
Formalization of the DE2 LanguageWarren A. Hunt, Jr. and Erik ReeberDepartment of Computer Sienes,1 University Station, M/S C0500The University of TexasAustin, TX 78712-0233, USAE-mail: fhunt,reeberg�s.utexas.eduAbstrat. We formalized the DE2 hierarhial, ourrene-oriented �-nite state mahine (FSM) language, and have developed a proof the-ory allowing the mehanial veri�ation of FSM desriptions. Using theACL2 funtional logi, we have de�ned a syntax well-formedness pred-iate and a symboli simulator that de�nes the DE2 yle-based simu-lation semantis. DE2 is deeply embedded within ACL2, and the DE2language inludes an annotation faility that an be used by programsthat manipulate DE2 desriptions; this faility may restrit the use ofde�ned modules or it may provide other module information. The DE2user may write and prove the orretness of programs that generate DE2desriptions. We have used DE2 to mehanially verify omponents ofthe TRIPS miroproessor implementation.1 IntrodutionWe present a formal desription of and proof mehanism for the DE2 hierarhi-al, ourrene-oriented �nite state mahine (FSM) desription language, thatwe use to design and verify FSM-based designs or to optimize existing designs ina provably orret manner. This de�nition is primarily aimed at the representa-tion and veri�ation of hardware iruits, but ould other areas suh as protoolsand software proesses. De�ning a hardware desription language (HDL) is diÆ-ult beause of the many di�erent ways in whih it may be used; for example, aHDL may be used to speify a simulation semantis, de�ne what iruits an bespei�ed, restrit allowable names, enfore iruit interonnet types, estimatepower onsumption, and provide layout or other manufaturing information. Wehave formally desribed the DE2 language using the ACL2 logi [16℄, and wehave formally veri�ed DE2 desriptions using the ACL2 theorem prover.DE2 is designed to permit the rigorous hierarhial desription and hierar-hial veri�ation of �nite-state mahines (FSMs). We all our language DE2(Dual-Eval 2) beause of the two-pass approah that we employ for the languagereognizers and evaluators.DE2 is atually a general-purpose language for spe-ifying FSMs; users may de�ne their own language primitives. We reognize validDE2 desriptions with an ACL2 prediate that de�nes the permissible syntax,names, and hierarhy, of valid desriptions. The DE2 language also provides a

rih annotation language that an be used to enfore syntati and semantidesign restritions.We begin our presentation by listingDE2 language harateristis, ontrast-ing the DE2 language with other related e�orts, and presenting some DE2language examples. We present the de�nition of its simulation-based semantis.We onlude by desribing how we use the DE2 language to verify iruits fromthe TRIPS miroproessor design [7℄.2 DE2 Language FeaturesThe development of DE2 required balaning many demands. In partiular, thedemand for hardware veri�ation requires that it be as simple as possible toevaluate, translate, and extend. In this setion we list the resulting harateristisof DE2.{ Hierarhial: A module is de�ned by onneting submodules. Ciruits maybe de�ned in terms of modules that are small and easily veri�ed.{ Ourrene-Oriented: Eah referene to a previously de�ned module orprimitive is alled an ourrene. All de�ned modules are de�ned as a se-quene of ourrenes.{ Deep Embedding in ACL2: DE2 modules are represented as ACL2 on-stants. Using the terminology de�ned by Boulton et al. [13℄, DE2 is deeplyembedded in the ACL2 language. This embedding allows us to write ACL2funtions whih simulate, analyze, generate, and manipulate DE2 modules.{ Annotation Mehanisms: We use annotations to desribe elements of airuit whih are not de�ned by evaluation (e.g. layout information). InDE2,annotations are �rst lass objets.{ Parameterized Finite Types: In DE2, every module input and outputis a bit vetor of parameterized length. When the lengths of all the inputsand outputs are known, we may appeal to BDD- and SAT-based tehniquesfor veri�ation.{ Two-pass Evaluation: A DE2 module is evaluated by twie interpretingits list of ourrenes. This two-pass evaluation neessitates a level-order forthe ombination funtions.{ Representation of Internal State: This representation limits us to de-signing FSMs, but greatly simpli�es the design and veri�ation of these ma-hines.{ User-de�ned Primitive Modules: We allow users to de�ne primitivemodules, rather than requiring that primitive modules be built into the lan-guage.{ User-seletable Libraries: Sets of primitives an beome libraries. Li-braries an be loaded into similar projets, whih allows reuse of modulesand veri�ation e�orts from past projets.{ Veri�ed DE2 Language Generators: We an write ACL2 funtionswhih to DE2 modules. Sine the semantis of DE2 have been formalized in2

