
Hybrid Verification of a Hardware Modular
Reduction Engine

Jun Sawada∗, Peter Sandon†, Viresh Paruthi†, Jason Baumgartner†, Michael Case† Hari Mony†,
∗IBM Austin Research Laboratory
†IBM Systems & Technology Group

Abstract—Wide-operand modular math functions pose an
enormous challenge for verification. We present a novel method
to verify a modular reduction engine implemented as a finite state
machine (FSM), leveraging a combination of model checking
and theorem proving. As a first step of the verification, pre-
conditions and post-conditions for each state transition of the
FSM are identified. Next the implications from the pre-conditions
to the post-conditions are verified using a model checker. The
last step entails combining all the implications in a theorem
prover to derive the overall correctness proof. We carried out
this verification using a hybrid formal verification platform
comprising the ACL2 theorem prover and IBM’s model checker
SixthSense, along with numerous techniques to cope with the
complexities of this verification task. To our knowledge, this is the
first published method for the exhaustive verification of an RTL-
implementation of a wide-operand industrial modular reduction
engine.

I. INTRODUCTION

A. Modular Reduction

Cryptography is becoming a central feature of our net-
worked world. Increasing performance demands on modern
microprocessors have mandated native hardware support for
encryption and decryption algorithms in the form of an on-
board cryptographic accelerator co-processor.

Classes of cryptography asymmetric algorithms such as
Rivest-Shamir-Adleman (RSA) and Elliptical Curve Cryptog-
raphy (ECC) are realized using lower-level functions, such
as Modular Reduction or Modular Exponentiation. These are
implemented with finite state machines (FSM) which operate
on wide-operands (e.g., on the order of 4096 bits), and
may require a large number of clock cycles to complete the
computation – even hundreds of thousands of clock cycles for
large operand bit-widths.

Verification of such complex hardware is of critical impor-
tance, though poses formidable challenges. Traditional infor-
mal verification methods offer insufficient coverage given the
wide operand widths, sequential depth of the computation and
the inherently difficult nature of the logic. Even hardware-
accelerated simulation and post-Silicon debug, offering dra-
matically greater explicit-state coverage, are rendered insuf-
ficient given the sheer size of the state-space. Additionally,
the reference result needs to be computed in software which
can prove to be the bottleneck. Traditional bit-level model
checking approaches are unscalable even for small bit-widths
of such arithmetic functions, and traditional higher-level tech-
niques such as theorem proving become extremely tedious due

to the need to reason about the intricate sequentially-deep state
machines at the RTL level.

In this paper we present a method to verify modular
reduction implemented as an FSM by leveraging a combi-
nation of model checking and theorem proving. Our approach
decomposes the verification task into two parts: 1) verification
of invariants associated with the FSM and 2) Combining the
verified invariants to form a proof of correctness. The set of
invariants describing the behavior of the FSM are verified
using the model checker. These invariants are then combined
by the theorem prover to form a proof that the FSM correctly
implements the target algorithm. The presented technique
allows us to overcome the limitations of traditional verification
disciplines as outlined above. We can scale our technique to
verify the correctness of modular reduction for a number of
operand widths, leveraging the strengths of theorem proving
to reason about parametrized computations, and leveraging
the model checker to verify invariants which require precise
characterization of temporally-deep RTL-implemented state
machines.

B. ACL2SIX

There are two predominant formal verification techniques
that have been successfully used to verify the correctness of
bit-accurate sequential machines: model checking and theorem
proving. Model checking is automated, though often fails to
scale for designs containing complex arithmetic datapaths.
On the other hand, interactive theorem proving techniques do
scale, though often only with significant human effort – which
may become formidable if requiring reachable-state character-
ization of complex bit-level state machines, or reasoning about
bit-optimized arithmetic designs.

The combination of these two techniques is sometimes
called hybrid verification, and may provide an ideal formal
verification environment. The main motivation for the com-
bination is to use the model checking for verifying the low-
level details of bit-level hardware, and use theorem proving to
focus the high-level mathematical and algorithmic correctness.
A number of different hybrid tools have been developed [1],
[2] and used for a variety of verification tasks [3], [4] in the
past. However, it is our thesis that such hybrid tools have
not been leveraged fully, due to either the weakness of the
underlying model checker or limiting the theorem proving to
a rather simplistic analysis.

Relating to verification of hardware encryption, Slobodová
[5] verified microprocessor instructions to implement Ad-
vanced Encryption Standard (AES) algorithms against a ref-
erence model derived from its specification. Erkök et. al.
[6] verified cryptographic hardware by checking equivalence
between different stages of implementation. Smith et. al. [7]
verified a Java block cipher implementations using a hybrid
tool to symbolically simulate Java bytecode and equivalence-
check the resulting expressions. This kind of equivalence
checking relies on the fact that the operation takes a fixed
delay and/or a fixed number of (micro-)instructions. A similar
equivalence checking approach did not work for the FSM we
will discuss in this paper, because the behavior of the machine
significantly changes depending on input data, rendering typi-
cal equivalence algorithms such as BDD-sweeping ineffective.
To our knowledge, encryption procedures implemented as
intricate sequentially-deep state machines have not been fully
verified.

