Copyright
by
Jun Sawada

1999

Formal Verification of an Advanced Pipelined Machine

by

Jun Sawada, B.S., M.S.

Dissertation
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 1999

Formal Verification of an Advanced Pipelined Machine

Approved by
Dissertation Committee:

To my mother and father,

with gratitude

Acknowledgments

First and foremost, I would like to thank my advisor Warren A. Hunt, Jr. for all
the advice during the course of my research. He sparked my interest in the topic
studied in this dissertation. His enthusiasm and vision for hardware verification are
inspiring.

I am indebted to J Strother Moore and Matt Kaufmann for developing the
ACL2 theorem prover and supporting my work throughout the research. I cannot
imagine that this work would have ever been possible without their powerful theorem
proving system. Bishop Brock’s THS library was invaluable for my research.

I appreciate Bob Boyer for taking time to have numerous discussions on the
subject, especially about the correctness of pipelined machines. Harvey Cragon
should be credited for teaching me the techniques used in the pipelined machine
designs. I also thank Don Fussell for serving as my supervising professor, and Jacob
Abraham and Allen Emerson for giving me expert advise on testing and model
checking.

I was lucky to have a number of fellow graduate students who were very
supportive of my work. Especially, I thank Pete Manolios, Richard Trefler, Rajeev
Joshi and Nina Amla for reading my dissertation and helping me to improve the
material. I had invaluable discussions with Rob Sumner and Keder Namjoshi on
microprocessor designs and verification techniques. Finally, my years in the graduate

school was enjoyable largely due to my other friends who were supportive during

my research.
This research was supported in part by the Semiconductor Research Corpo-

ration under contract 98-DJ-388.

JUN SAWADA

The University of Texas at Austin
December 1999

vi

Formal Verification of an Advanced Pipelined Machine

Publication No.

Jun Sawada, Ph.D.
The University of Texas at Austin, 1999

Supervisor: Warren A. Hunt, Jr. and Donald Fussell

The objective in this dissertation is to demonstrate that we can formally verify the

correctness of a microprocessor with complex control mechanisms. For the purpose
of this research, we designed a new microprocessor model called FM9801, which is
a pipelined microprocessor with a number of performance-oriented features: out-of-
order issue and completion of instructions using Tomasulo’s algorithm, speculative
execution with branch prediction, memory optimizations such as load-bypassing and
load-forwarding, precise exceptions and interrupts, and context switching between
supervisor/user mode. The FM9801 has the capability of executing self-modifying
programs as well.

The verification of a pipelined microprocessor is not as simple as the ver-
ification of a non-pipelined microprocessor, because the pipelined machine starts
the execution of an instruction before completing a previous one. In some cases, a
pipelined implementation may execute instructions out of program order or execute
them speculatively. The difference in the style of execution between the ideal se-
quential model and actual implementations makes it difficult to verify or even state

the correctness of pipelined microprocessor designs. In this dissertation, we address

vil

what we mean by the “correct” pipelined implementations.

Our verification techniques for the FM9801 is the main topic of this dis-
sertation. Ome key idea in our approach is the use of the MAETT intermediate
abstraction, which is a list of instructions executed by our pipelined microproces-
sor implementation. Using this abstraction, we were able to directly reason about
the executed instructions, which in turn permitted the verification of the entire
microprocessor model.

We have verified the FM9801 in two steps. In the first step, we verified an
invariant condition defined on the MAETT abstraction. In the second step, we used
the verified invariant as an assumption and proved our correctness criterion. We
will discuss how this will decompose the verification problem both temporally and
spatially. The FM9801 verification is mechanically checked with the ACL2 theorem

prover.

viii

Contents

Acknowledgments
Abstract

Chapter 1 Introduction
Chapter 2 Related Work

Chapter 3 ACL2 Theorem Prover
3.1 Functions and Theorems in ACL2
3.2 THS Library and other ACL2 macros
3.3 Data Structures in ACL2,
3.4 Imfix Notationo o s

Chapter 4 Verification of a Simple Pipelined Machine
4.1 A Three-Stage Pipelined Machine and Its Correctness
4.2 Intermediate Abstraction and Invariant

