s € et s+ GO, St S

B et

s § SV

M3 s b

s i e A R st i 1 A

Volume 7, number 1 ‘ - INFORMATION PROCESSING LETTERS {gmiq‘ry

GENETIC ORDER AND COMPACTIFYING GARBAGE COLLECTORS

\otoaki TERASHIMA and Eiichi GOTO

Department of Information Science, Faculty of Science, University of Tokyo, Tokyo, 113, Japan

Received 31 August 1977

Linear order among lists, garbage collection, compactifying garbage collection, hardware garbage collector,

binary tree search

" 1. Introduction : -

A linear order to be called the genetic order, or
G-order for short, can be established among list struc-
tures by using their storage addresses, endowed upon
creation (the genesis of the term “genetic”), as order-
ing indices, provided that the list processing system
employed consistently preserves the G-order. Espe-
cially, the system garbage collector (GC) has to be of
the type of “genetic order preserving (Gop)”. It
<hould be noted that the classic GC in LISP 1.5 [10]
is GOP. Wegbreit’s compactifying GC [13] isalso
GOP, but other compacting and compactifying GC’s
by Bobrow [3], Cheney [4] and Hansen [7] are non-
GOP. (While “compacting” means the relocation of
active cells into a ccnsecutive area with the elimina-
tion of cdr cells of lists [4,7], “compactifying” means
the same without cdr cell elimination [3,13].)

A large number of searching, sorting and merging

techniques which all utilize some kind of linear order

among the data, has been developed and applied to
the speeding up of operations on various data struc-
wres [1,9]. An objective of this note is to point out
the fact that the techniques just mentioned are all
readily applicable to list structures by utilizing the
G-order in GOP-systems. Although the utilization of :
the G-order is not practiced in most existing list pro-

- cessing schemes, it would be worth while to fully

exploit the effectiveness of such utilization of the
G-order, and as the first step, we classify list pro-:
cessing schemes especially garbage collectors into
GOP and non-GOP.~

MAR 1 5 1978

1978, .

s B 15
e W AR

Another objective of this note is to propose two
compactifying GOP-GC'’s. Compactifying GC’s gen-
erally consist of three phases: marking of active cells,
pointer adjustments and relocation of cells. Marking
and relocation algorithms are relatively simple, and
fast algorithms (with the time complexity being pro-
portional to the amount of storage, e.g., see [8]) can
be designed easily. On the other hand, the pointer
adjustment phase of most known schemes is rather
costly in time or space or in both [3;4,7,13].

Two pointer adjustment schemes are proposed in
this note. One is slow, but requires no extra storage.
It uses a G-ordered binary tree, i.e., a binary tree
with the address of each tree node itself being used as
a nodal datum. This scheme also gives an example of
an algorithm which fully utilizes the G-order (G-order
self applied to an implementation of a GOP system).

The other is fast, O(1) per pointer adjustment and
is believed to be suited for hardware implementation,
but requires some extra storage. ‘ :

2. Pointer adjustment scheme using a G-ordered tree

Let 4 be the address space. At the beginning of
the pointer adjustment phase, let A be partitioned
into islands of successive active cells and gaps between
islands as

A =Io UGl Ull o GnUIn

(cf. Fig. 1) where J;is the -th island and G; is the gap
between islands f;_1 and /;. The trivial case consisting

27

Volume 7, number 1 INFORMATION PROCESSING LETTERS : January 1978

e A e
9 92 93
; ¥ v
////1,' I SE N g
g e & o G, 2 30 b
Offset value €0 £ e?. e3
9 92 93
i v v ¥
TR — 4 e3
T, (R-1ist) B 1 :
0 T &2
tag | * * ; *

o= Lo & (es 95 (eys 93s e3)))