From a perspective of practicality, it is also important to
directly verify designs written in a Hardware Description
Language (HDL) such as Verilog or VHDL. Our goal is to
accept industrial designs written in the HDL without any
modification. Some tools and past work have attempted to
translate HDL into the theorem proving language [8], [9],
[10]; however, full formalization of HDL is very tedious and
difficult, or creates semantic gaps. Another problem in the
translation of HDL to a formal language is that the theorem
prover has to deal with low-level details of hardware. Industrial
HDL often includes bit-level optimizations and peripheral
circuit artifacts such as scan and power-optimization logic,
overall hindering the effectiveness of the approach.

In our hybrid verification tool called ACL2SIX, we use
a small subset of the theorem prover’s language to specify
properties of target hardware. The tool reads the unmodified
hardware design written in an HDL and directly verifies
properties on it. We use a powerful bit-level model checking
tool in order to automatically prove sizable verification sub-
problems, thus reducing the burden on interactive theorem
proving while making the proof script robust and reusable. We
use a fully featured, general-purpose theorem prover to allow
verification of sometimes-difficult higher level mathematical
problems.

The rest of the paper is organized as follows. We start
by outlining a typical modular reduction engine implemented
in hardware as an FSM. We next describe the ACL2SIX
hybrid formal verification platform which combines the ACL2
theorem prover with IBM’s formal toolset SixthSense. We then
describe our verification approach including the pre-conditions
and post-conditions used in the context of modular reduction,
as well as enhancements to the underlying model checker
SixthSense to enable application of the hybrid platform to a
large design. Finally we provide some results and conclusions
from the novel application.

Align Data

Subtract or add
while shifting

S0

Input A0 and N0

S1

S2

S3

S4

A = A0 mod N0

If N > A

Shift amt calculation

Fig. 1. Modular Reduction State Diagram

II. A MODULAR REDUCTION ENGINE

A modular reduction engine computes the remainder of
one integer divided by another. That is, the engine computes
R = A0 mod N0 for positive integers A0 and N0, such
that A0 = N0X + R, and 0 ≤ R < N0 for some integer
X . For cryptographic applications, the size of these integers
varies according to the strength of the cryptographic algorithm,
with current applications requiring several thousand bits of
precision.

The following is the modular reduction algorithm we wish
to verify:

1. Set A := A0 and N := N0. Ensure that A ≥ 0, N > 0.
2. If A < N , set R := A and exit.
3. Left shift N to align its most significant ‘1’ with that of A.
4. Divide Loop:
5. If A ≥ 0, A := A−N , otherwise A := A + N .
6. If N = N0, exit loop.
7. Right shift N by one bit.
8. Go to Divide Loop.
9. If A ≥ 0, set R := A, otherwise R := A + N .

To understand how the algorithm works, note that (A mod
N0) = (A0 mod N0) is an invariant, and 0 ≤ R < N0 at the
end of the algorithm.

Our goal is to verify a hardware which imlements this
algorithm as an FSM. Figure 1 presents a state transition
diagram from the design document of the hardware, and
Table I provides an action table for the FSM.
S0 : The FSM reads two input operands, A0 and N0, and

stores them in the registers A and N .
S1 : The FSM counts leading zero bits of N and A and stores

their difference lz(N)− lz(A) in the registers D and C.
This corresponds to the number of bits to left-shift N in
order to align the most significant bit of one in A and N .

TABLE I
ACTIONS OF MODULAR REDUCTION FINITE STATE MACHINE

State Actions

S0(S = 0) S := 1; A := A0; N := N0

S1(S = 1) S := 2; C := lz(N)− lz(A); D := C

S2(S = 2) if (D < 0) {S := 4 }
if (D > 0) {N := N � 1; D := D − 1}
if (D = 0) {S := 3}

S3(S = 3) if (C ≥ 0 ∧A ≥ 0)
{A := A−N ; N := N � 1; C := C − 1}

if (C ≥ 0 ∧A < 0)
{A := A + N ; N := N � 1; C := C − 1}

if (C = 0 ∧A ≥ 0) {A := A−N ; C := C − 1}
if (C = 0 ∧A < 0) {A := A + N ; C := C − 1}
if (C < 0 ∧A ≥ 0) {S := 4}
if (C < 0 ∧A < 0) {S := 4; A := A + N}

S2 : If D < 0, N is larger than A and the FSM directly goes
to the final state S4. Otherwise, the FSM left-shifts N by
one bit and remains in the same state. The FSM makes
self-loop transitions D = lz(N)− lz(A) times, and then
it goes to the state S3.

S3 : The FSM remains in this state for C + 1 = lz(N) −
lz(A)+1 iterations. It subtracts or adds N to A depending
on the sign of A. It also shifts N to the right by one bit,
except for the last iteration. Finally, it adds N if A is
negative, and moves to the final state S4.

S4 : The register A stores the final answer of A0 mod N0.

Although this description is considerably simpler than the
optimized hardware implementation, it is sufficient to explain
our verification approach in later sections. The modular re-
duction engine is implemented to accept input operands of
different data widths. All the arithmetic operations on A and
N , such as bit vector addition, subtraction, shifting and leading
zero counting, are performed as per the size of input operands.
The FSM implements the variable-size operations by iterating
fixed-size arithmetic operations. For example, 65-bit adders are
used to implement variable-size bit-vector addition up to 4096-
bits. As a result, what appears to be a simple state transition
is in fact iterative operations on fixed data width over many
clock cycles.