4.3 Proving the Commutative Diagram

Chapter 5 Machine Specification of the FM9801
5.1 Basic Components of the FM9801
5.1.1 Address and Data Word

ix

vii

12
15
18

22
22
28
34

5.2

5.3

5.1.2 Program counter
51.3 Register Files L.
514 Memory
5.1.5 Efficient Memory Model

5.2.1 Instruction-Set Architecture State
5.2.2 The Instruction Set of the FM9801
5.2.3 Exceptions and Interrupts in the FM9801
5.2.4 Formal Definition of the ISA
Microarchitectural Design of FM9801
5.3.1 Instruction Fetch Unit and Dispatch Queue.
5.3.2 Tomasulo’s Algorithm
5.3.3 Register Reference Table.
5.3.4 Reservation Station and Common Data Bus
5.3.6 Execution Units,
53.6 Reorder Buffer00
5.3.7 Speculative Execution
5.3.8 Implementation of Exceptions and Interrupts
5.3.9 Memory Access by the FM9801
5.3.10 Formal Specification of the FM9801 Microarchitecture

Chapter 6 Correctness Criteria for Pipelined Machines

6.1
6.2
6.3
6.4
6.5

Commutative Diagram oL
Earlier Approaches for Pipelined Machines
Correctness Criterion for Pipeline Machines
Exceptions and Correctness Criterion.

Self-Modifying Code in Pipelined Machines

Chapter 7 Intermediate Abstraction

7.1 Purpose of an Intermediate Abstraction

7.2 Data-Structure and Functions for MAETT

7.3 Representation of Instructions

7.3.1
7.3.2
7.3.3
7.3.4
7.3.5

Stages of Instructions
ISA States and Interrupt Signals
Speculatively Executed Instructions
Modified Instructions
Other INST Fields

7.4 Instruction Ordero

7.5 Specifying Instructions by Stages L.

7.6 Last Register Modifiers

Chapter 8 Definition and Verification of Invariant Properties

8.1 Definition of the Invariant Condition

8.1.1
8.1.2
8.1.3
8.1.4
8.1.5
8.1.6
8.1.7
8.1.8
8.1.9
8.1.10
8.1.11
8.1.12
8.1.13

Overview
Weak Invariants oL
Order of Instruction Fetch, Dispatch and Commit
Order of Instructions in the Dispatch Queue.
Order of Instructions in the Reorder Buffer
Orders of Load and Store Instructions
Absence of Stage Conflicts
Absence of Conflicts in the Reorder Buffer
Speculatively Executed Instructions
Abandoning Speculatively Executed Instructions
Stage of Interrupted Instructions
Correctness of Intermediate Values

Correct Tags in Reservation Stations

xi

8.1.14 Tags in Register Reference Table
8.1.15 Correct States of Programmer Visible Components
8.1.16 Other Invariant Conditions
8.2 Verification of the Invariant Condition
8.2.1 Overview
8.2.2 Verification of Intermediate Values
8.2.3 Correctness of Forwarded Data Values
8.2.4 Verification of Load-Forwarding and Load-Bypassing
8.2.5 Summary L

Chapter 9 Proof of Correctness Criterion

Chapter 10 Verification Summary
10.1 Cost Analysis e
10.2 Detected Design Faults
10.2.1 Overview Lo
10.2.2 Details of Design Faults

10.3 Summaryo e
Chapter 11 Conclusion

Appendix A
A1 Proofof Theorem 1. o i i i i it it

A.2 Theorem of Burch and Dill’s Diagram Formation

Appendix B FM9801 State Definition
B.1 Definitionof Words oo o
B.2 Definition of Register Files.
B.3 Definition of the ISA state
B.4 Definition of the MA state

xii

157

166
166
168
168
169
178

179

183
183
184

B.5 Definition of the MAETT state

Appendix C List of INST Functions

Appendix D ACL2 Books for the FM9801 Verification

D.1 Basic Books for FM9801 Verification

D12 THSLSp . . - . . o o oo e e e e
D.1.3 trivialisp L Lo
D.1.4 define-u-packagelisp
D15 wtilsdisp o .o Lo
D.1.6 b-opsraux-deflisp.
D.1.7 b-opsrauxisp Lo Lo o
D.2 Machine Definitions Lo L
D.2.1 basicdeflisp L.
D.2.2 ISA-deflisp
D.2.3 MA2-deftex
D.3 Intermediate Abstraction
D.3.1 MAETT-deflisp
D.4 Invariant Definitions,
D.4.1 invariants-deflisp.
D.5 Shared Lemmas L o
D.5.1 MA2-lemmas.tex
D.5.2 MAETT-lemmasl.tex
D.5.3 MAETT-lemmas2.tex
D.5.4 MAETT-lemmaslisp
D.6 Invariant Proofs.

