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I. fntroduction and Su(unary

Johnson[]-l and Horowitzt2l applied sorting to
improve time compJ.exity of multiplication of uni-
variate polynomials. Their results may be regarded
as applications of the following LEMMA:

Sorting LEI'IMA. xhe Xine complexitg of sorting of N
items js O(N7og2N) and that of binarg search of
sorted N i tems is O(7og2N).

In this paper, time complexit,Les of operation on
"sets" and "ordered n-tuples" based on a hashing
table search technique are presented as .'Etashing

LEl�4tIAs" and are applied to formula manipulation.
Unique normal forms for multivariatre slnrbolic formu-
las resulting in O(7) time eomplexity for ictentity
checks are presented. llhe logarithmic factor j.ogzV,
characteristic to sorting algorithns, is shown ts
all disappear from time complexitl"es of polynonial
manipula-uions. Actual implementation of the hashing
technique is outlined and actual timing data are
presented in the appendix.

II- Hashing LEMMAS on Sets and n-Tuptes.

(2.0)  Denotat ions and Convent ions:
In case x represents a set  or  an n- tuple.  lx l

means the n'.unber of elements.
Sets are denoted by underscored capitaL letter(s).

Speciall-y,
INT is the set  of  (a11) integers;
rNfo = INT -  {Oi ,  i .e. ,  in tegers except o;
INT+ is the set of positive integers.

A BNf' metaobject is denoted by embracketing a set
j.n the underscoring notation between *<,. and .)'.,

with o.otional conrnentary r:n-underscored letters.
?his convention enables us to use both BNF and set
no ta t i ons .  8 .9 . ,  B IT  =  {O , f }  and  (B ina ry  d i g lT>  : : =
011 o are equivaleiE-definitions, wfure ,,o" mE-ans
the end of  a BNF def in i t ion.

In order to present algorithrns precisely and
concisely, Lisp with three additional data types
(ordered n-TUPle>, <SET> and <Associator) are used
in this pa-oer. <IwTEEer>, <sv66l, i.e., nonnr:rneric
a!:oms> and <CONS, i.e., data created by tisp func-
t ions "cons" or  " I is t" )  are the three data types of
or:dinary Lisps- (Floating point numbers and arrays
are orrritted because of irrelevance to this paper.)
Since Lhe time complexitv of high precision arithrne-
tic is not the theme of this paper, the time com-
plexi t - ies of  ar i thnet ic  operat ions on <fNT>.s are
assumed Eo be o(L)  for  the sake of  s impl lEi ty.

<IDent i f iables)  are def ined as:
II; = IN'I u Syl4 u TUp u SET u ASS; (<COryS> / ;;Dl .

fcogssal@gy of the 1975 ACI+I Symposium
oa Svnholic aad Algebraic Compuraion

Whi l e  <ASS> ' s ' a re  deno ted  as  <ASS> : . :  ( . < I9> )o ,
<rUP>'s .iE--<SeT>'s are d.enoted li-accordance with
ordinary mathematical notations :

< T U P >  r : =  ( ( , p ) , o o o l o r  < S I I > : : =  { < I D > , o o o } o ,
t{here "rooo" means nonzero repetition of the satne
metaobject. Specially the O-tuple O anit the nul1
set  { }  are regarded equivalent  to NIL,  i .e. ,

O = { } = N r L .
<CONg> is printed as cons lA; O l = $AV) vri.rh extra

blanks (F's) at both ends to discrimj.nate them from
a <rt[> printed as (A).

(2.1) A function "tcons" appends an <ID> to a
( r g > ,  e . 9 . ,

t cons  [A ,  O  1=  (a )  ,  t cons  t  { e , a } ;  ( c )  ]  =  (  {A ,B } ,C )  .
Lisp functions "car", "cd.r", *cadr.' etc. lrork on

< IgP> ' s  as  on  <L i sp  L IST> ' s ,  e . g . ,
c a r [ ( A , B ) ] = A ,  c d r [  ( A , B ) ] = ( B ) ,  c a d r [ ( e , e )  ] = s .

<TI8>'= are uniquely represenLed in the machine by
making use of hashing for speed:

LEMI4A L. The time conplexities of functions
"teons",  "car"  and "cdr"  on <T' I lp- \  a l .e a7j  O( j ) .

(2.2) A function nsettup.' transforns a <TUp> into
a <EXI> with the corresponding el,ements; ;E-upset.

does the converse,  e.9. ,
se t r up [  (A ,B )  ] = {A ,B }  o r  { e ,a } ;
s e t . t u p [  ( A , B , B ) ] = { A , B }  o r  { e , a } ;
t upse t  t { a ,a } l = (n ,e )  o r  (B ,A )  .

Specia l ly  for  t  e TUP, tupset [ t ]=t  (a coercion
rule). Although the ordering of elernents of a <SET>
is irrelevane to its identity. the ordering of IhE
el-er.ents of the <TUP> used first to define a <SET>
establishes a "cai6iical order' anong the elemEnts
of the <gE!>. Whenever the canonical order is
needed. it can be retrieved by performing tulset
I<:E!>l. (SET)rs are represented uniquely in the
machine by making use of hashing for speed:

LEMMA 2- For t € TaPi s € (g!t u T,UZ), the time
conplexities of seT?upltl and tups6isl are O(ltl)
and O(7),  tespect iveTg.

