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1. Motivation

 

●  Large software applications benefit from automated exploration and testing. 
●  Unassisted symbolic execution is easy to use and general purpose. 
●  Symbolic execution is easy to describe, but what about implementation? 
●  A natural complement to Haskell’s language design. 

Our Results




Generalized statically typed symbolic execution engine 
for purely functional programming languages with 
support for algebraic data types  and models for 

higher-order functions. 
https://github.com/AntonXue/G2	

 

2. Workflow

 

 
 
 
 
 
 
 
 
 

1. Use GHC (8.0.2) API to extract 
Core Haskell during compilation. 
 

2. Translate Core Haskell to G2 
Core, stripping away complex 
features. 
 

3. Perform symbolic execution on 
G2 Core for list of result / path 
constraint pairs. 

[...(Result,	PathCons)...]	

Core2	

Core	Haskell	

Haskell	Source	

Extraction	

Translation	

Execution	

 

3. Symbolic Execution

 

Sample function: 
 

>	func	a	b	c	=	
>					if	(a	+	b	<	c)	
>									then	a	+	b	
>									else	if	(c	<	5)	
>													then	b	+	c	
>													else	a	+	c	

	

Corresponding execution tree: 
 
 
 
 
 
 
 
 
 
 
Branching at conditional statements. 

Execution Analysis




1.    Assign symbolic values to function parameters. 
>	env	=	{a	→	a0,	b	→	b0,	c	→	c0}	
	

2.    Execute in terms of symbolic values. 
>	if	(a0	+	b0	<	c0)	then	…	else	…	
	

3.    Keep track of conditional constraints. 
>	CA	=	(a0	+	b0	<	c0)	
>	CB	=	(c0	<	5)	

	

4.    Returns a list of results and their path 
constraints. 
>	[	P1	→	{a0	+	b0,	(a0	+	b0	<	c0)}	
		,	P2	→	{b0	+	c0,	¬(a0	+	b0	<	c0)∧(c0	<	5)}	
		,	P3	→	(a0	+	c0,	¬(a0	+	b0	<	c0)∧¬(c0	<	5)}]	
	

5.    [Optional] Solve each path constraint for 
values. 
>	P1	→	{a0	→	1,	b0	→	1,	c0	→	3} 	⇒ 	2	
>	P2	→	{a0	→	3,	b0	→	1,	c0	→	3} 	⇒ 	4	
>	P3	→	{a0	→	6,	b0	→	1,	c0	→	6} 	⇒ 	12	




4. Graph Reduction




Lazy purely functional programs can be seen as graphs. 
Variables act as pointers (edges) to other functions (vertices). 
Our graph reduction strategy is inspired by the Glasgow Haskell 
Compiler’s strategy, but adapted to work with symbolic values. 
 

>	max	::	Int	->	Int	->	Int	
>	Max	a	b	=	if	a	>	b	then	a	else	b	
	
	
	
	
	
	
	
	
	

 
Leftmost outermost reductions are repeatedly performed until in  
Weak Head Normal Form (a constructor, built-in function,  or 
lambda expression). 
 
 
 
 
 
 
 
Symbolic execution requires extending the semantics to account 
for logical variables and track path constraints.  A symbolic 
variable is always treated as already being in WHNF.  Case 
statements on symbolic variables require splitting into multiple 
states. 
 
Path constraints are always expressed in a normal form, which 
consist solely of data constructors, primitive types, symbolic 
variables,  and primitive operators such as addition and 
multiplication.  Case and lambda expressions are completely 
eliminated.  This allows us to convert to SMT formulas, and find 
values satisfying the path constraints. 
 
 
 
 
 
 
 
 




5. Challenge: Higher-Order Functions




Problem: How can we use SMT solvers with symbolic higher-
order functions? 
 

>	f	::	(Int	->	Int)	->	Int	->	Int	
>	f	g	x	=	g	.	g	$	x	

 
	
	

Haskell has lambda expressions and partial application- these 
complicate solutions such as defunctionalization. 
 
Potential solution: Introduce symbolic functions as datatypes, 
and convert these to functions immediately.  Suppose we have 3 
functions: 

	

>	f	::	Int	->	Int	
>	g	::	Int	->	Int	
>	h	::	(Int	->	Int)	->	Int	->	Int	
	

And aim to symbolically execute h. We introduce a new type and function: 
  
>	data	TIntInt	=	F	|	G	
>	intIntConvert	::	TIntInt	->	(Int	->	Int)	
>	intIntConvert	F	=	f	
>	intIntConvert	G	=	g	
	

Then we run our symbolic execution with symbolic variables x	::	TIntInt 
and y	::	Int on: 

	
>	h	(intIntConvert	x)	y	
	

Path constraints will be generated based on the introduced type, rather 
than the function type	
	

Complication:  What if we have a datatype with a function 
parameter? 
 

>	type	IntIntList	=	[Int	->	Int]		



Potential solution : We create a new type and function to walk 
over the structure of that type, as such: 
 
>	type	IntIntList’	=	[TIntInt]	
>	walk	::	IntIntList’	->	IntIntList		
>	walk	[]	=	[]	
>	walk	(x:xs)	=	intIntConvert	x:walk	xs	
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fst :: (a, b) -> a 
fst (a, b) = a 
 
square :: Int -> Int 
square x = x * x 
 

fst (square 3, square 4) 
 → square 3 
 → 3 * 3 
 → 9 
 

fst (square 3, square 4) 
 → fst (3 * 3, square 4) 
 → fst (9, square 4) 
 → fst (9, 4 * 4) 
 → fst (9, 16) 
 → 9  
 

Leftmost outermost reductions Leftmost innermost reductions 