ACL2, these generation funtions an be shown to always generate orretDE2 ode.{ Hierarhial Veri�ation:Our veri�ation proess involves verifying prop-erties of submodules and then using these properties to verify larger modulesbuilt from these submodules. This hierarhial tehnique allows us to avoidreasoning about the internals of omplex submodules.{ Books for Veri�ation Support: We have de�ned a number of ACL2\books" to assist the veri�ation of DE2 modules. When loaded into thetheorem prover, these books use the ACL2 semantis of DE2 to verify prop-erties ofDE2modules. We have used these books on a number of veri�ationprojets, some of whih involve the veri�ation of ACL2 funtions that gen-erate DE2 iruits.3 Related WorkThe hardware veri�ation ommunity has taken two approahes [13℄ to de�n-ing the semantis of iruits: shallow and deep embedding. Shallow embeddingde�nes the semantis of a iruit desription by translating it into some formallanguage. Deep embedding uses a formal language to de�ne the syntax and se-mantis of a HDL by embedding its de�nition and representation into the formallanguage being used.The DE2 language presented here has been de�ned by deeply embedding itinside the ACL2 language, a primitive reursive funtional subset of Lisp [17℄.By embedding DE2 within ACL2, we are given aess to a theorem provingenvironment whih has suessfully veri�ed large-sale hardware systems [8, 9℄.The formalization of the DE2 language is similar in style to the embeddingof the DUAL-EVAL HDL in NQTHM [11℄ and the DE language in ACL2 [10℄.The DE language is di�erent from DUAL-EVAL in that it permits user-de�nedprimitives, re-usable libraries, annotations, and ontains a di�erent struturingof data for state-holding elements. The DE2 language ontains the new featuresof DE, but also has a parameterized type system, a more sophistiated systemfor applying non user-de�ned primitives (implemented as ACL2 funtions), anda more automated veri�ation system.In other hardware veri�ation e�orts with ACL2, hardware desriptions weretranslated diretly to ACL2 models in the style of shallow-embedding [8, 9℄.These e�orts do not permit the syntati analysis of the iruits so represented;that is, it is not possible to treat the iruit desriptions as data so a programmay be used to analyze its suitability.Tom Melham used the HOL system [12℄ to deeply embed some elementsof a hardware desription language [12℄. Boyer and Hunt attempted to deeplyembed a subset of VHDL in the ACL2 logi, but this spei�ation grew tomore than 100 pages of formal mathematis, and its usefulness beame suspet.Deeply embedding a HDL into another language brings great analytial powerat the ost of having to manage all of the logial formalisms required|but theseformalisms represent the real omplexity that are inherit in suh languages and3