(2.3)  For x € ID the funct ion "ass ' .  y ie lds an <ASS>
: ass[ :<]=( .x*) .  (*  means actuaL datum representEE-
by the var iable)-  Conversely,  for  a=ass[x]  < aSS
the function "key" gives the <_I9>, x: keytal= fl,.r6
the pseudo-funct ion assign[a;vJ-assigns a va]ue v,
of  any type,  to <ASS>, a.  The value is  assign[a;v]=
v and the assigned value can be retrieved as the
value of  the funct ion value[a]=v.  The in i t ia l  value
of an <ASS> is O - Similarl-y to Lisp, property
f unc t i ons  a re  de f i ned  as  pu t [ x ; y ; v ]=  ass i gn Iass I t up
[ x ; y ]  l  ; v l ,  g e t [ x ; y ] = v a l u e l a s s l t u p I x ; y ]  I  I  a n d
remprop [ x ; y ]=pu t f x ; y r ( ] 1 ,  whe re  x ,  y  €  ID  and  w  i s  a
datrnn of any type- These functions are implemented
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by making use of hashing for speed:

LEITMA'3. frhe tjme co'r.pTexities of "ass", "keg",
nassign", "va7ue"r "pat", t'get" and "remprop" ate
aL7  o (7 )  -

Note in ordinary Lisps that properties are more
restrictive: x e SYI'I and y e (INT u SYM), and that
in case rn propertlEE are used 6i-a SYl4 the time
complexi ty may increase as o(n)  due 6- l is t  imple-
mentation of properties.

(2.4)  For x,  y  € ID,  the predicate funct ion eq[x;y]
checks the equality of x, y in accordance with the
mathematical comrnon sense. Narnely, in case x and y
a re  o f  d i f f e ren t  t ypes ,  eq l x ; y l =O  ;  t o i  x ,  y  e  IN ' f ,
eq[x;y]=T i f f ,  x  and y are numerical ly  equal- ;  for  x,
y € SYM, eqfxry]=T i f f  x  ani l  y  have the sarne spel l -
i ng ;  f o r  X r  y  €  ASS ,  eq {x ; y l : T  i f f  key [ x ]=16y1 "3  -

for  x,  y  € TUP u SET, eqtxryJ:T i f f  x  and y repre-
sent the same n-<TUPle> or <SET> mathernatically.
E . 9 . ,

e q l  ( A , B )  ;  ( B , A ) ] = O ,  e e t { A , s } ; { a , e } l = t ,
e q [ { a , a } ; { B , B , A } J = r ' ,  e q [  ( -  ( A )  )  ;  ( . { A } ) ] = O .

LEMI4A 4. ?he tjme complexitg of "eq" is O(7).

Note that for the equality checking of Lisp data
<CONS>, the time consr:ming function "equal" has to
be used[3] .  <gua1e>'s essent ia l ly  d i f fer  f rom
<Llry>'s in th is regard.

(2.5', Outl-ine of an Implernentation ca11ed HLISP
(Hashed LISP).

Each <HLISP CELL> in the ISd (Free Storage Area)
consists of  three f ie lds:  <gE!L> ; ;= { (TAG>,(CAR
fie ld>,<CDR f ie ld>1".  Besides for  GBC (GarBage

Collection) marking, the <TAG> is used to specify
the data type of  the cel l .  SJ-mi lar ly  to L isp 1.5,
a <goNt_gEry> : := [CONS.x*ry*Jo is  created in the
FSA as the resul t  of  consfx;y l .  The FSA i tsel f  is
used as the (on1y one) hash table with the size
being a pr i rne p.  For tuplx;y l ,  a hash search ( in-
sert iff absent) is rnade for a <TUP CELL) ::=

f TUP,x*,y*I o, uslng Knuthrs afgo;Ilffi5Ta , p52ll ,
therebl' ensuring uniqueness of the resultant <TUP>.
For ass [x.J , a hash search is made for an <ASS mL>
: :=  IASS ' " c fon ' t  ca re " r x * ] o ,  us i ng  Knu th r s  a fg " r i t ] ^
U2[4,  p539].  The value of  the <Agq> is p laced in
the <CAR field>, which is not used as the key of the
hash search. I <ShortlNTcger> is represented as a
pointer (placed in <CAR> or <CDR> field) to a non
existing memory addrElE. Rn ffirecision <INT> is
uniguely represented like a <TUP> of <shorfTnr>'s
( iy  i r  ,  . . . ,  in)  wi th the heaE--cel f  bEing cfrangea
to  an  < IN f  CELL>  ; ; =  [ INT , i l , t l o ,  whe re  t  i s  a
<3911e>, ( iz ,  . . . ,  in) .  A <uU_SEn>, corresponding
to an atom header ce1l of Lisp 1.5, is the sane as
an <INI CELL>, except the head cell <SYM CEIL> ::=
[ S Y M r i r , t ]  n i t h  < S h o r t  I N T > ' s  i " ,  . . . ,  i n  b e i n g  a n
unique encoding of the character string shich iden-
t i f i e s  t he  <SY IP .  Fo r  se t t up { t l ,  g= (e r * ,  . . . ,  em* ) ,
a  <SYSI  CELL>  ! : =  ISYS I ,  

" don ' t  ca re ' r ,  " don ' t

care"l o is made first, where SYSI is a system data
t a g .  S e c o n d l y ,  a  < T U P >  t ' = ( e r ' * ,  . . . ,  e r r ' * ) ,  f r e e
of duplicating elements is made from t by using hash
searches for  <SYS2 CELLg> ; ;= [SYS2, 

