputs. Symbolic execution of a path generates

symbolic expressions that are a logical conjunction of the

guards (conditional expression of branches) and assignments

to the variables used in guards along that path. Symbolic

execution is well known in software [24]. In recent work

[18], symbolic execution has been introduced for RTL source

code. The RTL symbolic execution engine works on the

CFG and expression tree structure of each RTL “program”

statement. For each single statement or conditional expression

in the design, the expression tree structure exactly records

the corresponding assignment or expressions and is linked to

corresponding CFG node.

The RTL symbolic execution engine [18] considers exactly

one path i of the CFG at any given time. At each CFG node

in path i, the corresponding expression tree is traversed and

output as symbolic expression. When a variable v ∈ Π is

encountered, the corresponding system function fi(Sup(v))
is output by the engine. Every occurrence of v ∈ Π in

exp(V) < T is substituted with the corresponding system

function fi(Sup(v)). We thus obtain the constraint Ci on

Sup(v) corresponding to the path i. We repeat this for all

possible paths i in the RTL design and obtain the correspond-

ing constraints on the input variables. Further details of the

RTL symbolic execution engine, along with an optimization

strategy for path exploration, can be found in [18].

In the RTL example (Section II), we obtain the linear

constraints I1+I2 <100 and 4 ∗ I2+I3 <100 corresponding

to the paths sel=1 and sel=0, respectively.

B. Linearizing the constraints

A linear constraint will have terms on the left hand side

that are separated by +/- signs. Each term can be a variable

multiplied by a constant numeric value. Since datapaths of

RTL designs comprise mainly of arithmetic operators, each

constraint Ci is typically a linear constraint that is defined

over the input variables. However, if the constraints are not

linear, we transform them into a set of linear constraints.

In Figure 4, we outline a set of rules for transforming non-

linear operations into linear constraints. All the rules that we

have defined can be extended easily for relational operators

other than <. The terms (X >> m) and (X << m) represent

shifting the variable X by m bits towards the right and left,

respectively. These operations are equivalent to division and

multiplication by 2m, respectively.

If there is a term corresponding to multiplication of non-

constants, we split the term into a set of linear constraints. Let

X1 ∗X2 be the non-linear term in the constraint Ci. We treat

X1 ∗ X2 as an input variable and compute its upper bound

Ti (Section IV.D). We then rewrite this term as two linear

constraints LC1 and LC2, as in Figure 4.

Fig. 4. a) Rules for linearizing constraints, b) ILP instance for computing upper bound of v.

Concatenation of variables is supported in RTL designs.

Let X1, X2 be n1-bit and n2-bit variables, respectively. The

variables can be treated as strings of bits and concatenated to

get a string of n1+n2 bits, represented by the term {X1, X2}.

This algebraic operation corresponding to this term can be

rewritten as the linear expression X1 ∗ 2n2 +X2.

We apply the above rules recursively to each non-linear con-

straint and derive a set of linear constraints LC1 to LCNumLC ,

where NumLC is the total number of linear constraints. The

rules that we have defined in Figure 4 are not complete, since

RTL designs support several other operators. However, our

rules are sufficient for the large class of datapath RTL designs

that are used in DSP systems.

In general, the predicate can be expressed as a polynomial

function over variables Π. In such cases, we can define

rules to convert non-linear terms such as (Xq < Ti) into

corresponding linear terms (X < 1/q
√
T i) (for q > 1 and

non-negative X). However, in this paper, we only consider

predicates that are linear functions over Π.

C. Deriving value-based intervals for input variables

We consider a linear constraint LCi. For each input variable

v that appears in the expression for LCi, we wish to compute

the interval ψ(i) = [l(i) u(i)] of values that can be assigned

to it. We achieve this by formulating an instance of the ILP

problem.

Figure 4 shows the ILP instance for computing the upper

bound of v. Each ILP instance comprises one linear constraint

LCi, and a set of constraints that force all variables vj
(including v) that appear in LCi to be non-negative integers.