: R
9 | 92 3
v : v :
e] 23
Height-balanced
G-tree : Ty * 2
ey e,
* *
4
B
TB= ((eoa g-lv e«]) 92 (ezi 93’ 93))
D = (80; g], e]: 92, eza 93’ 83)
A - the address space
Ii: i-th island
Gi: gap between Ii-] and Ii
e;: the offset value of Ii
g.: an address chosen. from Gi

Fig. 1. Islands, gaps and the G-tree representation.

of a single island is omitted. Without loss in generality by the following conditional formula:

we assume th‘at all islands and gaps are.non-void. When : eo ifp<gi1s

the active pointer belongs to /;, the pointer has to be : :

adjusted by an offset value ¢; which is the amount offset value = { e; if g <p<gis1» (A <i<n)
that J; has to be moved upon relocation. Let g; be an ' ' ! ;
address chosen from each gap G; as a representative. - : en ifgn<p. 2.1)
The offset value for adjusting a pointer p is defined Obviously this conditional formula can be fully

28

AT SR AL TN

B AL AL A i (8D R N

R<
e A AL B D A gy oot b L
o

i S 41t @1 1 AR

oty =

ek bk AP B AR Al v R N F | AL (ARt

Volume 7, number 1

specified by the 21 + 1-tuple D = @5 21 65 o 80 G)
of offset and gap data e; and g;.

Definition 1. The G-tree representation of D is defined
as nested ordered triples made by inserting pairs of
parentheses into D so that each second element of
triples is g; (1 <i<n, cf. Fig. 1). Each triple (T'eiT"
is said to be a node of the G-tree, where each of T
and T" is either one of the offset values ey, ey, ..., €,

- (leaf of the tre€) or a left- or right-subtree node.

Proposition 1. For a given data D with n gaps, there
are 2,C,/(n + 1) different G-trees.

Proof. This follows directly from the well known
result in combinatorics (e.g., see [8, p.389]) on the
number of binary trees with 7 nodes. :
Proposition 2. Any of the G-trees can fully specify
the conditional formula (2.1).

Proof. D can be reconstructed from the G-tree by
eliminating all pairs of parentheses except for the out-
most one.

Definition 2. A G-tree is called an R-list if all closing
parentheses of the nested triples are placed at the
right end (cf. Fig. 1). A G-tree is called an L-list if
all opening parentheses are placed at the left end.

INFORMATION PROCESSING LETTERS

January 1978

Proposition 3. Data 2n + 1-tuple D has a unique R-list
and a unique L-list, and for n >.1 the R-list and the
L-list are different.

Proof. By induction on the number of G-tree nodes n.

Definition 3. Let Ty = (Tg; T) g;T) and T =
(Tg:(T'g;T")) be G-trees or sub G-trees. A G-tree
transformation Ty = L(T) is called an L transforma-
tion (cf. Fig. 2). The inverse transformation T =
R(T,) is called an R transformation. :

Proposition 4. For a given data n+ l-tuble D, all.
2nCn/ @ + 1) different G-trees can be obtained by
applying R and L transformations successively to a
G-tree.

Proof. By induction on the number of the tree nodes n.

Since each gap G; is assumed to be non-void con-
taining at least one cell at address g;, eéach node of
the G-tree can be represented by using one cell at
each gap, provided that each list cell can hold two
tag bits and two data. A datum with tag bit on repre-
sents an offset value (leaf of tree), and a datum with
tag bit off represents a pointer to another subtree
node. Given a pointer p to be adjusted, and a root r
of a G-tree, the offset value in accordance with (2.1)
can be found by the recursive procedure (2.2) written
in Pidgin ALGOL [1] in which “call-by-value” param-

R-transformation

=T g T'he T

—_—
e

Ledt g (P g, TP

L-transformation

Fig. 2. Transformation of G-trees.