in their assoiated analysis and simulation systems. To make suh an embeddinguseful, a serious e�ort needs has to be made to ensure an absolute eonomy ofomplexity, and there needs to libraries that ease the use of suh an embedding.A signi�ant amount of work has foused on the use of funtional program-ming languages to simply the writing of HDL-based desriptions. Mary Sheeranhas developed the language Lava [1℄ and she has used it to design fast multi-pliers [2℄. The strengths of Lava is its failities to write programs that generatehardware|similar to the ACL2 programs we write to generateDE2 desriptions|and its ability to embed layout information in the Lava language|similar toannotations in DE2. The Lava implementation does not inlude an assoiatedreasoning system, but a user an appeal to SAT proedures to ompare one Lavadesription against another desription.Our reent veri�ation methodology, whih ombines a SAT-based deisionproedure with theorem proving, was partially inspired by the work at Intel om-bining symboli trajetory evaluation with theorem proving. This work makesuse of the funtional languages Lifted-FL [4℄ and, most reently, reFLet [3℄.Some of the ways DE2 di�ers from these languages inlude its simpler seman-tis (e.g. two pass evaluation), its simple syntax, its lose orrespondene to asubset of Verilog, and its embedding within a general-purpose theorem prover.4 ExampleThe use of the DE2 language is similar to the use of other hardware desriptionlanguages. Ciruits are spei�ed in a hierarhial manner, and the syntati formof the hierarhial iruit desription also de�nes the hierarhial struture of adesription's assoiated state. Here we give an example of a DE2 iruit spei-�ation, and desribe some of the restritions imposed by the DE2 language.Our DE2 language de�nition is a tremendous abstration of this physialreality. The DE2 language de�nes �nite-state mahines by permitting a user tode�ne primitive elements. For this setion, we assume the de�nition of Booleanonnetives and state-holding elements have already been given. Issues suh asloking, wire delay, rae onditions, power distribution, and heat, have beenlargely ignored.Informally, theDE2 language hierarhially de�nes Mealy mahines: the out-puts and next state of every module is a funtion of its inputs and internal state.By suessively repeating the evaluation of an identi�ed FSM, the DE2 systeman be used to emulate typial �nite-state mahine operation. DE2 languagede�nitions are written with a Lisp-style syntax using the Lisp syntax permit-ted for writing onstant expressions; that is, modules de�nitions are representedas Lisp data, and they are not Lisp funtion de�nitions, maros, or other suhonstruts. We �rst give an example of several ombinational iruits, wherewe exhibit some of the restritions our evaluation approah imposes. Later weexhibit a sequential iruit. 4

Register

1 0
MUX

sel

+

load

in

out

adder−out

Accumulator

width

width

width

mux−out

width

Fig. 1. Shemati of an Aumulator4.1 Combinational ModulesConsider the iruit shown in Figure 1. In DE2, this iruit is represented asfollows.(aumulator(params width)(outs (out width))(ins (in width) (load 1))(wires (adder-out width) (mux-out width))(sts reg)(labels (out 'data) (in 'data) (adder-out 'data)(mux-out 'data) (load 'ontrol))(os(reg (out) (register width 'data) (mux-out))(adder (adder-out) (bufn width 'data) ((bv-adder width in out)))(mux (mux-out) (bufn width 'data) ((bv-if load in adder-out)))))A module is identi�ed by its name, in this ase aumulator. Eah moduleis omposed of a set of key-value pairs whose entries depend on the type of themodule. All modules have parameters, inputs, states, and outputs lists, identi�edby params, ins, sts, and outs, respetively. This module also has a labelsentry, whih is an annotation. Annotations are not required, but an be used toenable optimizations, assist veri�ation, or provide information to other tools.In this ase, we use the labels annotation, along with a stati heker, to ensurethat we do not use a data wire when a ontrol wire was expeted or vie versa.Annotations an also be used to represent layout information or other physialattributes { a user may de�ne their own annotations.A module will also inlude ourrenes whih de�ne the relationship betweenits inputs, outputs, and internal modules. Eah ourrene onsists of a unique5

ourrene name, a list of outputs, a module referene ombined with its pa-rameter list, and a list of inputs. For example, the �rst ourrene in the aboveexample is named reg. The reg ourrene onsists of an instane of a registermodule with the parameter width, input mux-out, and output out. The fat thereg ours in the aumulator module's sts list denotes that it is a state-holding ourrene. Eah input onsists of an ACL2 expression of the inputsand internal \wires" of the module. Our primitive simulation-based evaluatoronly de�nes a �nite list of ACL2 funtions (e.g. bv-adder and bv-if) for use insuh an expression.The DE2 language evaluation semantis de�ne the outputs of a module asa funtion of its inputs and internal state. The next state of a module is also afuntion of a module's inputs and internal state. Evaluation is disrete; that is,there is an impliit notion of time whih is broken into disrete steps.Module evaluation begins by binding input values to a module's inputs, andbinding state values to a module's states. Eah ourrene is then evaluated inthe order of its appearane. An ourrene is evaluated by binding its inputsand state to the spei�ed arguments and then evaluating the referene itself. Forthe module de�ned above, the ourrene reg is evaluated �rst; the output ofa register depends only on its internal state, not its inputs. After the value ofmux-out is determined by evaluating the mux ourrene then internal state ofthe reg ourrene is updated.In Setion 6.1 we present some properties of this example whih we haveproven mehanially. Using the ACL2 theorem prover, we prove that for anydata-path width a LOAD of A (i.e. load is high, in is A) followed by an ADDof B (i.e. load is low, in is B) produes the addition of A and B.4.2 PrimitivesA primitive module, orresponding to a hardware omponent built-in to a syn-thesis tool, has a de�nition in DE2 that a non-primitive module. The di�erenebetween a primitive module is that rather than being de�ned in terms of our-renes of submodules, a primitive module is de�ned by lisp funtions aessedthrough lambda modules. A lambda module has formals orresponding to theourrene's list of parameters followed by the ourrene's list of inputs. Thelambda module evaluates to a list with its �rst element being the state of thelambda module followed by its outputs. For example, the following is a de�nitionof the primitive modules bufn, whih is a submodule of our aumulator.(bufn(type primitive)(params n sig-type)(outs (q n))(ins (x n))(labels (q sig-type) (x sig-type))(os (st (q)((lambda (x) (list 'nil x)))(x)))) 6