"pointer  to the
SYSI ce1l" ,  " i " tJor  . "moving dupl icat ions $r i th
time complexiLy O(7) per element of t. Thirdly,
using a symmetric (in respect to permutation of
a r g u m e n t s )  h a s h  s e q u e n c e  h i ( e r ' * ,  . . - ,  € n ' * )  i = L ,  2 ,
3 ,  . - -  ( e . g . ,  h r = m o d ( e r r * +  - . -  *  e n ' * , p - 1 ) + f ,  h i =
mod( j*hr ,p)  wi th t ime complexiXy O(n+i) , '  Algor i thm
U2 [ i b j d ] ,  t 51 ) ,  hash  sea rch  i s  made  f o r  a  ce l 1
s= [SET ,h r ,  " don ' t  ca re "  ] -  I f  unsuccess fu l ,  a  new

< tET  € !&> ,  <EET__cELL>  : : =  { sET ,h1 ,  [Sys I ,  | s  1 , t , 1  1 " . ,
is  created.  I f  successful ,  s  = set tup{t l  ( redef i iea
<tEg>) or  r  (hash conf l ic t ing <!E!>.s)  is  checked by
ut i l iz ing the <SYS?_C_E!!>,s of- I l  (T i rne conplexi ty
O( l t ' l )  a t  t he . ! nos t . )  The  hash  sea rch  i s  r esumeC i l
the lat ter .case.  The load factor  c of  the FSA is
limit to o<crllt<l {e.g., olq=8Ot). When s>cLf,t the cBC
is  ca lLe i l .  A  t r i occupancy  ( . , occup ied , .  ( i - e . ,  a  ce l l
i n  use ) ,  " de le ted "  ( no t  i n  use  bu t  i n  hash  con f l i c t )
and "empty" (nei ther in use nor in conf l ic t )  )  scheme
is used to recla im the garbage <9E!!>.s wi thout  ceI I
re l -ocat ions and wi thout  using secondary storage.  (a
de ta i l ed  ana l ys i s  i s  g i ven  i n  [ 6 ] ;  McCar thy  [ ? ] ,
proposed a scheme essent ia l ly  the same as the _: :es-
ent  uniquely represented n-<TUPles>. l {ov,rever,  he
stated a di f f icul ty  in GBC: the neccesi ty of  the use
of secondary storage.)  I f  the resul t  of  cBC does
not sat is fy q<orn (e.9. ,  o 'nF6OC),  ccBC (Grand GBC;
more details are given in IV) is called. If cr<r:m is
still not satisfied the job is termi.nated because of
insufficient storage. Note that the condition om<oL'.t<
I ensures the time complexities as claimed in LEI.L{As
L-4. If oflFqtFl were used, the FSA trould be usable
up to the very last one cell, but the LEMMAs would
not be valid.

III. Application to Formula Manipulation.

tet IP be the set of polynomial-s with integer
coefficients and positive integex exponents.

(3.1) The <Sum of Product) Norma1 Form.
Polynomials of IP can be expressed as sum of

p roduc t s  ( t enns ) ,  e . 9 . .
p l  = 2t Iv2 + 3x3Yf,  p2 = 3YqX3 + vuv + uvz.

These expressions represent the same polynornial, and
they can be faithfully represented in terms of
<TUP) 's as fo l lows:--?se*fora>::=( 

(a!ry_rp:>.<coEFficient)) , oo o) o and
<TEI[-IP1> t := ( (<vARiab]e rD), (EXPonent>), 

o o o ) o,
where <9OEF> € INTO, glg> € SYM and <EIg> €
I N f + .  E . g - ,

s p *  ( p 1 ) = (  (  ( ( v , 2 ) ,  ( U , 1 )  )  , ? l  ,  (  ( ( x , 3 ) ,  ( Y , 4 )  ) , 3 )  )
s p * ( p 2 ) = ( ( ( ( Y , 4 ) '  ( x , 3 ) ) ' 3 ) ,  ( - ( ( v , 1 ) ,  ( U , 1 ) ,  ( v , L )  ) , 1 ) ,

( ( ( u , 1 )  , { - Y , 2 )  ) , 1 ) ) .
lfhese SP* forms can be transformed into a unique SP
normal form in the following hray (a program is givEn
later) :  (1)  Conbine dupl icat ing {4LlP's in a
<IERM_:P.> as i.n VIIV=V'U- (2, Absorb the comnutatj.ve
nature of multiptrications into a SET: <TERIrt fD) ::=

{  ( .<vaR lo>,gxp>},  ooo }o.  E.9. ,  vz-u=uv2- is-E;orbed
as  {  ( v , z )  ,  ( u , t )  } = {  ( u , r )  ,  ( v , 21 } .  ( 3 )  co rnb ine  dup l j . -
cat ing <rERMlq>'s as in v2rJ+v2t)=2vzu.  - (4)  Absorb
the conunutative nature of additions into a SET: <SP>

r r =  { 1 < r E R M  r o > , < g g g l > ) ,  o o o } o .  E . g .  ,  
-

s p t p r j = E ! 1 p l 1 E 1  t { t v ; z l ,  ( u , i }  l l z l ,  t { ( x , 3 ) ,  ( y , 4 )  } ,  3 )  } .
We now define trdo data structures, in order to

formali-ze the definition of the (SP> form:
A <CLUB> is a <SET> of  2-<TUPIe>'E-of  <ID>'s ( in ior-