Volume 7, number 1

(3

INFORMATION PROCESSING LETTERS

January 1978

+ adjusted pointer

address

00 ... 01]o0..0104

pointer

masked bits

address

2

IOO coeo O O‘IH 2 I

0 -
lowdr n bits 1 WIS Gouacer
2 00 ... 01111
2°-1 1 10101] Masking Register
1 Storage
o T
% & 10101 .
02 2
z/‘/’f/:ixactive
= S o cell
0k N
Offset Mark bit Tables \ -
Registers (each 2" bits)
: N
0k : the content of the k-th offset
register.

Fig. 3. The organization of pointer adjustment hard ware.

eter binding and monu da:a type represencaticn of
pointers and leaf (offset) values are assumed.

procedure GETOFFSET (p, 7):
if 7 is a leaf then returnr i
else

ifr >gp thenreturn GETOFFSET(p, leftsubtree(r))
else return GETOFFSET(p, rightsubtree(r))

2.2)

Here >, is the predicate for checking the G-order.
This procedure can be readily transformed into the

following iterative procedure.

v procedure GETOFFSET(p, r):
begin
L: if r is a leaf then returnr;
iftr>gp thenr« leftsubtree(r)
else r « rightsubtree(r);

goto L
-end

30

2.3)

The correctness of this preocedue applied to G-tiees
can be easily proved by induction on the number of
nodes n of the G-tree.

Each node of the G-tree cmntains only two data.
Procedure (2.2) ((2.3) as welll) makes a binary tree
search on the G-tree with making use of the address
of each tree node itself as the: third (implicit) datum.
Note that three (explicit) data are needed per tree
node in conventional binary txee search methods
{1.9]. '

Wegbreit [13] proposed to make a binary search
on a tree constructed in the imactive (gap) space to
find the offset value, but the tree requires the storage
for a nodal datum (‘covering address’ in his terminol-.
ogy) in addition to the two pointers. The gap con-
sisting of one cell is not enough for storing these
three data in his case, so that the binary search tree

kA

!
i
i
{

aa ey

Al o bl o S BIATE AT 4S Sn 8

‘
!
H
{
2

Volume 7, number 1

cannot be constructed without using extra storage in
case each gap consists of only one cell.

The speed of binary tree search can be maximized
by balancing the height of the tree like in the case of
AVL trees [2]. An Relist with height n can be easily
constructed by a linear sweep through the storage.
By using a well established method of balancing the
height of trees (e.g., see [1,9]), we readily obtain the
following procedure (2.4) which transforms the

R-list into a height-balanced tree with height [logz nl.

procedure BALANCETREE(?):

begin
L P ~—€n:
2. A: s+t;r < rightsubtree(s);
3. B: u « rightsubtree(7);
4. if u =p thenif 1 =s then return ¢
) else
5. begin p —1;1 +r; goto A .
end; :
6. v + rightsubtree(u);
i if v = p then if u = r then return ¢
else
8. beginp —u;t«r;goto A
end; -~
9. replace rightsubtree of s by ;
10. replace rightsubtree of 7 by leftsubtree(u);
I replace leftsubtree of u by £}
k2 t<uv;s~—u;gotoB
end (2.4)

Here 7 is initially the root of the R-list, and the
procedure returns the root of the resultant balanced
free.

Proposition 5. Given a root r of an R-list, the result
of procedure (2.4) is a (height-balanced) G-tree.

Proof. In procedure (2.4) tree transformation is per-

formed at lines 9—11, which turns out to be an L

transformation. Hence, the resultant tree is a G-tree
_ by Proposition 4.

By using the height-balanced G-tree with n nodes
in procedure (2.2), time for each pointer adjustment
is O(logy n).