The bufnmodule instantiates a single lambdamodule. Sine the bufnmodulehas no state, this lambda expression evaluates to a list whose �rst element isnil. The output of the bufn module, whih orresponds to the seond elementof the list, is equal to its input. The other primitive found in our aumulatorexample, register, is de�ned as follows.(register(type primitive)(params width sig-type)(outs (q width))(ins (d width))(sts st)(st-dels (st width))(labels (q sig-type) (d sig-type))(os(st (q)((lambda (width st d) (list d st)) width)(st d))))The register example shows how a state-holding primitive is de�ned in DE2.The state of the register module is aessed through a lambda module namedst, whih turns the impliit input and output of state into an expliit input andoutput. The lambda module returns its input d as the next state and its statest as its output. Note that the registermodule also has a new �eld st-dels,whih delares that the state element st is a bit-vetor of length width. Thisdelaration is not a requirement of DE2 modules, but enables the later use ofdeision proedures.5 The DE2 EvaluatorThe de�nition of the DE2 evaluator is omposed of two groups, eah ontainingtwo mutually reursive funtions. These four funtions implement the entirehierarhial evaluation of the outputs and next-state values for any well-formedhierarhial FSM de�ned using the DE2 language, exept for the evaluation ofthe lambda and ACL2 (primitive) expressions. This set of funtions was designedwith a number of di�erent goals in mind, so design deisions were made toattempt to implement the desired properties while keeping the size of the systemas small as possible.The DE2 language an be thought of as having two parts: primitive opera-tions and interonnet. We have de�ned di�erent primitive evaluators, dependingon our needs. The primitive evaluator we use for veri�ation of gate-like primi-tives interprets suh primitive modules by applying ordinary Boolean operations.If we are interested in the fan-out of a set of signals, we use a di�erent primitiveevaluator. If we want to generate a ount of the number of and type of primitivemodules required to implement a referened module, we use a primitive evalu-ator that ollets that information from every primitive enountered during anevaluation pass { note that this does not just ount the number of de�ned mod-ules, but it ounts the number of every kind of modules required to realize the7