Current guidelines for the use of the RSA algorithm for
public key encryption in commercial applications call for the
use of 1024 bit or 2048 bit keys [11]. The modular reduction
operation used in this algorithm takes a number of clock cycles
proportional to the square of the input data width divided by
the size of the fixed-width processing and storage elements in
the implementation. Even a single 512-bit computation will,
therefore, take several thousand clock cycles to execute, while
the number of possible input operand pairs is 21024. This
makes it very difficult to verify the entire range of interesting
cases using simulation.

III. ACL2SIX HYBRID VERIFICATION SYSTEM

The ACL2SIX verification system is a combination of the
open-source theorem prover ACL2 [12], [13] and the IBM
verification tool SixthSense [14]. An early version of the
system has been reported in [15], and its application in [16].
As this system has been significantly modified since it was
first reported, we outline the salient features of the enhanced
hybrid environment.

The main philosophy of this hybrid tool is a divide-and-
conquer approach for the verification problem. When we want
to verify a property which cannot be verified by an automated
model checker, we decompose it into a number of easier sub-
problems, solve them one-by-one, and combine the results
together. Each sub-problem is thus solved by a model checker,
while the results are combined by a theorem prover. However,
when the verification problem is decomposed into too many
small problems, the burden of recombination via the theorem
proving becomes rather high, and the proof may become
labor intensive. Thus, it is critical to contain the degree of
decomposition using a powerful model checker to scale to as
large of sub-problems as possible.

An overview of the ACL2SIX system is shown in Figure 2.
Suppose a user attempts to verify certain properties on a
design under test (DUT). A DUT is usually a complex RTL
hardware design written in VHDL or Verilog. A verification
driver defines the environment in which the DUT operates, e.g.
clocking conditions and other input constraints. In a typical
setting, the verification driver may assert the reset signal at
the beginning of the test, and then initiate the operation of
the machine with non-deterministic data inputs. A verification
driver is usually written in VHDL or some synthesizable
language. As we discuss later, the verification driver is also
used to help writing invariant conditions succinctly in the
ACL2 language.

When a user attempts to check if a certain property holds
using the ACL2SIX system, he/she writes the property in a
small subset of the ACL2 theorem prover language. When in-
voked, ACL2 first compiles the property to a property checker.
A property checker is a synthesized automata for the desired
property, effectively a small state machine which asserts a
particular gate to a logical ‘1’ when the property holds.
SixthSense then composes the DUT, the verification driver,
and the property checker, and checks whether the property
checker always evaluates to ‘1’ for all input sequences. When
the verification is successful, the property is saved in ACL2
as a theorem and may be used for future proofs. If the check
fails, SixthSense produces an counterexample trace to assist
the user in determining why the property does not hold.

Since ACL2 is a general-purpose theorem prover, its lan-
guage is too expressive to be translated into HDL. Instead, the
ACL2SIX system allows only a subset of the ACL2 language
for specifying properties to be verified. The subset is rich
enough to write various properties to prove the correctness
of the DUT, and the translation of the properties does not
cause any semantic inconsistency between this ACL2 language

Verification
DriverChecker

Property

Counter-Example Waveform

Success

Fail

Verified
Property

DUT

SixthSense

ACL2
Compilation
Property

Fig. 2. Overall Data Flow for Property Check in ACL2SIX

TABLE II
EXAMPLE ACL2SIX PRE-DEFINED FUNCTIONS

Function Name Brief Description

(bv i j) Bit vector of value i and length j

(b1p b) True if b = 1, false if b = 0

(bv+ v1 v2) Sum of two bit vectors
(bv- v1 v2) Difference of two bit vectors
(bv-sll v n) Logical left shift of vector v by n bits
(bv-srl v n) Logical right shift of vector v by n bits
(bv-lz v i) Vector of length i counting leading zeros of v

subset and VHDL.
The language for ACL2SIX has four data types: bits, bit

vectors, Boolean values and natural numbers. All properties
must be written in terms of ACL2SIX pre-defined functions,
under which those types are closed. The user may also
specify user-defined non-recursive functions. However, these
functions must also be defined in terms of those pre-defined
functions. Additionally, the user-defined functions must carry
type information using the ACL2 guard mechanism [17], so
that the translation process can infer types of expressions.
Table II lists some of the ACL2SIX pre-defined functions.