rnar l [ -<g1gg>'F{ . . . ,  (n f le i } ,  . . . }o f -such that
aI1 of  the f i rs t .  e lement,  to be cal led the (c lub-)
"member",  of  the 2-(TUPle)rs are dist inct  (n i :emj for

i* j ) .  The second elenents (g i 's)  of  the 2-<TUPle>s .
are called "grade"s. A <l4uI'TIgm> is a special
<g!qq> of which the grades are restricted to posi-

tive integers. (This agrees \dith the 'rnultiset" of
Knuthl4l by regarding the "multiplicity" as the
grade.)  Thus,  r . te can now state:  "An <SP> is a
<CLLB> of <fEBg_p>'s with non-zero integer grades,

called <!9s!>; a <xE3gls> is a <Itl&$rx!> of <!Y{>'

s,  cal led <yl3 lg>'s;  specia l ly ,  for  the nul l  and

constant po1ynomials,

s p ( o ) = { } ,  s p ( n ) = { ( { } , n )  } ,  w h e r e  n  e  I N T o . "

:br.---
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^Sirrce the SP form obviously represcnts IP polynomi-
a1s uniquelyr  i .e.  '  for .  P.  g € IP'

sp(p) = sp(q) (set  equal i ty)  i f f  P-9 I  O,
b? LEMtlA 4 we obtain:

1ROPOSTTfON f- Given two IP poTynonia-ls jn the ,Sp
fotm, the time complexitg for jdentitg checking 6f
t he  two  i s  O (7 ) .

{3.2)  Polynomial  Manipulat ion in The Sp Form:
A Property Adding Auxiliary Fr.rnctionl-

addp rop {g ; x ; v ; r i  =  p rog [  [ y ] ; y :=ge t [ g ; x ]  ;
{ nu l l IVJ  +  p rog2 lpu t [ g ; x ; v ]  ; r : = t cons l x ; r l  J  ;
1 '  + put  [g;x;  v+y]  I  ;  returnl r l  I  .

G i ven  g ,  x  e  ID ,  v  e  INT  and  r  e  TUP ,  i f  t he
p r o p e r t y  ( i . e . ,  t h e  v a l u e  o f  g e t [ g ; x ] )  i s  O ,
"addprop" puts v on the property and appends
in the resul t ,  otherwise,  v is  added into the
erty- By LEMMAS I and 3, the time complexity
O( f ) .  S im i l a r l y ,  we  de f i ne :

subprop [g; x; v; r] =addprop{g; x; -v; rl .

A Property into Club-Grade Function:

clubpropO [9; r]  =prog [ [c;y;w] iw:=r;
A  Inu l l lw ]  +  re tu rn lse t tup{c l3 I  ; y :=get fg ;car {wJ l  ;

l y *0  +  c := tcons I tcons Icar Iw]  ; t cons ly ;  O l l  ; c l l  ;
remproptgrcarlwl l ;sy:=cdr{wJ rSoIAl I  .

Given g e ID and r, a <?UPIe> of distinct (IDs),
"clubprop0-yields a clG-of the <IDs> with-iakinq
the respective G-properties into gildes and exclui-
ing O-grade members. By LEMMAs.1, 2 and 3 and since
loop A is executed lrl times, the time complexity is
o(lr l  + 7). - l  is added to account the t ime Of-l , ,
n e e d e d  i n  c a s e  l r l  =  O ,  i . e . ,  r  =  1 ; .

A Club Union and Grade-Add.ing Function:.

acldclub [p ; q1 :pro9 [ [g; r; w] r g : =gens]rm [] ;w : =tupset {pl ;
A [nul l [w] + prog2{w:=tupsetlqJ ;golBj l  I  ;

r : =addprop [9r caar [wJ r cadar [w] ; rl ;w: =cdr [vrJ ; go [A] ;
B [nu1l[w] + returnlclubprop0lg;rJl I  ;

r :=addprop[9;caarlw] ;cadar[w] ;r l  ;w:=cdr[w] ;  goIBl I  .

Given clubs p, g with numerical grades, ,,addc1ub"
yields a club of the union of members of p and q
with the grades of cotunon members being added in
O-grade members being excluded from the result.
"gensym" ( i .e. ,  a unique <! I I> generated by the
system) is used to avoid possible confusions of
properties in uhe auxiliar;" Iunct-ions. Similarly,
subclub[p;q]  is  def ined by replacing the , ,addprop"

in the last line onJ-y by "subprop". Since loop A is
repeated lp l  t imes and loop B,  lg l  t imes ancl  by
LEI{ i \As 1,  2 and 3,  the t ime complexi ty is  O( lp l+ lq l
+.1). In case pr g € SP "addclub" adds the tqro and
gives the resul t  in chG Sp normal  form. Hence,

is o(lpi. lql) at the nrost) in t-he t in"llt:i i.'""'iry seen to ae ottq1:pt:tii?;i;: "t
which arises from repeating the'iaddcfuU., ongrglers for lpl.lgl times in the nes.red toops Aand B- Hence, we obtain:

PROPOSITI2N 3- ,1"_.ri*". compJexitg of nuTtiplgiwpt  8  e  sp  is  o ( lq l r (p )+ lp l r (d ) ;  spec ia rJ .g  ; ; - ; ; ; :each term js K-ruariate at tlte rnost; jt ;;-r?';il;;(K+l)) and in the univariate case jt
(Factors such as jos. lpl  or los2fnf " i l  ?; : :" : ! r-rr  

-
S^sparseness of the resu-Zt has no effect..)