FSM being evaluated. If we want to ompute a rude delay or power estimate,we use other primitive evaluators.The semanti evaluation of a DE2 design proeeds by binding atual (eval-uated) parameters (both inputs and urrent states) to the formal parameters ofthe module to be evaluated; this in turn auses the evaluation of eah submodule.This proess is repeated reursively until a primitive module is enountered, andthe spei�ed primitive evaluator is alled after binding the neessary arguments.This part of the evaluation an be thought of as performing all of the \wiring";values are \routed" to appropriate modules and results are olleted and passedalong to other modules or beome primary outputs. This set of de�nitions isomposed of four (two groups of) funtions (given below), and these funtionsontain an argument that permits di�erent primitive evaluators to be used.The following four funtions ompletely de�ne the evaluation of a netlist ofmodules, no matter whih type of primitive evaluation is spei�ed. The funtionspresented in this setion onstitute the entire de�nition of the simulator forthe DE2 language. This de�nition is small enough to allow us to reason withit mehanially, yet it is rih enough to permit the de�nition of a variety ofevaluators. The se funtion evaluates a module and returns its primary outputsas a funtion of its inputs. The de funtion evaluates a module and returnsits next state; this state will be struturally idential to the module's urrentstate, but with updated values. Both se and de have sibling funtions, se-oand de-o respetively, that iterate through eah sub-module referened in thebody of a module de�nition. We present the se{de evaluator funtions to makelear the importane we plae on making the de�nition ompat.The se and de funtions both have a flg argument that permits the seletionof a spei� primitive evaluator. The fn argument identi�es the module name ofa module to evaluate; its de�nition should be found in the netlist. The ins andst arguments provide the primary inputs and the urrent state of the module fnto be evaluated. The params argument allows for parameterized modules; thatis, it is possible to de�ne modules with wire and state sizes that are determinedby this parameter. The env argument permits on�guration or test informationdeep to be passed deep into the evaluation proess.The se-o funtion evaluates eah ourrene and returns an environmentthat inludes values for all internal signals. The se funtion returns a list ofoutputs by �ltering the desired outputs from this environment. To ompute theoutputs as funtions of the inputs, only a single pass is required.(defun se (flg fn params ins st env netlist)(if (onsp fn);; Primitive Evaluation.(dr (flg-eval-lambda-expr flg fn params ins env));; Evaluate submodules.(let ((module (asso-eq fn netlist)))(if (atom module)nil(let-names(m-params m-ins m-outs m-sts m-os)8

(m-body module)(let*((new-env (add-pairlist m-params params nil))(new-env (add-pairlist (strip-ars m-ins)(flg-eval-list flg ins env)new-env))(new-env (add-pairlist m-sts(flg-eval-expr flg st env)new-env))(new-netlist (delete-asso-eq-netlist fn netlist)))(asso-eq-list-vals(strip-ars m-outs)(se-o flg m-os new-env new-netlist))))))))(defun se-o (flg os env netlist)(if (atom os) ;; Any more ourrenes?env;; Evaluate speifi ourrene.(let-names(o-name o-outs o-all o-ins)(ar os)(se-o flg (dr os)(add-pairlist(o-outs-names o-outs)(flg-eval-listflg (parse-output-listo-outs(se flg (o-all-fn o-all)(flg-eval-list flg(o-all-params o-all)env)o-ins o-name env netlist))env)env)netlist))))Similarly, the funtions de and de-o perform the next-state omputationfor a module evaluation; given values for the primary inputs and a struturedstate argument, these two funtions ompute the next state of a spei�ed module.This result state is strutured isomorphially to its input's state. Note thatthe de�nition of de ontains a referene to the funtion se-o; this refereneomputes the value of all internal signals for the module whose next state isbeing omputed. This all to se-o represents the �rst of two passes througha module desription when DE is omputing the next state.(defun de (flg fn params ins st env netlist)(if (onsp fn)(ar (flg-eval-lambda-expr flg fn params ins env))(let ((module (asso-eq fn netlist)))(if (atom module) 9

nil(let-names(m-params m-ins m-sts m-os) (m-body module)(let*((new-env (add-pairlist m-params params nil))(new-env (add-pairlist (strip-ars m-ins)(flg-eval-list flg ins env)new-env))(new-env (add-pairlist m-sts(flg-eval-expr flg st env)new-env))(new-netlist (delete-asso-eq-netlist fn netlist))(new-env (se-o flg m-os new-env new-netlist)))(asso-eq-list-valsm-sts(de-o flg m-os new-env new-netlist))))))))(defun de-o (flg os env netlist)(if (atom os)env(let-names(o-name o-all o-ins) (ar os)(de-o flg (dr os)(ons(onso-name(de flg (o-all-fn o-all)(flg-eval-list flg (o-all-params o-all) env)o-ins o-name env netlist))env)netlist))))This ompletes the entire de�nition of the DE2 evaluation semantis. Thislique of funtions is used for all di�erent evaluators; the spei� kind of eval-uation is determined by the flg input. We have proved a number of lemmasthat help to automate the analysis DE2 modules. These lemmas allow us tohierarhially verify FSMs represented as DE2 modules. We have also de�nedfuntions that repeatedly referene these funtions so we an simulate a DE2design through any number of yles.An important aspet of this language semantis is its brevity; it is formal, andit provides a semantis for any FSM de�ned using the DE2 language. Then, byusing the ACL2 theorem prover, we an mehanially and hierarhially verifyproperties about any system de�ned using the DE2 language.6 Our Use of the DE2 SystemHaving an evaluator for DE2 written in ACL2 enables many forms of veri�a-tion. In Figure 2 we illustrate our veri�ation system, whih is built around theDE2 language. 10