D.6.1 memory-invlisp. L

xiii

D.6.2 modifierdisp. Lo 616
D.6.3 wk-invlisp Lo e 649
D.6.4 in-orderlisp Lo 653
D.6.5 MI-nv.lispo 692
D.6.6 regreflisp. 832
D.6.7 ISA-comp.lisp.o 903
D.6.8 misc-inv.isp. oL 959
D.6.9 wunig-invlisp. Lo oo o 980
D.6.10 invariant-proof.lispo oLl 1082
D.7 Correctness Proofo oo 1085
D.7.1 correctness.lispo 1085
Bibliography 1103
Vita 1113

xiv

Chapter 1

Introduction

The quality of microprocessors is critically important in today’s society, because
computers are used in every aspect of our life. The cost of a single bug in a micro-
processor design can be significant, since millions of microprocessors are manufac-
tured based on the same design. Testing and simulations are widely used techniques
to detect design faults. However, they do not eliminate the possibilities of hidden
design flaws in the hardware. At best, simulations and testing can only reduce the
number of design faults, but they do not guarantee that the hardware is correctly
implemented.

Formal verification is an alternative technique that mathematically proves
that a hardware design has no design faults, or in case the hardware design is
flawed, it reveals where the design faults exist. Given the soundness of the employed
formal verification tools and the accuracy of the verified hardware model, the formal
verification can guarantee that no hidden design flaws exist in the design.

Recently, industrial microprocessors are becoming increasingly complex and
huge, with many performance optimizing features implemented. Pipelining is a key
technique in modern microprocessor designs. It temporally overlaps the execution

of instructions in order to improve the throughput. However, it is a cause of the

complexity of microprocessor designs, making verification tasks more difficult.

There have been a number of studies to apply formal verification techniques
to pipelined microprocessor designs. However, formally verified microprocessor mod-
els are often oversimplified. Today’s pipelined microprocessors are very complex
machines, which may execute instructions out of program order or sometimes spec-
ulatively. None of the research in the past has verified the entire design of a micro-
processor with such features.

Our objective in this dissertation is to demonstrate that we can formally ver-
ify a microprocessor model with complex control mechanisms. For the purpose of
this research, we designed a new microprocessor model called FM9801. The FM9801
is a pipelined microprocessor which implements a number of features: out-of-order
issue and completion of instructions using Tomasulo’s algorithm, speculative exe-
cution with branch prediction, memory optimizations such as load-bypassing and
load-forwarding, precise exceptions and interrupts, and context switching between
supervisor/user mode.

The definition of correct pipelined microprocessors is one major topic of this
dissertation. For microprocessors that execute instructions sequentially, we only
have to verify that individual instructions are executed correctly because sequen-
tial execution processes instructions one-by-one. This is not the case for pipelined
microprocessors, whose implementation may start the execution of an instruction
before completing the previous one. Sometimes they may execute instructions out
of program order, or may execute them speculatively and later undo the results.
The difference in the style of execution between the ideal sequential model and ac-
tual implementations makes it difficult to verify or even state the correctness of
pipelined microprocessor designs. Thus, we need to establish what we mean by
“correct” before proceeding to the verification of the FM9801.

We verify the FM9801 using the ACL2 theorem prover system. ACL2 is both

a programming language and a theorem proving system. Not only we can model
and simulate a microprocessor design using ACL2 as a programming system, but we
can also prove properties about the microprocessor model using its theorem proving
engine. The use of mechanical verification tools such as ACL2 is necessary to avoid
human errors and automate the verification process.

The verification techniques for pipelined microprocessors is the main topic of
this dissertation. One key idea in our approach is the use of the intermediate abstrac-
tion called MAETT. An intermediate abstraction itself is a widely used technique
for formal verification. However, our MAETT abstraction is unique in the sense
that it builds the history of instructions executed by the pipelined microprocessor.
Using this abstraction, we can directly reason about the executed instructions. This
eases the verification of machine properties and eventually the correctness of the
entire microprocessor model.