The signal values in the DUT and the driver can be
referenced by the following terms:

(vhdl-sigbit m sig n)
(vhdl-sigvec m sig (i j) n)

(vhdl-sigbit m sig n) is used to reference the value
of bit sig in hardware model m at clock cycle n. Similarly,
(vhdl-sigvec m sig (i j) n) refers to the bit range
i to j of bit vector sig at cycle n. In these terms, sig is
the name of a signal, and i, j and n are natural numbers.
Model m is a list structure, from which we can infer the DUT,
the verification driver, and other parameters needed to set up
verification of the DUT. For example, the model for an adder
may be simply defined as:

(defun adder ()
’("adder"

:driver "adder_dr.vhdl"))

where "adder" is the VHDL entity name of the adder
and "adder_dr.vhdl" is a verification driver name. Other
information such as the path to the VHDL file, or how the

DUT is initialized may be added to the model definition.
The main idea behind the use of vhdl-sigbit and

vhdl-sigvec is that they logically reference the signal
values of the DUT, but they do not actually compute the
values. In a system that fully embeds an HDL, a hardware
model would be a translated HDL and signal values would
be defined by its interpreter. In ACL2SIX, the model is
just a stub to access the DUT written in HDL, and signal
values are only defined using constraint functions. Specifically,
both vhdl-sigbit and vhdl-sigvec are ACL2 macros
defined in terms of ACL2 encapsulated functions sigbit and
sigvec. An ACL2 encapsulated function is a mechanism to
define an uninterpreted function with some constraints. We can
infer types of the value returned by sigbit and sigvec, but
its value is uninterpreted, and can be inferred only by calling
SixthSense through the ACL2SIX system.

A typical ACL2 theorem definition to invoke SixthSense
property checking has the following syntax:

(defthm name
(implies type-info expr)
:hints (("goal" :clause-processor

(:function acl2six
:hints acl2six-args)))).

In this definition, name is the name of the theorem, type-info is
the type information for the free variables in expr, and expr is a
property expression which is defined in terms of the ACL2SIX
pre-defined functions. The ACL2 hint provided after keyword
:hints usually tells the theorem prover how to prove a
theorem, and in this case, it invokes a clause processor function
acl2six. A clause processor is an ACL2 mechanism to
implement an extension of the prover. It allows a user-defined
function to simplify or even prove a logical expression. It may
also work as an interface with other verification tools. When
invoked through the clause processor mechanism, function
acl2six translates expr to a property checker implemented
in VHDL, runs SixthSense, and records successfully verified
properties as theorems. A call to acl2six can be accom-
panied by additional arguments acl2six-args, with which the
user can control SixthSense and specify types of algorithms
to verify the property.

One important limitation of the ACL2SIX property compi-
lation is that the verified property should be defined in terms
of signals with fixed timing delays. For example, in order to
check the output "SUM" of a two-stage 32-bit adder , we can
evaluate the following ACL2 term:

(defthm adder-output
(implies (natp n)
(equal (vhdl-sigvec (addr) "SUM" (0 31) (+ n 2))

(bv+ (vhdl-sigvec (addr) "A" (0 31) n)
(vhdl-sigvec (addr) "B" (0 31) n))))

:hints (("goal" :clause-processor
(:function acl2six
:hint ’((:cycle-var n))))))

This property check compares the value of vector "SUM" at
cycle n + 2 with the summation of two vectors "A" and "B"
at cycle n, where n is an arbitrary natural number. The cycle
delay 2 in cycle expression (+ n 2) should be a constant,

and cannot be replaced with a variable or a complex expres-
sion. In terms of LTL, [18], we can only check a formula of
the form G(expr) where expr is a formula written only with
X operators. While we are generally interested in unbounded
model checking of the underlying design where reasoning
about specific clock cycles may seem to contradict this goal,
we use this style of reasoning in an inductive framework where
state machines are evaluated relative to arbitrary states which
adhere to established invariants, vs. evaluating only relative to
initial states.

IV. VERIFICATION OF A MODULAR REDUCTION ENGINE

A. General Approach to Verifying a Finite State Machine

An FSM (such as that described in Section II) can be
verified by a hybrid system such as ACL2SIX by first ver-
ifying every state transition using a model checker, and then
combining the results using a theorem prover.

For example, let us consider an FSM that makes a state
transition sequence of S0, S1, S2, . . . , Sn. Each state transition
may take a number of clock cycles, and we assume that the
transition from state Si to state Si+1 takes ∆i cycles. Each
state Si has a corresponding property Pi that must hold. For
the state transition from Si to Si+1, Pi is the pre-condition
and Pi+1 is the post-condition. Let us write Pi{Si} to indicate
that property Pi holds for state Si. If we can verify P0{S0}
and Pi{Si} ⇒ Pi+1{Si+1} for all i < n, it is straightforward
to prove Pn{Sn} using a theorem prover. In this way, we
can verify the machine correctness specified by Pn. We may
define Pn to specify, for example, that the final answer of the
machine is correct.

Thus the verification problem is reduced to the verification
of Pi{Si} ⇒ Pi+1{Si+1} for each i. Let us write Pi(n) to
indicate that Pi holds at clock cycle n. Since the transition
from Si to Si+1 takes ∆i cycles, proving

Pi(n) ⇒ Pi+1(n + ∆i) (1)

for all n will be sufficient. Let us further define Qi(n) =(
Pi(n) ⇒ Pi+1(n + ∆i)

)
. The ACL2SIX system and Sixth-

Sense use the following steps to verify ∀n.Qi(n)
1) Convert Qi(n) to a circuit using logical gates and

latches. Since Pi(n) can be represented as a combi-
national circuit, we can latch the value of Pi(n) for
∆i-cycles, and then check that the latched value of Pi

implies Pi+1.
2) Simplify the circuit representation of Q(n) using a

number of circuit reduction techniques, such as constant
propagation, combinational and sequential simplifica-
tions [19], retiming [20], phase abstraction [21] and
transient logic elimination [22]. This reduction itself
may reduce Qi(n) to a tautology, in which case Qi(n)
is proven and we stop. Otherwise, we go to the next
step.