ACL2 Model Simplified
Invariants

Verified
Translation

Optimizations

& Reductions
(verified)

Verilog
Design

Design
DE

Testing &
Inspection

ACL2 Spec

Guided
ProofSAT−Based

Decision
Procedure

and Test Suite

Manual
Translation

English Spec, C Model

Automatic
Translation

Fig. 2. An overview of the DE2 veri�ation systemWe typially use the DE2 veri�ation system to verify Verilog designs. Thesedesigns are denoted in the upper left of Figure 2. Currently, the subset of Ver-ilog inludes arrays of wires (bit vetors), instantiations of modules, assignmentstatements, and a number of basi primitives (e.g. &, ?: and |). We also allowthe instantiation of memory (array) modules and vendor-de�ned primitives.We have built a translator that translates a Verilog desription into an equiv-alent DE2 desription. Our translator parses the Verilog soure text into a Lispexpression, and then an ACL2 program onverts this Lisp expression into aDE2desription.We have also built a translator that onverts a DE2 netlist into a yle-aurate ACL2 model. This translator also an ACL2 proof that the DE2 de-sription is equivalent to the mehanial produed ACL2 model. The proess oftranslating a DE2 desription into its orresponding ACL2 model may inludeone-of-inuene redutions; an ACL2 funtion is reated for eah module's out-put and irrelevant parts of the initial design are removed. This translator allowsus to enjoy both the advantages of a shallow embedding (e.g. straightforwardveri�ation) and the advantages of a deep embedding (e.g. syntax resemblingVerilog).We start with an informal spei�ation of the design in the form of Englishdouments, harts, graphs, C-models, and test ode whih is represented in theupper right of Figure 2. This information is onverted manually into a formalACL2 spei�ation. Using the ACL2 theorem prover, these spei�ations aresimpli�ed into a number of invariants and equivalene properties. If these prop-erties are simple enough to be proven by our SAT-based deision proedure,we prove them automatially; otherwise, we simplify suh onjetures using the11

ACL2 theorem prover until we an again appeal to some automated deisionproedure.We also use our system to verify sets of DE2 desriptions. This is aom-plished by writing ACL2 funtions that generate DE2 desriptions, and thenproving that these funtions always produe iruits that satisfy their ACL2spei�ations.Sine DE2 desriptions are represented as ACL2 onstants, funtions thattransform DE2 desriptions an be veri�ed using the ACL2 theorem prover.By onverting from Verilog to DE2 and from DE2 to bak into Verilog, wean use DE2 as an intermediate language to perform veri�ed optimizations.Another use of this feature involves performing redutions or optimizations onDE2 spei�ations prior to veri�ation. For example, one an use a deisionproedure to determine that two DE2 iruits are equivalent and then use thisfat to avoid verifying properties of a less leanly strutured desription.We an also build stati analysis tools, suh as extended type hekers, inDE2 by using annotations. In DE2, annotations are �rst-lass objets (i.e. an-notations are not embedded in omments). Therefore an annotation, suh as thelabels annotation in Setion 4, is parsed as easily as any ore language features.Suh stati hekers, sine they are written in ACL2, an be analyzed and analso assist in the veri�ation of DE2 desriptions. Furthermore, annotations anbe used to embed information into a DE2 desription to assist with synthesis.6.1 Veri�ation ExampleTo verify the DE2 iruit in Setion 4, we �rst generate an ACL2 model whihis equivalent to the DE2 iruit. The following theorems, whih are provenautomatially by a proof generated by our translator, prove that the ACL2funtions aumulator-next-st and aumulator-out produe the next stateand the out output of the aumulator module.(defthm aumulator-de-rewrite(implies (aumulator-& netlist)(equal (de flg 'aumulatorparams in-exprs st-expr env netlist)(let ((st (flg-eval-expr flg st-expr env))(in (get-nth-value 0 flg in-exprs env))(load (get-nth-value 1 flg in-exprs env))(width (nth 0 params)))(aumulator-next-st st width in load)))))(defthm aumulator-se-rewrite(implies (aumulator-& netlist)(equal (se flg 'aumulatorparams in-exprs st-expr env netlist)(let ((st (flg-eval-expr flg st-expr env)))(list (aumulator-out st))))))12