The organization of the dissertation is as follows. First we discuss the back-
ground of this work in Chapter 2. After discussing the ACL2 logic and notations
used in this dissertation in Chapter 3, we present the verification of a simple 3-stage
pipelined machine to illustrate our verification techniques in Chapter 4. In Chap-
ter 5, we introduce the FM9801 microprocessor design. In Chapter 6, we discuss
the correctness of pipelined machines and introduce our correctness criterion which
we use later in the dissertation. In Chapter 7, we construct the intermediate ab-
straction of the FM9801. This abstraction serves as a foundation for our verification
techniques. In Chapter 8, we use this abstraction to define a number of properties
which must be satisfied by the FM9801. These properties are verified by the theorem
prover one-by-one, assuring that each pipelined machine component is implemented
correctly. The verification results of these properties are combined to form the final
correctness theorem in Chapter 9. In Chapter 10, we present an overview of the

mechanical proof. Finally, we conclude the dissertation in Chapter 11.

Chapter 2

Related Work

Formal verification techniques used in practice can be broadly categorized into al-
gorithmic approaches and theorem proving. The two most commonly used algorith-
mic techniques are equivalence checking and model checking. Equivalence checking
decides whether two combinational circuits implement the same boolean function.
Even though the equivalence checking can verify large combinational circuits, it can-
not be applied to state holding devices. Model checking [CE81, QS82, CES86] is a
procedure to determine whether a state transition system satisfies a property spec-
ified as a temporal logic formula. In particular, symbolic model checking [McM93]
efficiently represents the set of states by BDDs [Bry86], making it possible to verify
systems with large state spaces. However, model checking may suffer an exponential
blowup in the number of state variables.

The second approach uses a theorem prover, which is a computer program
that can mechanically check some mathematical assertions. An approach based
on theorem proving techniques is typically less automated than an algorithmic ap-
proach, but it can be applied to large hardware designs with many state holding
devices. Because of this reason, verification of microprocessor designs were first

attempted using theorem provers [Coh87, Hun94]. We believe theorem provers are

still the only formal verification techniques that can handle sizable microprocessor
designs, even though it is possible to combine algorithmic approaches with theorem
provers.

Of many publicly available theorem proving systems [GMW79, ORSvH95,
GM93, MW97, CAB*86], we use the ACL2 theorem provers [KM96]. What makes
ACL2 distinct from other theorem provers is that it is not only a theorem proving
system but also a programming environment. This allows us to both simulate and
prove properties about microprocessor models defined in ACL2. There have been
a number of hardware verification projects carried out using ACL2[BKM96, BH97,
Rus97, WGH98, MLK98, Rus98].

The verification of microprocessors was pioneered in the FM8501 [Hun94]
and the Viper project [Coh87]. These studies were reproduced and extended in the
following research projects. One mile stone was the FM9001 project [HB92]. This
microprocessor design is specified at 4-levels. The highest level is the instruction-set
specification while its lowest layer is the net-list of the actual hardware implementa-
tion. By proving that each layer is a correct implementation of the layer immediately
above, they verified the actual microprocessor correctly implements the instruction-
set specification. The microprocessor design of the FM9001 is not pipelined.

The verification of pipelined machines has been also studied in a number
of projects. One of the earliest studies was carried out by Srivas and Bickford
who verified the Mini-Cayuga [SB90]. Bronstein and Talcott [BT90] also verified
a pipelined machine using Ngthm theorem prover. In these studies, the mapping
functions, which became known as skewed abstraction function, are used to map
multiple pipelined states at different moments to a single sequential state. The
skewed abstraction function for pipelined machines has been used in a number of
verification studies [Cyr93, TK94, Coe94, WC95, AL95]. The idea has also been

applied to the verification of a commercial microprocessor in the AAMPS5 verification

project [SM95].

The problem of the skewed abstraction function is its complexity. All timing
delays in the pipelined machine should be considered in the definition of skewed
abstraction function. Since the correctness theorem is defined using the skewed
abstraction function, it complicates the correctness statement itself to the point
where it is difficult to assess its validity.

The pipeline flushing diagram introduced by Burch and Dill [BD94| was a
solution to this problem. Unlike manually defined skewed abstraction functions,
they used the pipelined implementation itself as an abstraction function. In their
scheme, they first flush the pipeline by running the microprocessor model without
fetching new instructions, and then compare the resulting flushed state with the
sequential execution model. The pipeline flushing diagram has been applied to the
verification of a Motorola CAP DSP [BH97].