3) Prove Qi(n) by k-induction. This is done by proving the
base cases Qi(0), Qi(1), . . . , Qi(k−1) and the induction
step Qi(n)∧Qi(n+1)∧· · ·∧Qi(n+k−1) ⇒ Qi(n+k).

TABLE III
PRE AND POST-CONDITIONS OF STATE TRANSITIONS OF THE MODULAR

REDUCTION ENGINE

Transition Pre-condition Post-Condition

S0 to S1 S = 0 S′ = 1 ∧A′ = A0 ∧N ′ = N0

S1 to S2 S = 1 S′ = 2 ∧ C′ = lz(N)− lz(A)∧
D′ = C′ ∧A′ = A ∧N ′ = N

S2 to S2 S = 2 ∧D > 0 S′ = 2 ∧N ′ = N � 1∧
D′ = D − 1 ∧ C′ = C∧
A′ = A

S2 to S3 S = 2 ∧D = 0 S′ = 3 ∧N ′ = N ∧A′ = A

S2 to S4 S = 2 ∧D < 0 S′ = 4 ∧A′ = A

S3 to S3 S = 3 ∧ C > 0∧ S′ = 3 ∧A′ = A−N∧
A ≥ 0 N ′ = N � 1 ∧ C = C − 1

S3 to S3 S = 3 ∧ C > 0∧ S′ = 3 ∧A′ = A + N∧
A < 0 N ′ = N � 1 ∧ C = C − 1

S3 to S3 S = 3 ∧ C = 0∧ S′ = 3 ∧A′ = A−N∧
A ≥ 0 N ′ = N ∧ C = C − 1

S3 to S3 S = 3 ∧ C = 0∧ S′ = 3 ∧A′ = A + N

A < 0 N ′ = N ∧ C = C − 1

S3 to S4 S = 3 ∧ C < 0∧ S′ = 4 ∧A′ = A

A ≥ 0

S3 to S4 S = 3 ∧ C < 0∧ S′ = 4 ∧A′ = A + N

A < 0

This is attempted for ever-increasing values of k until
either Qi(n) is proved or computational resources are
exhausted.

The ACL2SIX system and SixthSense are highly configurable,
and so we could use any other model checking algorithms
to verify Qi(n). However, we found that logic reductions
followed by k-induction work well for the verification of many
properties of our modular reduction engine.

B. Verification of a Modular Reduction Engine

Here we discuss the use of ACL2SIX to verify the modular
reduction engine. Table III shows the list of pre-conditions
and post-conditions for each state transition, as per Figure 1.
For any symbol X , let X ′ represent its value after the
state transition. The table therefore shows how symbol values
change when state transitions occur. If we can verify that the
pre-condition implies the post-condition for all possible state
transitions, we can use a theorem prover to show that the value
of register A is A0 mod N0 when state S4 is reached. In other
words, the FSM correctness is the logical consequence of this
set of pre-condition and post-condition pairs.

We can represent the pre-condition and post-condition rela-
tion using the supported language of ACL2SIX. While the
number of clock cycles between FSM state transitions is
generally a function of the data width, for a given data width of
input A0 and N0 each state transition requires a fixed number
of clock cycles. Our approach is to verify the operational
correctness for each input data width separately. Then, the

relation of the pre and post-conditions can be written using
the ACL2SIX language, which requires that each delay be
a fixed constant. We define the delay of the state transition
parametrically, so that we can rerun the same proof script to
re-verify the modular reduction engine for different input data
widths by just changing parameters.

When actually writing an ACL2 theorem representing the
conditions in Table III, additions +, subtractions −, shifting
�, �, and leading zero counting lz are specified using the
pre-defined functions given in Table II. As briefly discussed in
Section II, the hardware implements the arithmetic operations
of long bit vectors by repeatedly applying 65-bit arithmetic
operations. For example, 512-bit addition is performed by
repeating 65-bit additions 8 times over tens of clock cycles.
However, such hardware implementation details should be
automatically verified and hidden from the ACL2 proof level.
In fact, our proof script simply specifies such an addition as
the sum of two long and continuous bit vectors. In this way
we simplify the to-be-proven theorems as much as possible.
This requires the underlying model checker such as SixthSense
to do the heavy lifting of verifying high-level specifications
against intricate implementation artifacts.