We now an prove properties about the ACL2 model using the ACL2 theoremprover. For example, onsider the following theorem:(thm(let* ((state1 (aumulator-next-st state0 width A (LOAD)))(state2 (aumulator-next-st state1 width B (ADD))))(equal (aumulator-out state2) (bv-adder width a b))))In this theorem, state1 is the state of our aumulator after an arbitraryLOAD instrution (i.e. the load input to the aumulator is high), and state2is the state after following this LOAD with an ADD instrution (i.e. the loadinput is low). The theorem then states that the output of the aumulator isthe addition of eah yles' inputs. We proved this theorem using the ACL2theorem prover for any width aumulator. If we hoose a spei� width (e.g.a 32-bit aumulator), then this theorem an be proven automatially with ourSAT-based deision proedure.6.2 Verifying Components of the TRIPS ProessorWe are using our veri�ation system to verify omponents of the TRIPS proes-sor. The TRIPS miroproessor is a prototype next-generation proessor beingdesigned by a joint e�ort between the University of Texas and IBM [7℄. Onenovel aspet of the TRIPS miroproessor is that its memory is broken up intofour piees; eah piee of memory has a separate ahe and Load Store Queue(LSQ). We plan to verify the LSQ design, based on the design desribed inSethumadhavan et al [6℄, using our veri�ation system. We have already veri�edproperties of its Data Status Network (DSN) omponent.The DSN hardware provides the ommuniation and bu�ering between fourLSQ instanes. Its design onsists of 584 lines of Verilog ode (inluding around200 lines of omments), whih we ompile into a 427-lineDE2 desription (withno omments). We use our verifying ompiler to translate this DE2 desriptioninto an ACL2 model and then prove the equivalene of the DE2 desriptionand its ACL2 spei�ation. Using a mixture of theorem proving and a SAT-based deision proedure, we have proved properties that relate the output ofthe four DSN instanes, ommuniating with eah other over multiple yles, tothe output of a simpli�ed mahine; this simpli�ed mahine spei�es the outputthat would be immediately produed if the ommuniation were instantaneous.7 ConlusionThe de�nition of the DE2 language provides a user with a hierarhial lan-guage for speifying FSMs. By deeply embedding the de�nition of DE2 withinthe ACL2 funtional logi, we have provided a proof theory for verifying DE2module desriptions with respet to a number of primitive interpretations. Theextensible struture of the DE2 language and its general-purpose annotation13

language allow a user to embed other types of information, suh as a mod-ule's size, spei�ation, layout, power requirements, and signal types. Instead ofjust verifying large netlists, we often ompare netlists or transform one netlistinto another netlist in a provable orret manner. We have extended the ACL2theorem-proving system with a SAT proedure that an provide ounter ex-amples. We also have proved the orretness of funtions that automatiallygenerate iruits; this an greatly redue the amount of DE2 module de�nitionswritten by a user.We believe that the design of DE2 more losely ful�lls the needs of modernhardware design and spei�ation better than more traditional HDLs. The in-reasing demands plaed on hardware or FSM spei�ation languages is presentlybeing served by embedding all kinds of extra information in the form of om-ments into a traditional HDL. This proess fores non-standard, non-portableuse of HDLs, and prevents there from being a single design desription thatan be aessed by all pre- and post-silion development tools. We believe thatDE2 is the �rst formal attempt to integrate disparate design data into a singleformalism. We believe future design systems should inlude similar features.The DE2 language, annotation system, and semantis provide a user witha uniform means of speifying and verifying a wide variety of both funtionaland extrinsi properties. We ontinue to expand the size and type of designsthat we have veri�ed. In the future, we want to use DE2 to apture existingdesign elements to ease the reuse problem. Typially, in an industrial designow, when a previously designed and veri�ed design element is used in a newdesign, the veri�ation has to be ompletely redone. Our ability to speify andverify modules in a hierarhial manner permits the reuse of prior veri�ations,and perhaps this veri�ation reuse is the real key. Being able to reuse the designand the e�ort required to validate it will greatly redue the e�ort of reusingpreviously designed modules.Referenes1. Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: Hardware De-sign in Haskell. The International Conferene on Funtional Programming (ICFP),pages 174{184, Volume 32, Number 1, ACM Press, 1998.2. Mary Sheeran. Generating Fast Multipliers Using Clever Ciruits. In Alan J. Huand Andrew K. Martin, editors, Formal Methods in Computer-Aided Design (FM-CAD), pages 6{20, LNCS, Volume 3312, Springer Verlag, 2004.3. Sava Krsti and John Matthews. Semantis of the reFLet Language. Priniplesand Pratie of Delarative Programming (PPDP), pages 32{42, ACM Press, 2004.4. Mark D. Aagaard, Robert B. Jones, and Carl-Johan H. Seger. Lifted-FL: A Prag-mati Implementation of Combined Model Cheking and Theorem Proving. The-orem Proving in Higher Order Logis (TPHOLs), LNCS, Volume 1690, SpringerVerlag, 1999.5. Mark D. Aagaard, Robert B. Jones, John W. O'Leary, Carl-Johan H. Seger, andThomas F Melham. A methodology for large-sale hardware veri�ation. In War-ren A. Hunt, Jr. and Steve Johnson, editors, Formal Methods in Computer-AidedDesign (FMCAD), LNCS, Volume 1954, Springer Verlag, 2000.14