An Sp* into Sp Transformation Function:
i n t o s p l p l = m u 1 s p { p ;  I t i ] , r l  ] l  o .  , h . r "  { t { } , r l  } = s p ( t )  -
I'his works correctly because of the ,,coercion 

rure.,in (2.2) .  Let T* (p) = lp l+ (totat nuiber of elements
itt .gEXfilg.as of p e Sp*) . We obtain:
PROPOSITION 4- rhe.tine compTexitg of transforming
an IP poLgnoniaT p jn an Sp* form into the sI> ""AZlform is oe*(p)); speciallj-in case tfr" :.ngA oieach term of p is K at the most, i . t  is of lpi . fx+i j l  -(If <yy_lp2 and Sp* wete sorted into a sorted' normaL form, the tine complexitg wouLd be
o ( | p l.(Los z I pl ).(K+t ) Jos2 ( K+J. ) ) - )
(3.3) The <Signed Absolute Sp> form.

r,et s=sp(p) be the sp, form-6f a polynomial p efP. As a <!!!>,. s can be partitioned uniquely ass : s+ u s-, wherein all grades of s+ are posi.tive
and those of s-, negative. Let _s_ be the <Sp>
obtained by reversing a1l signs of grades "e-rl.

" :*::':$i",il.jt:;1":;.=:,i;T.;iS;:l,ar p is
PROPOSfTION 5. For p, q € fp,

asp(P) = asp(q) itt (p-7 9t v p = -9r).

Definition. The <qA.Sp> normal form sasp(p) of p
i :  a 

_2-<TI8.1e>: saspl lp(asp1p1 ,  s ign(p) ) ,  where
sign(p)=11 ih case the canonical order of the SET
, asp(p) is  rupset [asp(p) ]=(s+,_s_) ,  otherwi ;" -=
s i gn  (p )  = -1  l c . f .  ,  (Z .2 r  l  ;  spec ia l l y ,  sasp  (o )  =  O  .
PROPOSIIION 6. For p, q € Ip,

sasp(p) = sasp(q) i f t ; -= q.

(3.4) Unique Normal Forms for Rationals:
Let  Q be the set  of  {a11) rat ionaL nuhbers.

Hereinafter, for q e e, we use the following cbvi_
ously unique representation; if q . INT c g use the
integer q itself; otherwise use t1e F.rUeI"r,
(a*,b*)  such that  a,  b e INT.,  b>2,  q=a/L-End a,  b
are re lat ive pr imes.

. 
sP,-Asp and sASp forms can be easily ge-neralized

to <ep, polynomials with rational coefficients and
positive integer exponents> by changing the condi_
tion <CoEF> € fNTO for <Ip>rs into lcoef> € (A _ {O}) . . :

":a Q" be the set of rational functions with
rat ional  coef f ic ients and integer exponents,  i .e. ,

*: t"4j , l :  q,  y € (ep - tot i ] .  a i1,  runct ion r  e
\Vr - tuJ, rs Known to be uniquely factorizalrle,
except the arbitrariness of sigms on the factors, as
fo1lons:

- _ _ - " r -  
" i  " k

t = Q P t  " ' p i  . . . p k ^ ,

wherein q € (e - {o}t,  €. € rNTo and pi € (rp _ f l t)
such that p, is not factoriza_ble into elements of
( r e  -  1 - t , t t r .

Def in i t ion.  The <Factor ized SASp> form isasp(r)  of
r  e  ( pF  -  {O } l  i s  a -Z -< rUp le r r -

G-

x t o r

Prop-
i s

ard
A

PROPOSITION 2. The tine compTexitg
poTgnomiaTs p and q in the Sp form
(IiuLtivariateness has no efEct. ).

A Polynomial Multiplier Fr:nction:

nulstr Ip, ql =prog [ [ g ; r; u; v] ; g : =gensyrn [] ; u : =tupset [p] ;
A Inul l Iu]  - r  return{c lubpropQ{r l  I  J  ;v :=tupset [q]  ;
B Inul l -  [v ]  + prog2 [u:  =cdr{u]  ;  go{AJ I  I  ;

r :  =addprop[g;  addclubIcaar[u]  ;  caar lv l  J  ;
cada r [ u ]  * cada r [ v ] ;  r l  ; v :=cd r { v l ; go IB l  I  .

Given p,  q € SP, "mu1sp" y ie lds the product  in the
SY fo:n. Note that .,ad<Iclub,, is used to multi.ply
lwc  <TeR l ' r  rD> .s  as  i n  addc lub {  [  (A ,1 )  ,  ( a ,Z ) ] ;
{ t e , : t l c , a } } J = { ( a , 1 1 ,  ( e , s )  , r c : 4 , , } .  r o .  s  €  s p ,
l e t  T ( s )  =  l s l +  ( t o t a l  number  o f . e l emen ts  i n
<TER1l ID>,s of  s) .  The dominat ing term (ctubpropolr l

of adding two
i s  o ( l p l+ lq l+ t1

ls6



f s a s p ( r )  =  ( { . . . r  ( a s p ( p . 1 , € . ) ,  . . . } '  ! e ) ,  w h e r e
€ ,  € ;  e -

+q = (s isn (nr)  )  
r .  .  (s ign (er)  )  

r ' . .  
ls isn (pk)  )  

K '9;

spec ia l l y ,  f sasP (O)=  O  .