Pipeline flushing diagram can be applied to pipelined microprocessors that
execute instructions out of program order and to some superscalar designs [Bur96,
WBY6]. However, their correctness criterion is not directly applicable to designs with
speculative execution nor to those with external interrupts. Since both features are
implemented in the FM9801, we need a new correctness criterion to handle these
cases. This correctness criterion is discussed in detail in Chapter 6.

Another concept used in Burch and Dill’s verification method is uninterpreted
functions. They syntactically compare the results of pipelined machines represented
as expressions including uninterpreted function symbols. Although this technique
has been used for a while in the community of theorem provers [Sho84], a number of
following studies have applied uninterpreted functions to pipelined machine verifica-
tions. Some attempted to improve its verification efficiency using caching [JDB95],
while others attempted to encode pipeline execution results with binary decision

diagrams [BBCZ98]. Miroslav and Bryant [VB98, VB99] improved the verification

efficiency by dividing terms into P-terms and G-terms, which are encoded using
binary decision diagrams. We consider that these studies focusing on improving
verification engines are orthogonal to our work. They attempt to verify an entire
microprocessor model without decomposing the verification problem. Rather, our
research focus is decomposing the verification problems into a number of subprob-
lems which can be handled by existing verification tools.

The incremental flushing technique introduced by Skakkebak et al. decom-
poses the commutative diagram into small steps that flush one instruction at a time
[SJD98]. Hosabettu et al. [HSG98, HGS99] decomposed microprocessor verification
by using so called “completion functions”, which calculate the effects of completing
partially executed instructions. These approaches break down a commutative dia-
gram involving multiple state transitions into small diagrams involving single state
transitions, thereby temporally reducing the complexity of the verification problem.
However, they do not spatially decompose the problem because they directly analyze
the state transition of the entire microprocessor.

Compositional model checking decomposes the verification problem with re-
spect to components, spatially reducing the size of the verification problem. McMil-
lan [McM98] used compositional model checking to verify out-of-order execution core
with Tomasulo’s algorithm. A model checker is used to independently verify several
conditions about inter-component signals. This effectively breaks down the verifica-
tion of the entire machine design into the verification of components. The verified
machine model is an execution core of a microprocessor and it does not implement
speculative executions nor exceptions. Similar work is reported by Henzinger et al.
using the assume-guarantee method. [HQR98]

Tomasulo’s algorithm verification by Damm and Pnueli [DP97] uses a gen-
eralized machine that executes instructions nondeterministically an an intermediate

abstraction model. Their technique is similar to the intermediate abstraction dis-

cussed in this dissertation, because they use a list of instructions in the program to
define the semantics of the generalized machine. However, it is unknown whether a
similar generalization can be defined for a more complex pipelined machine which

implements branching and speculative executions.

Chapter 3

ACL2 Theorem Prover

3.1 Functions and Theorems in ACL2

ACL2 is a theorem prover system as well as a programming environment. Users
can define and execute functions, using the ACL2 logic as a programming language.
Users can also prove theorems using the ACL2 theorem prover. In this section, we
summarize how to define functions and prove theorems in the ACL2 system.

The ACL2 logic implements a subset of Common Lisp[GLS90]. The ACL2
logic expresses function applications with a prefix notation, just like Common Lisp.
For instance, multiplication of x and y is represented as (* x y) instead of x * y.

Functions are defined with defun expressions in the same way as in Common
Lisp. The ACL2 function is a logical object which we can reason about, at the same
time it can be evaluated with concrete arguments. Here is an example ACL2 function

definition.

(defun factorial (x)

(if (zp x) 1 (*x x (factorial (- x 1)))))

This defun expression defines factorial as a function that takes one argument

and returns its factorial number. For example, evaluating (fact 3) returns 6. In

this definition, factorial returns 1 if (zp x) is true, i.e., argument x is not a
positive integer. Otherwise, the function first calculates the factorial of x minus 1
by calling itself recursively, and then multiplies its result with x. Function (zp x)

is a pre-defined function in the ACL2 logic which is equivalent to
(if (integerp x) (<= x 0) T)).