6. S. Sethumadhavan, R.Desikan, D.Burger, C.R.Moore and S.W.Kekler. SalableHardware Memory Disambiguation for High ILP Proessors (Load/Store QueueDesign). 36th International Symposium on Miroarhiteture (MICRO 36), pages399{410, 2003.7. The Tera-op Reliable Intelligently adaptive Proessing System(TRIPS),http://www.s.utexas.edu/users/art/trips/8. Bishop Brok, Matt Kaufmann, and J Moore. ACL2 Theorems about Commer-ial Miroproessors. In M. Srivas and A. Camilleri, editors, Formal Methodsin Computer-Aided Design (FMCAD'96), pages 275{293, LNCS, Volume 1166,Springer-Verlag, 1996.9. Jun Sawada. Formal Veri�ation of an Advaned Pipelined Mahine. PhD Thesis,University of Texas at Austin, 1999.10. Warren A. Hunt, Jr. The DE Language. Computer-aided Reasoning: ACL2 asestudies, pages 151{166, Kluwer Aademi Publishers, 2000.11. Robert S. Boyer and J Strother Moore. A Computational Logi Handbook. Aa-demi Press, Boston, 1988.12. M. J. C. Gordon and T. F. Melham (editors). Introdution to HOL: A TheoremProving Environment for Higher-Order Logi. Cambridge University Press, 1993.13. Rihard Boulton, Andrew Gordon, Mike Gordon, John Harrison, John Herbert, andJohn Van Tassel. Experiene with Embedding Hardware Desription Languages inHOL, Theorem Provers in Ciruit Design, pages 129{156, IFIP Transations A-10,Elsevier Siene Publishers, 1992.14. Mike Gordon. Why Higher-order Logi is a Good Formalism for Speifying andVerifying Hardware. Tehnial Report 77, University of Cambridge, Computer Lab-oratory, 1985.15. Warren A. Hunt, Jr. and Bishop C. Brok. A Formal HDL and Its Use in theFM9001 Veri�ation. In C.A.R. Hoare and M.J.C. Gordon, editors, MehanizedReasoning and Hardware Design, pages 35{48, Prentie-Hall International Seriesin Computer Siene, 1992.16. Matt Kaufmann and J Strother Moore. ACL2: An Industrial Strength Version ofNQTHM. Eleventh Annual Conferene on Computer Assurane (COMPASS-96),pages 23{34, IEEE Computer Soiety Press, 1996.17. Guy Steele. Common Lisp: The Lanugage, Seond Edition. Digital Press, 1990.18. Phillip J. Windley and Mihael L. Coe. A Corretness Model for Pipelined Miro-proessors, Theorem Provers in Ciruit Design : Theory, Pratie, and Experiene,LNCS, Volume 901, Springer Verlag, pages 33-51, 1995.

15