The objective of the the ILP problem is to maximize the integer

value of v such that all the constraints are satisfied.

If the ILP instance has an optimal solution, we set u(i) to be

equal to that solution. If the ILP instance is “unbounded”, it

implies that all non-negative integer values for v will satisfy

the given set of constraints. In this case, we set u(i) to the

default upper bound (i.e. 2N -1, as in Section II.A) and mark

v as a free variable. Similarly, we compute l(i) by changing

the objective function to min v.

We perform this interval computation for all linear con-

straints. If a variable is marked to be free, we do not compute

its intervals for any of the subsequent linear constraints.

Finally, we compute the most conservative interval for each

input variable v, by computing the union of the intervals ψ(i)

that are obtained using the linear constraints LCi. We call this

the abstraction interval ψabs for the variable v.

ψabs =

NumLC⋃

i=1

ψ(i) (4)

In the RTL example (Section II), we compute the intervals

[0 99] for both I1 and I2 based on the sel=1 path. Based on

the constraint in the sel=0 path, we compute the intervals [0

24] and [0 99] for the variables I2 and I3, respectively. After

computing the union of the two intervals for I2, we observe

that ψabs for all I1, I2 and I3 is equal to [0 99].

If there is a “-” sign in the left hand side of the constraint, all

the variables that appear in the constraint will be unbounded.

For example, it is possible for each value of the variable X1
(and X2) to satisfy the constraint X1−X2 < 100. However, it

is possible to compute a lower bound for X1 if the > operator

is used in the constraint instead of <.

In this work, we have considered unsigned arithmetic where

RTL variables are interpreted to have non-negative integer

values. However, the rules in Figure 4 can be easily extended

to the case of signed arithmetic, where negative integer values

are also allowed.

D. Describing the abstract DTMC model

We use the abstraction intervals in order to describe an

abstract DTMC model MA in PRISM. For each variable

{v : v ∈ Sup(Π) and v is not free}, we update the assignment

statements (Section II.D) in the corresponding module in

PRISM. We select a non-negative integer z /∈ ψabs. For each

statement that assigns a numeric value j /∈ ψabs to v, we

replace j with z. Therefore, z is a single value that we use to

represent all numeric values of v that lie outside the abstraction

interval. With the updated description, the DTMC constructed

by PRISM is the abstract model MA.

In the RTL example (Section II), we use the numeric value

100 to represent all values of I2 outside the interval [0 99].

Therefore, all DTMC states corresponding to values of I2
outside [0 99] are lumped to a single state in which I2 =

100.

V. MAPPING FROM CONCRETE TO ABSTRACT DTMCS

We now describe how our abstraction maps the states and

transitions of the concrete DTMC to those of the abstract

DTMC. We will denote abstractions with respect to Λ by

α(·,Λ).
We first define the abstraction for states. For each state µ

in the concrete DTMC M , α(µ,Λ) = µA, where µA is a state

in the abstract DTMC MA. There are two possible outcomes

under the abstraction:

1) µA=µ
This necessarily happens if Λ = TRUE in state µ of

DTMC M . This can also happen if Λ = FALSE in µ but

there exists at least one state variable whose valuation in

µ lies within its corresponding abstraction interval ψabs.

2) µA=µp
This implies that Λ = FALSE in state µ of DTMC M
and the values assigned to all state variables lie outside

their corresponding abstraction intervals. All such states

in M are mapped to a single representative state µp in

MA

We now define the effect of α on the state transition

probabilities of M . Let p(µA
1 → µA

2) denote the probability

of transition from state µA
1 to state µA

2 in MA. We consider

the following cases:

Case 1: µA
1 6= µp and µA

2 6= µp

p(µA
1 → µA

2) = p(µ1 → µ2) (5)

where α(µ1,Λ) = µA
1 , α(µ2,Λ) = µA

2

Case 2: µA
1 6= µp and µA

2 = µp

p(µA
1 → µA

2) =
∑

µi∈M :α(µi,Λ)=µp

p(µ1 → µi) (6)

where α(µ1,Λ) = µA
1 .