Table 3.1 shows some of the basic functions pre-defined in the ACL2 logic.
Some definitions of ACL2 functions use guards. A guard restricts the type
of legitimate arguments for execution. For instance, the factorial function can be

defined as:

(defun g-factorial (x)
(declare (xargs :guards (and (integerp x) (>= x 0))))
(if (zp x)
1

(* x (g-factorial (- x 1)))))

The newly defined function g-factorial only accepts non-negative integers as ar-
guments for execution. The compiler attached to ACL2 may take advantage of the
fact to improve the execution speed of the function. The machine designs described
in this dissertation are defined using guards, so that the simulation of the machines
runs fast.

Lemmas and theorems in the ACL2 logic are defined with defthm. For

instance, the following theorem states the associativity of addition.
(defthm assoc-+ (equal (+ (+ x y) z) (+ x (+ y 2))))

When a defthm expression is submitted, the ACL2 theorem prover attempts to
prove the theorem. When it successfully proves the theorem, ACL2 stores it in the
database for the proven theorems. In the ACL2 logic, there is no distinction between

lemmas and theorems.

10

ACL2 Function | Informal Description

and Constants

T True value. *
nil False value as well as the empty list. *
+ xy) r+y *
(- xy) r—y *
(* x y) T Xy *
(/ xy z/y *
(mod x y) z mod y *
(expt x y) x¥ *
(1+ x) z+1 *
(1- x) z—1 *
< xy <y *
(<= xy) <y *
(equal x y) x equals y. *
(if x y 2) If x is true, returns y. Otherwise z. *
(not x) -z *
(and x y) Ay *
(or x y) zVy *
(implies x y) Ty *
(iff x y) Ty *
(car x) First element of cons pair z. *
(cdr x) Second element of cons pair . *
(cadr x) (car (cdr x)) *
(cddr x) (cdr (cdr x)) *
(cons x y) Cons pair of z and y. *
(null x) x is nil, i.e., the empty list. *
(consp x) x is a cons. Note (consp nil) is false. *
(endp x) x is nil or an atomic object *
(len x) Length of list x.

(append x y) Concatenation of list and y. *
(nth n x) The n’th element of list . *
(nthedr n x) Removes the first n elements from list z. *
(list x y ...) | List whose elements are z, y, ... *
(integerp x) True if 2 is an integer. *
(true-listp x) | True if z is a list terminating with nil.

(zp x) x is not a positive integer.

Table 3.1: Description of Basic ACL2 functions and constants. Those with asterisk
marks have corresponding definitions in Common Lisp.

11

The ACL2 prover exploits mathematical induction and term rewriting with
heuristics to prove many theorems automatically. However, it is almost always
the case that complex theorems cannot be verified automatically. The user has to
describe an outline of the proof, by providing intermediate theorems that fill the gap
between the axioms and the final theorems. A file containing these intermediate and

the final theorems is called a book.

3.2 1IHS Library and other ACL2 macros

The Integer Hardware Specification (IHS) library was written by Bishop Brock orig-
inally for Motorola CAP DSP verification project{BH97]. In the IHS library, bit
vectors are represented with integers instead of conventional lists of boolean values.
As a result, the executions of hardware specifications written in the IHS library
are faster than those using list representations of bit vectors. The IHS library also
defines numerous theorems about basic bit vector operations, which help the mech-
anized proofs of theorems about hardware specifications.

In the THS library, integers represent bits and bit vectors. Integer 1 and
0 represent a bit. A n-bit bit vector is represented by an integer whose binary
representation has the same least significant n bits. For instance, a four-bit bit
vector 1101 can be represented by integer 13. The IHS library does not provide a
method to specify the length of the bit vector represented by an integer. Thus 13 can
represent the four-bit bit vector 1101 as well as the 16-bit vector 0000000000001101.

The IHS library defines functions to manipulate bit vectors. Table 3.2 lists
the THS functions which are used in this dissertation. In this table, bit arguments
are represented with a and b, while bit vectors are represented with u and v.

Simple logical bit operations are defined with b-not, b-and, b-ior, and so

12

on. For example,

(b-not 0)

I
e

(b-not 1)

I
o

(b-and 1 0) =0
(b-and 1 1) = 1.

Bit-wise logical operators are defined separately. For example, lognot takes
an integer representing a bit vector and returns the integer representing its 1’s
complement. Function logand returns the bit-wise logical AND of two arguments.