The abstraction of bit-level details allows the pre-conditions
and post-conditions (Table III) to be described concisely
at a high-level. However, simply attempting to verify “pre-
condition implies post-condition” frequently fails because the
hardware often requires additional conditions to operate prop-
erly. For example, the hardware goes through an initialization
phase that sets up the clock buffers, the hardware control logic
and other components for proper operations. The hardware is
designed to operates properly only after such initialization,
relying upon post-initialization reachable state invariants. Let
us define such a global invariant as inv(n). Additionally, there
might be other reachability invariants that holds when the
machine is at state Si but not captured in the the conditions
described in Table III. Let such a state invariant be denoted
as condi(n). Then it is sufficient to verify:

(inv(n) ∧ condi(n) ∧ Pi(n)) ⇒ Pi+1(n + ∆i) (2)

for all the state transitions, instead of Equation 1. Separately,
we need to verify that the global invariant condition is in fact
an invariant by:

inv(n) ⇒ inv(n + 1) (3)

and the state invariant condition is satisfied at each state by:

(inv(n) ∧ condi(n)) ⇒ condi+1(n + ∆i). (4)

In our approach, we define the global and state invari-
ants in the verification driver in Figure 2. For example,
the global invariant inv may be defined as a VHDL sig-
nal "DRIVER.INV" in the verification driver which rep-
resents the conjunction of numerous invariant conditions. In
ACL2SIX, we can refer to this global invariant at any time n as
(vhdl-sigbit (modred) "DRIVER.INV" n). In this
way, we keep the hardware-dependent and sometimes tedious
definition of invariant conditions out of the proof script.

Finding the proper global invariant inv and state invariant
condi is the most critical task for the entire verification
methodology. This is usually done by repeated attempts to
verify formula 2, 3 and 4, analyzing failed verification results
by viewing generated counterexample waveforms, and itera-
tively tightening the invariants until the proof is successfully
completed.

Some simple invariant conditions are automatically deduced
during the 3-step verification algorithm discussed in Subsec-
tion IV-A. For example, circuit reduction algorithms in step 2)
may simplify the design by merging redundant gates, or per-
forming other property-preserving temporal abstractions. Such
transformations are critical to simplify the manual effort of
deriving invariants; in a sense, such transformations automate
the derivation of a subset of design invariants. For example,
if two latches are merged since they always evaluate to the
same value, this rules out a possible induction counterexample
where they exhibit differing values. Similarly, k-induction
with a larger value of k tends to prove more properties
without manually specifying some invariants. Thus, the more
powerful the underlying bit-level model checker is, the less
the verification engineer must manually specify the invariant
conditions.

Once all the post-conditions are verified from pre-
conditions, the theorem-prover is used to deduce the correct-
ness proof of the hardware operation as a logical consequence
of all the verified properties. During theorem proving, it is
critical to analyze state loops. This is usually carried out by
specifying loop invariants, verifying them by induction, and
using them to deduce the termination condition. For example,
in the i’th iteration of S2 of our modular reduction finite state
machine, the following loop invariant should hold.

(A = A0) ∧ (N = N0 � i)
∧

(
C = lz(N0)− lz(A0)

)
∧ (D = C − i)

The state loop at S3 satisfies a slightly more complicated loop
invariant, with inequality −2N ≤ A < 2N being true except
during the last iteration of S3. This condition is critical for
proving the correctness of the final answer.

At this high-level analysis of loop invariants, the theorem
proving task is no different from a pure theorem proving veri-
fication approach. However, a pure theorem proving approach
typically requires significant effort in verifying the low-level
implementation of hardware. We can instead accelerate the
process using the automated model checker to reason about
intricate implementation details, and let the theorem prover
focus on the algorithmic level. This leverages the orthogonal
strengths of theorem proving and model checking: theorem
proving becomes more robust as details of the hardware imple-
mentation are abstracted away, and model checking becomes
more robust as it focuses on a specific small function of a
large sequential machine.

C. Counter-Example Generation

ACL2SIX relies upon SixthSense to unboundedly verify
a set of properties, inasmuch as those properties represent

temporally-bounded pre-condition to post-condition checks.
SixthSense will produce one of the following three answers:
1) the property fails relative to specified initial states; 2) the
property passes; 3) the property is unsolved given the specified
set of algorithms.

When using induction as the core proof technique, proper-
ties may often be reported as unsolved even if they truly hold
in all reachable states. This is a byproduct of the weakness
of induction: an induction counterexample due to a transition
from a passing to a failing state render the inductive check
inconclusive, yet it is not known whether the inductive starting
state is reachable or not. If relying upon induction as a proof
technique, it is necessary for a verification engineer to analyze
the induction counterexample to derive invariants which rule
out that counterexample.

In the course of this verification effort, SixthSense was
enhanced to produce induction counterexample traces for
analysis by the verification engineer. SixthSense is based on
the concept of transformation-based verification [20], where
synergistic algorithms are applied to simplify large problems
into smaller problems before applying a core proof technique.
These simplifications include logic rewriting techniques [19],
phase abstraction [21], redundancy removal [23], and transient
logic elimination [22]. Such simplifications often considerably
reduce verification resources for the core proof technique,
and often considerably improve the effectiveness of induction
since they rule out possible induction counterexamples where
the reduced behavior does not hold. Without such reductions,
the manual effort to derive such invariants often becomes
infeasible given a significant amount of design artifacts.

When SixthSense generates a counterexample trace after
such simplifications, that trace must be “lifted” to undo the
effects of those transformations before it can be presented
to the user. For traditional counterexamples, this process is
straightforward as only input valuations need to be accounted
for, allowing a top-level simulation to be used relative to this
test case to derive values to all signals. When lifting an in-
duction counterexample, the set of valuations to be accounted
for include those of the state elements in the inductive starting
state. It is further noteworthy that such counterexamples should
be minimally-assigned, to improve the identification of the root
cause of the induction failure.