Case 3: µA
1 =µp and µA

2 6= µp

p(µA
1 → µA

2) = p(µi → µ2) (7)

where α(µ2,Λ) = µA
2 and µi is any state in M . Since the

probability distributions for all input variables are stationary

(Section II.A), the probability of reaching any state µ2 ∈M is

independent of the previous state. Therefore, the exact identity

of state µi in Equation 7 is irrelevant and our abstraction

does not remove any relevant probabilistic behavior. The same

applies for Equation 5 as well.

Proof of correctness:

We now present a brief proof intuition for the soundness of

our technique. We wish to prove that M |= φ is equivalent to

MA |= φ. We achieve this by using the Strong Lumping The-

orem [16] [17] to show that MA is a probabilistic bisimulation

[25] of M with respect to φ.

α can be thought of as an equivalence relation between

the states in M and MA. α relates a state µ in M to the

state µA = α(µ,Λ) in MA. By construction, α also preserves

the valuation of Λ. Therefore, µA is locally equivalent to µ
with regard to Λ. In fact, all states µA in MA can be viewed

as equivalence classes of M under the relation α. With the

exception of µp, all equivalence classes µA contain only one

state.

The abstract model MA can be thought of as a quotient

DTMC that comprises of equivalence classes defined by α.

Equations 5, 6 and 7 can then be used to invoke the

Strong Lumping Theorem and prove that MA is a probabilistic

bisimulation of M .

VI. EXPERIMENTAL RESULTS

We implement the RTL symbolic execution algorithm using

C++. We perform all our experiments on an Intel i5 2.67GHz

quad-core machine with 16GB of memory. We use lpsolve

[26], an open source ILP solver, in order to solve the set of

integer linear constraints and derive the value-based intervals

for the inputs.

We demonstrate the effectiveness of our methodology

by applying it on two sets of data-intensive RTL de-

signs. The first set of designs comprise fir, elliptic

and fft8 all of which are high-level synthesis bench-

marks [27] that are commonly used in communication/DSP

systems. Filter coefficients are fixed and stored in a

ROM table. We consider constant values for these coeffi-

cients. Inter_pred_LPE, Inter_pred_pipeline and

Inter_pred_sliding_window are different modules

from a real-world H.264 decoder‡ and constitute our second

set of designs. In this work, we analyze each of the H.264

modules independently.

In Table I, Number of paths represents the total number of

paths that needs to be explored during symbolic execution.

This number is with regard to the variables which appear in

the predicate (described in Table II) of the specified property.

Since our designs do not contain multiplication of variables

with each other, there should be exactly one linear constraint

per path (Section IV.B). However, in some paths, all variables

are assigned a constant value and therefore, the predicate

is vacuously TRUE or FALSE. We discard these paths and

consider only the linear constraints (Number of constraints)

corresponding to the remaining paths while formulating the

ILP instances.

In Table I, Number of inputs represents the total number of

input variables (and their bitwidths) on which the variables in

the predicate depend, i.e. Sup(Π). Therefore, each of these

input variables appear in at least one of the linear constraints.

However, in each linear constraint, at most a small subset of

these input variables are present. Therefore, each ILP instance

is small and the corresponding runtime of lpsolve is also

negligibly small. The total abstraction time, which includes

the time for both the generation of linear constraints and the

ILP solver, is less than 10 seconds in all our experiments.

For each of the designs that we consider, we specify a

property that is defined over some internal data variables.

Table II provides a description of all the predicates that we

define in order to specify the properties of interest. fir

‡www.opencores.org

TABLE I
SIZES OF THE ILP INSTANCES THAT WE USE TO DERIVE THE INTERVALS FOR INPUT VARIABLES.