For instance,

(lognot 0) = -1
(lognot 1) = -2
(logand 3 5) =1
(logand 3 -1) = 3.

The THS library also defines functions to decompose and combine bit vectors.
The most basic functions are logcar, logcdr, and logcons, which are analogous
to the Lisp functions car, cdr, and cons, respectively. In the IHS library, a bit
vector is viewed as a list of bits, whose first element is the least significant bit. Just
like (car 1st) returns the first element of list 1st and (cdr 1st) returns the rest
in Lisp, (logcar v) returns the least significant bit of v and (logcdr v) returns
the bit-vector without the least significant bit. Function (logcons b v) adjoins b
to v, with b as the least significant bit of the resulting vector. We show example
evaluations of these functions, with Common Lisp representing of binary numbers

with the prefix #b.

(logcar #b1101) = 1

(logcdr #b1101)

#b110

(logcons 1 #b110) = #b1101

13

IHS Functions

Informal Description using the C language

(bitp b)

(bfix x)

(zbp b)

(bip b)

(b-if b x y)
(b-not a)
(b-and a b)
(b-ior a b)
(b-xor a b)
(b-eqv a b)
(b-nand a b)
(b-nor a b)
(b-andcl a b)
(b-andc2 a b)
(b-orcl a b)
(b-orc2 a b)
(unsigned-byte-p n v)
(logbit n v)
(logand u v)
(logcar v)
(logcdr v)
(logcons b v)
(logior u v)
(lognot v)
(logxor u v)
(loghead n v)
(logtail n v)
(logextu n m v)
(logapp n u v)
(rdb (cons n i) wv)

T if b is a bit.

Coerce x to a bit.

Bit-boolean converter. Nil if b is 1. Otherwise, T.
Bit-boolean converter. T if b is 1. Otherwise, nil.

If b is 1, return x. Otherwise, y.

Bit negation.

Bit AND.

Bit inclusive OR.

Bit exclusive OR.

Bit equivalence.

Bit NAND. (b-not (b-and a b))

Bit NOR. (b-not (b-ior a b))

(b-and (b-not a) b)

(b-and a (b-not b))

(b-ior (b-not a) b)

(b-ior a (b-not b))

0<v<2t

The n’th bit of bit-vector v. (v >> n) & 0x1

Bitwise AND. (u & v)

The least significant bit of v. (v & 0x1)

Bit vector v without the least significant bit. (v >> 1)
Concatenation of bit b to vector v. (v << 1) | b
Bitwise inclusive OR. (u | v)

1’s complement. (“v)

Bitwise exclusive OR. (u = v).

The least significant n bits in bit vector v. (v & 2% —1)
Bit vector v without the least significant n bits. (v >> n)
Sign-extend m-bit vector v to n bits.

Concatenation of bit vectors. u | (v << n)

n bits of v from the i’th bit. (v >> i) & 2% -1

Table 3.2: List of Basic IHS functions.

descriptions of functions.

We use C expressions to give informal

14

The THS library proves various theorems about the bit and bit-vector func-

tions. For example, the IHS library provides the following theorem.

(defthm logcar-logcdr-elim
(implies (integerp i)
(equal (logcons (logcar i) (logcdr i))
i)))

Suppose i is an integer representing a bit-vector. Taking the least significant
bit and the remaining bits of the represented bit vector, and adjoining them will
return i itself. The IHS library uses this theorem as an ACL2 rewriting rule. When
this rewriting rule is activated, ACL2 rewrites a term of the form (logcons (logcar
z) (logcdr z)) into x, where z can be any ACL2 term representing an integer.

The THS library defines an extensive set of bit vector functions and theorems.
The functions are carefully defined so that the hardware specification using the IHS
library can be executed fast. In fact, Brock modeled Motorola’s CAP digital sig-
nal processor using the THS library, and this model outperformed a Cadence-based
RTL specification[BH97] in simulations. We use the THS library to specify our ma-
chine models, because the THS library is a good basis for writing a formal hardware

specification, on which we perform both simulations and formal verification.