SixthSense required several customizations to support in-
duction trace generation. For transformation engines which
may merge redundant gates, bookkeeping was added reflecting
such transformations so that it may be back-annotated in
a lifted trace, without which the induction trace may not
truly reflect an induction counterexample. Additionally, some
transformations performed by SixthSense are not themselves
inductively provable, requiring more intricate unreachable-
state invariants. When leveraging such reductions, we found it
necessary to pass the automatically-derived unreachable-state
invariants to the induction process along with the reduced
design, to avoid it from rendering induction counterexamples
which had no counterpart in the pre-reduced design.

TABLE IV
TIME AND MEMORY REQUIRED FOR VERIFYING MODULAR REDUCTION

Data Width 56-bit 256-bit 384-bit 512-bit

Total Time 10442s 20646s 37607s 98199s

Theorem Prover Time 257s 289s 474s 1690s

Property Check Time 10188s 20261s 37139s 97012s

Avg. Time per Prop. 118s 151s 223s 489s

Max Time per Prop. 138s 368s 1232s 3456s

Avg. Mem. per Prop. 1195MB 1459MB 1967MB 2719MB

Max Mem. per Prop. 1393MB 4201MB 5680MB 8571MB

D. Verification Results

With the approach discussed in the previous subsections,
we have verified the mathematical correctness of the modular
reduction engine for input data widths of 56-bits, 192-bits,
256-bit, 384-bits and 512-bits. In addition to verifying simple
modular reduction, we also verified modular addition, modular
subtraction and modular negation. Table IV shows the time and
memory required to verify all four of these operations using a
2.27GHz Intel Xeon X7560 processor running Linux 2.6.18.
The number of properties verified by invoking SixthSense
varied from 86 for the 56-bit operation to 198 for the 512-bit
operation. For the 1024-bit and larger input data widths, some
properties could not be proven by SixthSense in 24 hours, and
we did not complete the verification.

The verification process requires several iterations to at-
tempt to inductively prove the properties. An initial property
check almost always fails, causing SixthSense to produce
induction counterexamples. The examination of the counterex-
ample often reveals that the state invariants are not strong
enough to constrain the hardware to behave correctly. This
leads to manual strengthening of the invariants to help the
verification process converge. The proof scripts are written
parametrically, so that the verification for different bit widths
goes through automatically, or with little human guidance.

The total labor time is difficult to measure scientifically,
as it depends on numerous factors. Roughly speaking, one
engineer finished the verification of 56-bit modular reduction
in a few weeks. Then, two engineers spent several months
to extend the results to various operations including modular
add, subtract and negation operations of various data widths,
while working on this part-time. Roughly equal amount of
time was spent on invariant property checking and theorem
proving. However, this could change significantly depending
on how the verification problem is decomposed.

During the course of this effort, an engineer with a back-
ground in the VHDL and LISP languages was readily able to
learn the ACL2SIX system to specify and debug invariants.
However, the use of theorem proving beyond trivial proofs,
such as case splitting, has a steeper learning curve.

A similar approach has been applied to the modular inverse
operation implemented in the same modular reduction engine.
Given operands A and N , it obtains a number X such that
(A ×X) mod N = 1. The hardware uses a binary extended

Euclid algorithm [24] to calculate the number. We quickly
identified that the operation may overflow out of fixed-size
registers. Even the original algorithm description in [24] failed
to warn that there is a danger of overflow. The DUT had a
4-bit head-room for 256-bit modular inverse calculation and
6-bits for 384-bit operation. In other words, the intermediate
value can be 16 times or 64 times the maximal input values,
respectively, and designers believed this to be sufficient to
avoid an overflow. Using bounded model checking, we iden-
tified combinations of A and N which overflow the registers.
This event is extremely rare, and neither a random simulation
nor post-silicon testing could have identified such A and N.
Designers added an hardware overflow check and software
support to correct the problem.

V. CONCLUSION

In this paper, we have verified an industrial modular re-
duction engine implemented in the cryptographic function
accelerator. We have successfully verified the mathematical
correctness of the modular reduction engine upto 512-bit input
data width. This is beyond what can be formally verified by
either a stand-alone model checker or a theorem prover. We
also applied this approach to the modular addition, modular
subtraction, and modular negation operations, and verified
their correctness.

We have found the hybrid verification technique using
ACL2SIX an extremely powerful tool to analyze hardware
accelerators implementing finite state machines. Our formal
verification approach should not be viewed as an alternative to
random simulation. Rather we provide an additional capability
to verify systems that typical random simulation approaches
fail to verify due to the sheer size of the input domain and
the length of simulation cycles. We are currently working on
Montgomery multiplication and exponentiation, which are yet
another important subroutine of encryption accelerators.

An important trick to successful hybrid verification is to
decompose the correctness problem into sub-problems of the
right size. If the problem is decomposed into too many sub-
problems, the theorem proving becomes time-consuming. If
the problem is decomposed into larger sub-problems, the
model checking fails to discharge them.