Design Predicate Number of Number of Number of Abstraction

name name inputs paths constraints time

fir p8 6 (8-bit) 1 1 <10s

elliptic p9 12 (8-bit) 1 1 <10s

fft8 p10 8 (16-bit) 4 4 <10s

Inter_pred_LPE p1 5 (8-bit) 180 131 <10s

Inter_pred_LPE p2 5 (8-bit) 180 131 <10s

Inter_pred_LPE p3 5 (8-bit) 180 131 <10s

Inter_pred_pipeline p4 32 (8-bit) 1936 1932 <10s

Inter_pred_pipeline p5 3 (8-bit) 8 5 <10s

Inter_pred_sliding_window p6 19 (8-bit) 29 21 <10s

Inter_pred_sliding_window p7 16 (8-bit) 29 21 <10s

TABLE II
DESCRIPTION OF THE PREDICATES THAT WE USE TO SPECIFY PROPERTIES

OF OUR INTEREST. TO VERIFY THESE PROPERTIES, WE COMPUTE

P [PREDICATE = TRUE].

Predicate name Predicate description
p1 bilinear0 A + bilinear0 B < 8
p2 bilinear0 A + bilinear0 B < 6
p3 bilinear0 A + bilinear0 B < 4
p4 8*Inter blk mvx + Inter blk mvy < 2
p5 Inter pred out0 < 200
p6 Inter pix copy0 < 2
p7 Inter H window 0 0 < 3
p8 y<30
p9 outp < 30
p10 s3r < 127

and elliptic are filter designs in which it is common to

check whether the output is less than a user-defined threshold.

Therefore, we define the predicates p8 and p9 over the output

variables y and outp, respectively. Although not exact models,

these predicates can be viewed as being representative of

certain timing properties of the design. For example, y can be

an input to an adder block (Section II.C.1) for which the timing

constraint requires that y < 30, as in p8. For our experiments,

we consider predicates that are linear functions over a set of

RTL variables and we use the “<” relational operator. For

each of the H.264 modules, we consider multiple predicates.

Table III demonstrates the reduction in state-space provided

by our abstraction method. PRISM runs out of memory while

trying to construct any of the concrete DTMC models and

therefore, these designs can not be model checked. We esti-

mate the number of states in the concrete model based on the

total number of combinations of values that can be assigned to

the corresponding input variables. There is no reason to believe

that the RTL inputs, which are data variables, are restricted and

we use their full range of values to estimate the concrete state-

space. In all the designs, with the exception of fft8, we are

able to obtain significant reductions in state space by using our

abstraction technique and PRISM successfully constructs the

corresponding abstract DTMCs. We approximately represent

the number of states in the abstract DTMC model as powers of

2, in order to facilitate comparison with the concrete number

of states. Model checking of the smaller abstract DTMCs by

PRISM requires only a few seconds.

p1, p2 and p3 are all the same predicate that differ only

in the constraint values that are specified in the RHS. We

observe that as the constraint values get smaller, the number

of relevant data values (and hence states) also decrease. Our

technique is extremely effective when the predicate is TRUE

for only a small fraction of the possible data values. Although

our technique would still be sound for larger constraint values,

the reduction that we achieve may be far more modest.

Since model checking could not be completed for the

concrete DTMCs in Table III, we do not present a comparison

of the model checking results for these designs. Instead, as

a proof of concept, we construct smaller versions (smaller

bitwidth for inputs) of fir and elliptic and verify that the

results computed using the concrete DTMC and the abstract

DTMC are exactly the same (Table IV). We choose the

smaller bitwidths such that PRISM model checks the concrete

DTMC. For example, we consider 3-bit data for fir(small)

and the runtime is <10s. We do not consider a smaller fft8

since our abstraction does not provide any reductions for it

(Table III).