PROPOSTTTON 7. For x, 9 < QF'
fsasp(x)  = fsasP(g) i f f  x  = 9.

?R7POSITI)N 8- For x' g € QL 
- {O})'

car [ fsasp(x) ]  :  car [ fsasp(g). ]  i f f  x /g e Q.

Proofs of PROPoSITIONS 5 to 8 have been omitted but

they would be easY.

A  Mu l t i pL i e r  f o r  x ,  y  e  (FSASP -  {O } ) t

n ru l f sasp [ x ; y ]  =  t cons  I addc ] -ub l ca r [ x ]  ; ca r [ y ] J  ;
t cons  Imu lq l cad r l x ]  ;  cad r  [ y ] . 1  ;  O  I  I �

where "mu1q" is a multiplication function of ration-

aI  numbers-  For a d iv ider "d ivfsasp",  replac 'e
"addclub" by "subclub" and "mulq" by a rational

nunber d iv ider "d ivq".

(3.5)  Poisson ser ies is  a funct ion as:

p  =  f  a .  c o s ( u . )  +  F  b .  s i n ( v . ) ,' ? r l i l l
_ 1 ,

w h e r e  a . , - u i ,  b j ,  t j . 9 r :

A unique normal form POIS for this series can be

obtainecl by absorbing the arbitrariness caused by

cos(u) = cos(-u)  and s in(v)  = -s in(-v)  into ASP

fo rms :  <POIS>  : : =  (<POIS  COS> '<POIS  S IN> )o ,  whe re in

<POIS COS> and <39I9_9IN> are clubs:

.fqIE-_qggr : := { (asp (u) , sp (a) ) , oo o }o and. -
<POIS  S fN>  :  : =  {  ( asp (v )  , sp ( s i gn (v )b )  )  , ooo }o

w:.tn u-?@llia a. b, v e (Qr - {o}). rt etould be

a matter of exercise to define Lisp.functions to

perform addition, subtraction and multiPlication on

PoIS normal forms.

(3.6)  fhe (Associator  L ist  SP> Form:

So far stress has been laid on unique normal forms

and on time complexities. However, for improvements
j.n actual speed of computabion, constant factors

neglected in time complexities must be taken into

account.  Al though t ime complexi t ies of  cons[x;y]

and tconslx;y l  are both o( l ) ,  "cons'"  would actual ly

work faster than "tcons" because of extria hashing

overhead time needed in "tcons" to ensure unique-

ness.  Simi lar ly ,  "value",  "key" and "assigm" would

be  {as te r  t han  "ass "  ( c . f . ,  ( 2 . 3 ) ) .  The  same  wou ld

ho ld  f o r i  L t l e  o (n )  comp lex i t y  f o r  l i s t l x . i  , - . . ; r : n l

and set tup[ t ]  wi th l t l=n.  r t  r ' rould be a reasonable

st.rategy to use r:nique normal forms only where they

are essentially needed. For example, in the manipu-

lat ion (add,  sub and rnul t ip ly)  of  <rP>rs in the SP

form, use of the unique normal forms for <TEIy-IDl's

is essential but use of a <SET> for sr:m of terms is

not. Use of the fsllor,'ting ALSP form would be better

f o r  t he  sake  o f  speed :  <ALSP>  : : =  (F ( - ( g * ,< IB39 l9 t

) ) , o o o  F ) o .  F o r  P  €  r P ,  a l s p ( P )  i s  a  < L r s T >  o f

<Associator> 's of  2-<TUPle>is of  a "gensym",  
9* and

" .*ulg_:gr. .grEl.t'6-6f the sP(P) are given as G-

p rope r t i es  ( i . e . ,  ge t [ g * ;< i - t h  TERM ID> ]  =  < i - t h

COEF>).  Retr i t ing f rxrct ions for  SP forms in (3.2)

inlo those for ALSP forms would be a matter of exer-

c ise.  The s imi lar  appl ies to Poisson ser ies:  Use AsP

forms for  u 's and v 's and ALSP forms for  a 's and b 's.

IV. Computing Schemes with Reclaimable Hash Tables

The choice between tabulation and recomputation

is a basic problem in programming'- While (hashed)

tabulation provides the best time complexiLy of O(7)

in many cases,  extra storage space is  needed to keep

the tables.

In HLISP ttro features called tabuLative and
associative cornputing are provideEl-whi.ch enabLe
users to utilize the full advantages of cornputilg
with hash tables. Moreover, in order to nake a
compromise between the space and time requirements
automatically, a trro staged garbage coLlection
scheme, cBC and GGBC of  (2.5) ,  is  employed. The
.g!!t's used for hash table entries in ..tab-.' and
"assoc-comp" schemes are reclaimed by GGBC but nct
by GBC- Hence, these entr ies are termed "rectaim-

able".  Af ter  having.  been recla imed, the table
entr ies are reconstructed on demand.

(4 -1 )  "Tabco rnp "  i s  app l i ed  t o  member [ x ; s ]= (1  .  51
for x e ID, s e SET and to n-!.ray switching and se-
l ec t i ng  f unc t i ons :  t abo ,B [ x ;a ;e * ]  w i t h  o  <  { a ,d ,q ,g }
and $ e {g,S} . The walue of a must be an n-<TuPle>
o f  t he  f o rm  a= ( . . . ,  (m i * ,  g i * )  ,  . . .  )  and  " *  r i lG f  be

a constant  <ID> datum. I f  x  matches wi th rn i  (e

ID),  the resul tant  value is  respect ively cadr[{mi* ,
g i * ) J = g i * ,  c d r [ ( n j * '  9 i * ) ] = ( 9 j * )  o r  ( m i * ,  9 j * )  f o r

cr=a,  d or  q;  for  0=g the resul t  is  "GO T0 gir" .  I f

no match, for 8=q the resultant value is e* and for

B=g the resul t  is  "Go TO e*" .