3. A fast pointer adjustment scheme

Each pointer P can be adjusted in O(1) time by
using extra storage for offset registers and marking
bit tables. This scheme is believed to be suited for
hardware implementation (see Fig. 3) to calculate

INFORMATION PROCESSING LETTERS

- g SRR i s i AR T

January 1978

the offset value efficiently. The calculation of the
offset value for adjusting pointer P is to be made as
follows:

Mask the 2" bit string from the [£/2" j-th marking
bit table with the value 2™°4(#2)_ (bit string of
‘1’s, mod(P, 2") in length, where mod(P, 2") = P —
LP/2™ | « 2™). Count inactive state bits (marked ‘I’)
of the masked bit string. (The count is the number of
inactive cells from [P/2"] = 2" to P.) Add it to the
content of | P/2" J-th offset register which holds the
total number of inactive cells counted from O to
L P/2" | x 2™ — i. The contents of offset registers are
set by counting inactive state bits in the bit table at
the beginning of the pointer adjustment phase.

If buffer (cache) memory is used for bit table and
offset registers and if the i-th offset register and the
i-th marking bit table can be read simultaneously,
this calculation can be performed within a single
buffer cycle time. Moreover, if a machine with a pipe
line control for read and write operations on memory
be built, the pointer adjustment time will be absorbed
into the data relocation time.

In case 1 = 4 and the storage capacity is 65 K list
cells each 64 bit long, 16 bits are enough for each
offset register, so that the extra storage needed is
3.125% of the total storage.

4. Concluding remarks

The concepts of G- (“genetic”) order and GOP
(“genetic order preserving”) system were introduced,
and the effectiveness of the utilization of the G-order
was exemplified by a binary search on G-ordered
binary tress. !

The concept of the G-order is believed to have
many applications in searching, sorting and merging
techniques which all utilize some kind of linear order
among the data. Concurrent garbage collector [11,12]
of the GOP type would be an interesting theme for
further research.

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design
and Analysis of Computer Algorithms (Addison-Wesley,
Reading. MA, 1974) 113-169.

31
; Gk Z 5 S
o S Say
4 B re]
14 i 9 by oL

volume 7, Number 1

(2] G.M. Adel'son-Vel'skii and E.M. Landis, An Algorithm
for the Organization of Information, Doklady Aka-
demiia Nauk, SSSR 146 (1962) 263-266; English
translation in Sov. Math. 3, 1259--1263.

[3] D.J. Bobrow, ed., Symbol Manipulation Languages and
Techniques (North-Holland, Amsterdam, 1971) 296.

[4] C.J. Cheney, A Nonrecursive List Compacting Algorithm.

Comm. ACM 13 (11) (Nov. 1970) 677-678.

[5] J.P. Fitch and A.C. Norman, A Note on Compacting
Garbage Collection, University of Cambridge, Computer
Laboratory (1976). :

{6] E. Goto, Monocopy and Associative Algorithms inan
Extended LISP, Information Science Lab. Technical
Report 74-03, University of Tokyo (Apr. 1974).

{7] W.J. Hansen, Compact List Representation: Definition

Garbage Collection and System Implementation. Comm.

ACM 12 (9) (Sep. 1969) 499-506.

(o8}
(3%

INFORMATION PROCESSING LETTERS

January 1978

(8] D.E. Knuth, The Art of Computer Programming, Vol 1,
Fundamental Algorithms, 2-nd ed. (Addison-Wesley,
Reading, MA, 1973) 413-420.

(9] D.E. Knuth, The Art of Computer programming, Vol. 3,
Sorting and Searching (Addison-Wesley, Reading, MA,
1973) 422-471.

[10] J. McCarthy et al,, LISP 1.5 Programmer’s Manual

(MIT Press, Cambridge, MA, 1965).

[11] K.G. Miiller, On the Feasibility of Concurrent Garbage
Collection, Doctor thesis, Technical University, Delft,
The Netherlands (1975).

{12] G.1. Steel, 3r,, Multiprocessing Compactifying Garbage
Collection, Comm. ACM, 18 (9) (Sept..1975) 495-508.

[13] B. Wegbreit, A Generalized Compactifying Garbage
Collector, The Computer J. 15 (3) (Aug. 1972)
204-208. :

Aot e e R A A A ™

N

~