In fft8, we are not able to demonstrate any reduction in

state-space using our abstraction. This is due to “-” operator

in the RTL design. As described in Section IV.B, a “-” sign

on the left hand side of a “less than” constraint will result

in unconstrained values for all the input variables. JPEG

encoder is another design for which we cannot obtain

reductions. The module of the encoder design that we consider

is control-intensive and therefore, the number of paths that

need to be explored by the symbolic execution algorithm

is huge (Section IV.A). For this design, we stopped the

symbolic execution engine after 1hr of exploring paths and

generating the corresponding constraints. We could not use

this incomplete set of constraints since all possible paths in the

design need to be considered in order to guarantee correctness

of our abstraction.

In all the designs mentioned above, we find that the control

paths are independent of the values of data. This is fairly

common for a large class of data-intensive designs that are

TABLE III
REDUCTIONS IN NUMBER OF STATES THAT WE ACHIEVE BY USING OUR ABSTRACTION

Concrete DTMC Abstract DTMC

Design Predicate Number of Model checking Number of Model checking

name name states time states time

fir p8 2
56 Out of memory 2

28 <2s

elliptic p9 2
96 Out of memory ≈ 2

29.73 <2s

fft8 p10 2
16 Out of memory 2

16 Out of memory

Inter_pred_LPE p1 2
40 Out of memory ≈ 2

15.85 <2s

Inter_pred_LPE p2 2
40 Out of memory ≈ 2

14.04 <2s

Inter_pred_LPE p3 2
40 Out of memory ≈ 2

11.61 <2s

Inter_pred_pipeline p4 2
256 Out of memory 2

32 <2s

Inter_pred_pipeline p5 2
24 Out of memory ≈ 2

22.95 <2s

Inter_pred_sliding_window p6 2
152 Out of memory ≈ 2

30.11 <2s

Inter_pred_sliding_window p7 2
128 Out of memory 2

32 <2s

TABLE IV
DEMONSTRATING CORRECTNESS OF OUR ABSTRACTIONS USING SMALLER, CONTRIVED VERSIONS OF BENCHMARKS DESIGNS SINCE THE CONCRETE

DTMCS CANNOT BE CONSTRUCTED FOR THE ACTUAL SIZES.

Concrete DTMC Abstract DTMC

Design Predicate Number of P [Predicate = TRUE] Number of P [Predicate = TRUE]

name states (PRISM result) states (PRISM result)

fir (small) (y < 12) 2
24 4.6539x10−4

≈ 2
15.57 4.6539x10−4

elliptic (small) (outp < 30) 2
30 9.6485x10−7

≈ 2
14.39 9.6485x10−7

commonly used in DSP systems. For example, typical control

variables that we observe are counters that are not data-

dependent. Since control variables control the selection of

paths and since we wish to consider all possible paths, we

cannot constrain the values of such variables. In non-DSP

designs, the control variables may depend on input data

variables and therefore, all such input variables must also be

unconstrained. In these cases, the overall reduction achieved

by our abstraction technique may not be very large.

In RTL designs, it is possible that arithmetic operations can

result in an overflow (or underflow) due to insufficient number

of bits that are assigned to store the results. Ideally, such

incorrect computations should not be allowed. Our technique

cannot detect such overflow errors. Typically, overflows are

prevented in DSP designs by assigning sufficient number of

bits to the different variables in the design. Our abstraction

techniques can be applied on such designs.

VII. RELATED WORK AND CONCLUSION

In the realm of software verification, there exist several tech-

niques [28] [29] for predicate abstraction. Properties regarding

program correctness/safety can be expressed using a set of

predicates, that are either specified or automatically inferred.

These predicates can be used to abstract a program and convert

it into a Boolean program on which the properties can be easily

verified. More generally, abstract interpretation [30] is the

theory of reasoning with the approximate semantics of a large

program rather than the set of all possible concrete behaviors.