(4.2\ "Assoccomp" effectively avoids the recomputa-

tion of the same function for the sane argrment(s)

h[/ inserting the results of the previous computation

in the reclaimable hash table entries. Evaluation

of a function is macle in the "assoccomp" mocle by so

specifying to the compiler or interPreter. By
"assoccomp", the time complexity of recursive algo-

rithrns such as follows can be irnproved autonatically

without rewriting.
f ac to r i a l l n l = f c I n l= [n=O +  1 ;T  +  n * f c [ n - l ] 1 ,

f i bonacc i  t n l = fb tn l= tn< I ' +  n ;T  +  f b l n - l J+ fb [n -211 ,

C  =c [n ; r n ]= [m- -O  v  m=n  -+  1 ;T  +  c [n -1  ;m ]+c {n - l ;m - l l l .
n m

(4.3) LEMMA 5. Time CompTexitieb of Tab- and

Assoc-comp features ate as in xhe foTTowing table:

WITHOUT Tab-
and Assoc-comP
features.

Function TIME
member fx ,s l  O( ls l )
tabcrB{x ,a ,e* l  o ( la l )
factorial lnl  o(n)
f ibonacci [n] o (1 .6rcn )

, .rC 
=c[n,mJ Oi Cm)

WITH Tab- or Assoc-comp

INITIAL REPEATED EXTPA
TIME TII.4E CELLS

o ( l s l )  o ( f )  l s l
o ( l a l )  o (7 )  l a  l + l
o(n) o(7) 2n+3
o (n) o(1) 2n+3
o(;2,  o(1)  3n2/Z

The initial tine means the time complexity inunedi-

ately after a GGBC ca11.. Extra ce1ls are ttle

nurnler of (cELL)ts needed for reclaimable F�sh

entr ies.  E.9. '  rePeated evaLuat ion of  fb l2f l=169na

n:ns 3Or0OO times faster in HLISP by merely feeding

a card "AssoccoMP ((FB))"-  c lubneurber[xtc]= tabqq

lx; tupset fc l ;  Ol  checks whether x is  a member of  the

<ctuB>, c.  The t ime conrplexi ty  of  o( ls l ' l  t l )  in  the

pur" r-i.p algorithmsl3] for s u t and s n t of sets

s, t is greatly improved by applying 
"tabcorp" to

"member" (even immediately after a GGBC call):

LEItu.tA 6. Time compTexitg of s u t and s n t for s'

t  e  s E r  j s  o ( l s l + l t l , l  .

(4.4)  out l ine of  an HLISP InPlementat ion:

For "member" <SYs2 CELL>'s of  (2.5)  are ut i l ized'

When <sys2 CELt>rs are reclaimed by GGBC, the

.svst cEf,ilt-lE-switched to a <SYSI* CEIL> to indi-

"iE-6E-i-ucessity of reconstruction of the <sYS2

CELL>,s-  for  ' , tabCr8",  in i t . ia l lY ( i .e. ,  af . ter-EEd1

" .g :$_SE ! ! t  : : =  [SYS3ra * ' € * ] o  i s  hash  i nse r t ed  (as

r rElult of an unsuccessful search) and then

l5?

l ,
t l

ii
I
I .
l

i .
I

i ,
I
i :
t :
I

I
I
I

i ;
t ;
1



, J
. <SyS4  C f f , f , =>  :  : =  [SYS4 ,  ( n i * r 9 i * )  ,  [ 5YS3 ,a * ' e * l  I  o  a re

h""fr-fttr"rted by using a hash sequences determined

by mi 's  (nots the <TUP> (mj,  g i ) )  and the pointer  to

the <E!91 JE!t>. Hash retrieval is made by utiliz-

ing these <SYS3 CELI> and <SYS4 CELL>'s, which are

all reclaimed by GGBC. fn the assoccomp mode, a

funct ion fb[n] ,  say,  is  evaluated as:  Fi rst ,  make a

hash search for  <9I9!_!E! !> : := ISYS5, 
"don' t  care",

t l o ,  w j . t h  t = t cons [n ;FB ] ,  and  i f  unsuccess fu l  i n se r t

a  <CELL> ,  ISYSS,1 * , t ] ,  whe re  1 r  i s  a  <SYStemJYMbo l ->

,  then compute fb{nl  and replace 1* by fb lnJ for

f u tu re  r e t r i eva l  o f  f b [ n ] .  E l se  i f  success fu l

retr ieve the value f rorn the <CAR f ie ld>.  Special ly ,

i n  case  t he  <CAR f i e l d>  con ta i ns  1 * ,  t he re 'mus t  hd l ' e

been a v ic ious c i rc le in the.  a lgor i thm such as

f b l n l = [ n < l  +  n ;  T  +  f b [ n ] +  f b [ n - 1 ] 1 .  T h u s  a  m e s s a g e
"CIRCULAR DEFINITION ERROR IN FB . . . "  i -s  pr inted.

GGBC reclaims <SYS5 CELL>'s except those containing
1* .  Hence ,

LEI'II,IA 7. "Assoccomp" effectiveTg checks circular

alefinitions at runtime.

