
A Symbolic Execution Framework for Haskell

William Hallahan, Anton Xue, Ruzica Piskac

Yale University, New Haven, CT, USA

Email: william.hallahan@yale.edu anton.xue@yale.edu ruzica.piskac@yale.edu

1. Motivation

●  Large software applications benefit from automated exploration and testing.
●  Unassisted symbolic execution is easy to use and general purpose.
●  Symbolic execution is easy to describe, but what about implementation?
●  A natural complement to Haskell’s language design.

Our Results

Generalized statically typed symbolic execution engine
for purely functional programming languages with
support for algebraic data types and models for

higher-order functions.
https://github.com/AntonXue/G2	

2. Workflow

1. Use GHC (8.0.2) API to extract
Core Haskell during compilation.

2. Translate Core Haskell to G2
Core, stripping away complex
features.

3. Perform symbolic execution on
G2 Core for list of result / path
constraint pairs.

[...(Result,	PathCons)...]	

Core2	

Core	Haskell	

Haskell	Source	

Extraction	

Translation	

Execution	

3. Symbolic Execution

Sample function:

>	func	a	b	c	=	
>					if	(a	+	b	<	c)	
>									then	a	+	b	
>									else	if	(c	<	5)	
>													then	b	+	c	
>													else	a	+	c	

	

Corresponding execution tree:

Branching at conditional statements.

Execution Analysis

1. Assign symbolic values to function parameters.
>	env	=	{a	→	a0,	b	→	b0,	c	→	c0}	
	

2. Execute in terms of symbolic values.
>	if	(a0	+	b0	<	c0)	then	…	else	…	
	

3. Keep track of conditional constraints.
>	CA	=	(a0	+	b0	<	c0)	
>	CB	=	(c0	<	5)	

	

4. Returns a list of results and their path
constraints.
>	[P1	→	{a0	+	b0,	(a0	+	b0	<	c0)}	
		,	P2	→	{b0	+	c0,	¬(a0	+	b0	<	c0)∧(c0	<	5)}	
		,	P3	→	(a0	+	c0,	¬(a0	+	b0	<	c0)∧¬(c0	<	5)}]	
	

5. [Optional] Solve each path constraint for
values.
>	P1	→	{a0	→	1,	b0	→	1,	c0	→	3} 	⇒ 	2	
>	P2	→	{a0	→	3,	b0	→	1,	c0	→	3} 	⇒ 	4	
>	P3	→	{a0	→	6,	b0	→	1,	c0	→	6} 	⇒ 	12	

4. Graph Reduction

Lazy purely functional programs can be seen as graphs.
Variables act as pointers (edges) to other functions (vertices).
Our graph reduction strategy is inspired by the Glasgow Haskell
Compiler’s strategy, but adapted to work with symbolic values.

>	max	::	Int	->	Int	->	Int	
>	Max	a	b	=	if	a	>	b	then	a	else	b	
	
	
	
	
	
	
	
	
	

Leftmost outermost reductions are repeatedly performed until in
Weak Head Normal Form (a constructor, built-in function, or
lambda expression).

Symbolic execution requires extending the semantics to account
for logical variables and track path constraints. A symbolic
variable is always treated as already being in WHNF. Case
statements on symbolic variables require splitting into multiple
states.

Path constraints are always expressed in a normal form, which
consist solely of data constructors, primitive types, symbolic
variables, and primitive operators such as addition and
multiplication. Case and lambda expressions are completely
eliminated. This allows us to convert to SMT formulas, and find
values satisfying the path constraints.

5. Challenge: Higher-Order Functions

Problem: How can we use SMT solvers with symbolic higher-
order functions?

>	f	::	(Int	->	Int)	->	Int	->	Int	
>	f	g	x	=	g	.	g	$	x	

	
	

Haskell has lambda expressions and partial application- these
complicate solutions such as defunctionalization.

Potential solution: Introduce symbolic functions as datatypes,
and convert these to functions immediately. Suppose we have 3
functions:

	

>	f	::	Int	->	Int	
>	g	::	Int	->	Int	
>	h	::	(Int	->	Int)	->	Int	->	Int	
	

And aim to symbolically execute h. We introduce a new type and function:

>	data	TIntInt	=	F	|	G	
>	intIntConvert	::	TIntInt	->	(Int	->	Int)	
>	intIntConvert	F	=	f	
>	intIntConvert	G	=	g	
	

Then we run our symbolic execution with symbolic variables x	::	TIntInt
and y	::	Int on:

	
>	h	(intIntConvert	x)	y	
	

Path constraints will be generated based on the introduced type, rather
than the function type	
	

Complication: What if we have a datatype with a function
parameter?

>	type	IntIntList	=	[Int	->	Int]		

Potential solution : We create a new type and function to walk
over the structure of that type, as such:

>	type	IntIntList’	=	[TIntInt]	
>	walk	::	IntIntList’	->	IntIntList		
>	walk	[]	=	[]	
>	walk	(x:xs)	=	intIntConvert	x:walk	xs	

This research was supported in part by NSF grant CCF-1553168

fst :: (a, b) -> a
fst (a, b) = a

square :: Int -> Int
square x = x * x

fst (square 3, square 4)
 → square 3
 → 3 * 3
 → 9

fst (square 3, square 4)
 → fst (3 * 3, square 4)
 → fst (9, square 4)
 → fst (9, 4 * 4)
 → fst (9, 16)
 → 9

Leftmost outermost reductions Leftmost innermost reductions