However, unlike predicate abstraction, all such abstractions

are not necessarily property-specific. In all these abstractions,

the concrete numeric values of data can either be completely

abstracted out of the program or can be restricted to finite

intervals [31].

Data abstraction techniques have been applied even in the

context of hardware verification [10]. These techniques employ

predicate abstraction in order to focus on the verification of

Boolean control logic for which the exact numeric values of

datapath variables are inconsequential. In [11], RTL designs

are verified by restricting data values to intervals that are

imposed by the execution of the RTL program. Therefore,

these intervals are not property-specific.

Abstraction techniques have been employed in the context

of probabilistic systems as well [32] [33] [22] [23]. In [23], the

abstraction is performed on the source code itself. However,

this technique is intended for probabilistic software and cannot

be extended to RTL designs. In [22], the authors present

a predicate-based abstraction for Markov Decision Processes

(MDPs). They employ an SMT solver in order to implement

this abstraction at the level of the PRISM language itself.

However, this implementation is very inefficient for the bulky

PRISM descriptions that are used for RTL designs (Section

II.D).

In conclusion, we have presented a property-specific value-

based interval abstraction technique that is applied at the

source code level. We intend our abstraction for scaling

probabilistic model checking of hardware designs. Widespread

adoption of formal verification is feasible only if it remains

relevant and practicable in critical, emerging areas of need

like variation-aware timing verification. Our work represents

a strategic step in this direction.

REFERENCES

[1] K. A. Bowman, M. Orshansky, and S. S. Sapatnekar, “Tutorial ii:
Variability and its impact on design,” in Proc. of ISQED’06, 2006, p. 5.

[2] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “NBTI-aware synthesis
of digital circuits,” in Proc. of DAC’07, 2007, pp. 370–375.

[3] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. patel, “Characterizing the
Effects of Transient Faults on a High-Performance Processor Pipeline,”
in Proc. of DSN’04, 2004, p. 61.

[4] D. Ernst, N. S. Kim, S. Das, S. Pant, T. Pham, R. Rao, C. Ziesler,
D. Blaauw, T. Austin, and T. Mudge, “Razor: A low-power pipeline
based on circuit-level timing speculation,” in Proc. of MICRO’03, Dec.
2003.

[5] M. Z. Kwiatkowska, G. Norman, and R. Segala, “Automated Verification
of a Randomized Distributed Consensus Protocol Using Cadence SMV
and PRISM,” in Proc. of CAV’01, 2001, pp. 194–206.

[6] M. Kwiatkowska, G. Norman, and D. Parker, “Symmetry Reduction for
Probabilistic Model Checking,” in Proc. of CAV’06, 2006, pp. 234–248.

[7] J.-P. Katoen, “Advances in Probabilistic Model Checking,” in Proc. of

VMCAI’10, 2010, p. 25.

[8] J. A. Kumar and S. Vasudevan, “Variation-Conscious Formal Timing
Verification in RTL,” in Proc. of VLSI Design’11, 2011, extended version
available at http://users.crhc.illinois.edu/jasokku2/docs/TCAD final.pdf.

[9] E. M. Clarke, M. Fujita, S. P. Rajan, T. W. Reps, S. Shankar, and
T. Teitelbaum, “Program slicing of hardware description languages,” in
Proc. of CHARME’99, 1999, pp. 298–312.

[10] E. Clarke, O. Grumberg, and et al., “High level verification of control
intensive systems using predicate abstraction,” ACM Transactions on

Programming Languages and Systems, vol. 16, pp. 1512–1542, 2003.

[11] V. P. Nazanin, N. Mansouri, and R. Vemuri, “Automatic Data Path Ab-
straction for Verification of Large Scale Designs,” in Proc. of ICCD’98,
1998, pp. 192–194.

[12] P. Johannsen, “BOOSTER: Speeding Up RTL Property Checking of
Digital Designs by Word-Level Abstraction,” in Proc. of CAV’01, 2001,
pp. 373–377.