( 4 . 5 )  F o r  f c [ n ] ,  f b [ n ] ,  c [ n r m ]  e t c . ,  " a s s o c c o m p "  i s

more convenient than "tabcomp" since the range of

argument(s) j-s generally.not known in advance. Con-
versely,  i f  "assoccomp" were used for  rnember[x;s] ,
say, a great number of wasteful hash entries for x
y' s would be created. Thus, "tab- and assoc-comp"
are eomplementary and each has. i ts  own raison d '6tre-

V. Concluding Remarks

The first version of HLISP without the SET
feature has been in operation for two y..rrffi, b,rt
with the TUP feature alone little advantage in
formula manipulation could be found. The combina-
tion of SETs and TUPs is believed to have provided a
really powerful tool for formula manipulation as
indicated in III. Tab- and assoc-comp features
would also be useful. Since the implementation of
efficient hashing and garbage collection algorithms
is a very specialized art, i.t would be better to

separate them fron the gen€ral users. Therefore,
external specifications of such algorithms.have been
given as LEl4MAs in this paper.

The foLIowing improvements are now in progress
to make the schenes presented in this paper into
truly useful tools for symbolic and algebraic
computations:

t1)  Wri t ing of  an ef f ic ient  HLISP compi ler [9]  -
(2', Implementation of a language system called
"!'LATS" which would enable us to absorb any existing
algori-thm written in Fortran, Lisp or Algol 6O; and
to write new algorithns with Tuples and Sets aclded
to any of  the three languages F,  L or  A,  whichever
the user nay prefer  (HLISP = FLITS) -
(3) Design of hashing, GBC and runtime type check
hardware to improve the ultimate speed of "FLATS,'.

The authors acknowledge Messrs. !1. Terashima[lO]
and F. Motoyoshi[9] for their valuable contributions
in implementing HLISP.
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APPENDIX.
REl4.\Ri(S : ( 1)

( 2 ' )

Actual Tiuring Data for Polynomial anil Poisson Series Manipulations.
The nachine used is HITAC 88OO/B7OO at the Computer Centre of the University of Tokyo-
The same HIJISP interpreter system vras used as the hosts system for REDUCE 2 IlIl . The free
storage area was 75K cells in which 25K cells were reserved for <ID> objects.
Thr: data for pol1'nomial multiplication were obtaine(l to obse::ve the dependence of time on rr
(number of terms in polynomials) and multiplicity, K. Obserwed times were normalized by
n2(x+1) as PRoPoSITIoN 3 pred. icate.  Uni t  of  t ime is in msec.  r* 'means 'not  measured' .
The FORTRAN data of univariate case \rere taken by a program with e4)Iicit code fori hashing.
the program is similar to the algorithm by custavson and Yun to be given at this SYI't3AC 176.

The hash area was selected to 5O11 (a prime) and the hash probe sequence.was given by
Algor i thm U2 of  Knuth[4,  p539]-

(5) The programs in HLISP were written for the ALSP and ASP forms of (3.6).

+ HTISP
+ REDUCE
+ FORTRAN

{. HLISP
+ RIiDUCE
+ FORTRAN

+ HLISP
+ REDUCE
+ FORTRAN

(  t )

t4)

Timing Data for  Poisson Ser ies Manipulat ion:

(Al-aCOs {r . r l )  +A3*COS (3*WT) +81*SIN (WI)  +B3*SIN (3*I f l ! )  )  **3

I ITISP

L587 msec

tsB

REDUCE

8O?7 rnsec

Formulas \ n
t=resul tant  # of  terms.

3216I4 3 2166 32l6I4

n n
( I  a ' )  *  ( I  e l )
r - r  J - L  t = 2 n - 1

L . 7 L  I . 6 9  1 . 6 0  1 . 6 0
4 . 4 2  2 . 9 5  3 . 9 7  5 . 4 5
.o25 .O24 .020 .016

1 . 8 5  1 - 7 3  L . 7 L  L . 6 7
3 . 6 7  3 . 5 0  4 . 4 3  7 . 2 0

L . A 2  L . 7 4  L . 7 4  L . 7 7
4 . 6 5  4 - O 4  5 . 5 4  9 . 1 0

n n
( I  o t )  "  1 f  n l n + r ;
i= I  j=f  

t=n*n

L . 7 6  L . 7 4  L . 7 2  L . 7 3
5 . 5 0  6 . O B  1 5 . 4  5 1 . 3
-o25 .O28 .O20 .Or8

1 . 9 8  J - - 7 4  L . 7 6  1 . 8 0
4 . 3 3  7 . 3 7  2 L . 6  *

I - 8 1  l - 8 0  I . 7 9  1 . 8 4
4 ,40  B -4A  *  *

( l  a -2+3 i r * t l  o - : *a : ,
i=l  j=I 

t=zr,_tz

1 - 9 6  L . 7 I  1 . 6 8  t - 6 3
5 . 3 5  5 . 8 5  A - 2 0  t 4 -  3
.028 .O25 .O20 .Ot6

l - - 8 8  1 - 8 2  I . 7 3  1 . 7 4
5 . 4 2  6 . 5 3  1 0 - 6  *

1 - 8 4  1 - 8 3  L - 7 9  L - 7
5 .  1 6  7  . 6 4  1 2 . 2  *

K-variate l-variate (A=X) 2-var iate (A=XY) 4-variate (A=XYZU)