Our hybrid verification tool is already quite powerful, but
it still has room for improvement. The verification of wider
modular calculations, such as with data width of 4092-bits,
have not been completed yet because certain state transition
property checks are beyond the tool’s capability. Also the
theorem proving using ACL2 takes some expertise and time,
even if the underlying automatic property check by SixthSense
has significantly removed the burden. Further improvements
are in progress to alleviate these issues.

ACKNOWLEDGMENT

We thank Bart Blaner and Ross Leavens at IBM for their
constant feedback for the direction of our research, and on the
design of the AMF engine.

REFERENCES

[1] S. Rajan, N. Shankar, and M. Srivas, “An integration of model-checking
with automated proof checking,” in CAV ’95, ser. Lecture Notes in
Computer Science, P. Wolper, Ed., vol. 939. Liege, Belgium: Springer-
Verlag, jun 1995, pp. 84–97.

[2] J. O’Leary, X. Zhao, R. Gerth, and C.-J. H. Seger, “Formally verifying
IEEE compliance of floating-point hardware,” Intel Technology Journal,
vol. Q1, Feb. 1999.

[3] R. Kaivola and M. Aagaard, “Divider circuit verification with model
checking and theorem proving,” in Proceedings of the 13th International
Conference on Theorem Proving in Higher Order Logics, ser. TPHOLs
’00. London, UK: Springer-Verlag, 2000, pp. 338–355.

[4] A. Slobodová, Challenges for Formal Verification in Industrial Setting,
ser. Lecture Notes in Computer Science. Springer, 2007, vol. 4346, pp.
1–22.

[5] ——, “Formal verification of hardware support for advanced encryption
standard,” in FMCAD. IEEE Press, 2008, pp. 1–4.

[6] L. Erkök, M. Carlsson, and A. Wick, “Hardware/software co-verification
of cryptographic algorithms using cryptol,” in FMCAD, 2009, pp. 188–
191.

[7] E. W. Smith and D. L. Dill, “Automatic formal verification of block
cipher implementations,” in FMCAD. Piscataway, NJ, USA: IEEE
Press, 2008, pp. 6:1–6:7.

[8] D. Borrione and P. Georgelin, “Formal verification of vhdl using VHDL-
like ACL2 models,” in In Forum on Design Languages (FDL), 1999.

[9] D. Russinoff, “A mechanically checked proof of IEEE compliance of a
register-transfer-level specification of the AMD-K7 floating-point multi-
plication, division, and square root instructions,” London Mathematical
Society Journal of Computation and Mathematics, vol. 1, pp. 148–200,
December 1998.

[10] W. A. Hunt and E. Reeber, “Formalization of the DE2 language,” in
Proceedings of the 13th Working Conference on Correct Hardware
Design and Verification Methods (CHARME 2005), LNCS. Springer-
Verlag, 2005, pp. 20–34.

[11] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “Recommendation
for key management part 1: General,” in NIST Special Publication
800-57, August 2005, National Institute of Standards and Technology.
Available at http://csrc.nist.gov/publications/nistpubs/800-57/SP800-57-
Part1.pdf, 2005.

[12] M. Kaufmann and J. S. Moore, “An industrial strength theorem prover
for a logic based on common lisp,” IEEE Transactions on Software
Engineering, vol. 23, no. 4, pp. 203–213, apr 1997.

[13] M. Kaufmann, J. S. Moore, and P. Manolios, Computer-Aided Reason-
ing: An Approach. Norwell, MA, USA: Kluwer Academic Publishers,
2000.

[14] H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman, and A. Kuehlmann,
“Scalable automated verification via expert-system guided transforma-
tions,” in FMCAD, 2004, pp. 159–173.

[15] J. Sawada and E. Reeber, “ACL2SIX: A hint used to integrate a theorem
prover and an automated verification tool,” in FMCAD. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 161–170.

[16] J. Sawada, “Automatic verification of estimate functions with polyno-
mials of bounded functions,” in FMCAD, 2010, pp. 151–158.

[17] M. Kaufmann and J. S. Moore, “ACL2 user’s manual,” See
URL http://www.cs.utexas.edu/users/moore/acl2/acl2-doc.html#User’s-
Manual.

[18] A. Pnueli, “The temporal logic of programs,” in Proceedings of the 18th
Annual Symposium on Foundations of Computer Science. Washington,
DC, USA: IEEE Computer Society, 1977, pp. 46–57.

[19] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG
rewriting: A fresh look at combinational logic synthesis,” in DAC, 2006.

[20] A. Kuehlmann and J. Baumgartner, “Transformation-based verification
using generalized retiming,” in CAV, July 2001.

[21] P. Bjesse and J. Kukula, “Automatic generalized phase abstraction for
formal verification,” in ICCAD, Nov. 2005.

[22] M. Case, H. Mony, J. Baumgartner, and R. Kanzelman, “Enhanced
verification through temporal decomposition,” in FMCAD, Nov. 2009.

[23] C. A. J. van Eijk, “Sequential equivalence checking without state space
traversal,” in DATE, Feb. 1998.

[24] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook of
Applied Cryptography, 1st ed. Boca Raton, FL, USA: CRC Press,
Inc., 1996.