[13] J. A. Kumar and S. Vasudevan, “Automatic compositional reasoning for
probabilistic model checking of hardware designs,” in Proc. of QEST’10,
2010, pp. 143–152.

[14] “Verilog Reference Manual,” http://eesun.free.fr/DOC/VERILOG/
verilog manual1.html.

[15] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 2.0: A tool for
probabilistic model checking,” in Proc. of QEST’04, 2004, pp. 322–323.

[16] J. Kemeny and J. Snell, Finite Markov chains, repr ed., ser. University
series in undergraduate mathematics. New York: VanNostrand, 1969.

[17] S. Derisavi, H. Hermanns, and W. H. Sanders, “Optimal state-space
lumping in Markov chains,” Information Processing Letters, vol. 87,
no. 6, pp. 309 – 315, 2003.

[18] L. Liu and S. Vasudevan, “Efficient Validation Input Generation in RTL
by Hybridized Source Code Analysis,” in Proc. of DATE’11.

[19] M. Mitzenmacher and E. Upfal, Probability and Computing: Random-

ized Algorithms and Probabilistic Analysis, 2005.

[20] L. Wan and D. Chen, “Dynatune: circuit-level optimization for timing
speculation considering dynamic path behavior,” in Proc. of ICCAD’09,
2009.

[21] T. S. Hoang, Z. Jin, K. Robinson, A. McIver, and C. Morgan, “Prob-
abilistic invariants for probabilistic machines,” in Proc. of ZB’03.
Springer, 2003, pp. 240–259.

[22] M. Kattenbelt, M. Kwiatkowska, G. Norman, and D. Parker, “Game-
Based Probabilistic Predicate Abstraction in PRISM,” ENTCS, vol. 220,
no. 3, pp. 5–21, 2008.

[23] M. Kattenbelt, M. Kwiatkowska, G. Norman, and D. Parker, “Abstrac-
tion Refinement for Probabilistic Software,” in Proc. of VMCAI’09,
2009, pp. 182–197.

[24] J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, pp. 385–394, July 1976.

[25] K. G. Larsen and A. Skou, “Bisimulation through probabilistic testing,”
Information and Computation, vol. 94, no. 1, pp. 1–28, 1991.

[26] M. Berkelaar, K. Eikland, and P. Notebaert, “lp solve 5.5, open source
(mixed-integer) linear programming system,” Software, May 1 2004,
available at http://lpsolve.sourceforge.net/5.5/. Last accessed Dec, 18
2009. [Online]. Available: http://lpsolve.sourceforge.net/5.5/

[27] P. R. Panda and N. D. Dutt, “1995 high level synthesis
design repository,” in ISSS, 1995, pp. 170–174, available at
http://ftp.ics.uci.edu/pub/hlsynth/.

[28] T. Ball, B. Cook, V. Levin, and S. K. Rajamani, “SLAM and static
driver verifier: Technology transfer of formal methods inside microsoft,”
in Proc. of IFM’04, 2004, pp. 1–20.

[29] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan, “Ab-
stractions from proofs,” SIGPLAN Not., vol. 39, no. 1, pp. 232–244,
2004.

[30] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model
for static analysis of programs by construction of approximation of fixed
points,” in Proc. of POPL’77. ACM, 1977, pp. 238–252.

[31] D. Monniaux, “A minimalistic look at widening operators,” Higher

Order Symbol. Comput., vol. 22, no. 2, pp. 145–154, 2009.
[32] L. D. Alfaro and P. Roy, “Magnifying-Lens Abstraction for Markov

Decision Processes,” in Proc. of CAV’07, 2007, pp. 325–338.
[33] P. R. D’argenio, H. E. Jensen, and K. G. Larsen, “Reachability anal-

ysis of probabilistic systems by successive refinements,” in Proc. of

PAPM/PROBMIV’01, 2001, pp. 39–56.