3.3 Data Structures in ACL2

We use many ACL2 structured types in the specification and verification of machine
models discussed in this dissertation. These structured types are defined using ACL2
macros supplied in the ACL2 public books. In this section, we discuss such ACL2
macros defining data-structures, namely, defstructure, deflist, and defword.
An ACL2 macro defstructure defines a structure type. The closest coun-
terpart in Common Lisp is defstruct. ACL2’s defstructure not only defines the

structure type in the same way as Common Lisp’s defstruct, but it also auto-

15

matically generates and proves ACL2 theorems associated with the newly defined

data-structure.
For example, we will model a cache line that contains a valid bit, an address
tag, and data. The new structure type c-line can be defined with defstructure

as follows:

(defstructure c-line
(valid (:assert (bitp valid) :rewrite))
(addr (:assert (integerp addr) :rewrite))

(data (:assert (integerp data) :rewrite)))

Structure c-line contains fields valid, addr, and data. The keyword
:assert is followed by a type assertion. Field valid holds a bit, while fields addr
and data hold integers representing bit vectors. The keyword :rewrite directs
defstructure to automatically generate type-related rewriting rules, that will be
explained shortly.

The defstructure shown above defines one constructor function, three ac-
cessor functions, and one type predicate. The constructor function for the structure
type c-line is named c-line itself. Structure c-line consisting of valid bit v1d,
address ad, and data dt is defined as (c-1line vld ad dt).

Accessor functions c-line-valid, c-line-addr, and c-line-data take a
c-line structure and return the value in the corresponding field. Type predicate
(c-line-p x) is true if x is a c-1ine structure.

The defstructure of c-line automatically generates and proves theorems
about the newly defined record type. Some of the lemmas are shown in Figure 3.1.

The ACL2 macro deflist defines the true-list type. Deflist has a syntax of
the form (deflist < list-type-name > < type >), which defines a nil-terminating

list of elements whose type is < type >. For example,

(deflist cache-p c-line)

16

; This lemma simplifies reads of an explicit constructor.
(DEFTHM DEFS-READ-C-LINE
(AND (EQUAL (C-LINE-VALID (C-LINE VALID ADDR DATA))
VALID)
(EQUAL (C-LINE-ADDR (C-LINE VALID ADDR DATA))
ADDR)
(EQUAL (C-LINE-DATA (C-LINE VALID ADDR DATA))
DATA)))

; This is the :ELIM lemma for the constructor.
(DEFTHM DEFS-ELIMINATE-C-LINE

(IMPLIES (WEAK-C-LINE-P C-LINE)
(EQUAL (C-LINE (C-LINE-VALID C-LINE)
(C-LINE-ADDR C-LINE)
(C-LINE-DATA C-LINE))

C-LINE))
:RULE-CLASSES (:REWRITE :ELIM))

; This lemma captures all assertions about the structure. This lemma is not
; guaranteed to prove. If it does not prove than you may have to provide
; some :HINTS. Any :ASSERTION-LEMMA-HINTS option to DEFSTRUCTURE will be
; attached to this lemma. Be sure that you have not specified
; unsatisfiable assertions.
(DEFTHM DEFS-C-LINE-ASSERTIONS
(IMPLIES (C-LINE-P C-LINE)
(AND (WEAK-C-LINE-P C-LINE)
(BITP (C-LINE-VALID C-LINE))
(INTEGERP (C-LINE-ADDR C-LINE))
(INTEGERP (C-LINE-DATA C-LINE))
™)
:RULE-CLASSES
((:REWRITE :COROLLARY
(IMPLIES (C-LINE-P C-LINE)
(BITP (C-LINE-VALID C-LINE))))
(:REWRITE :COROLLARY
(IMPLIES (C-LINE-P C-LINE)

(INTEGERP (C-LINE-ADDR C-LINE))))
(:REWRITE :COROLLARY

(IMPLIES (C-LINE-P C-LINE)
(INTEGERP (C-LINE-DATA C-LINE))))))

Figure 3.1: Some theorems about the structure type c-line. The
defstructure macro automatically generates these theorems including the com-
ments. WEAK-C-LINE-P is a well-formedness predicate for the structure c-line.

17

defines the true-list type whose elements are c-1ine structures. The type predicate

is cache-p itself.

Macro defword defines a word type consisting of multiple fields. The defword
syntax is of the form:
(defword < word-name >

(< field, > < widthy > < pos; >)
(< field; > < width; > < pos; >)

(< field, > < width, > < pos, >))

This defword defines a word type whose name is < word-name >. The
< width; > bits from the position < pos; > is referred to as the field < field; >.

For example, the following defword defines the addr word.

(defword addr
(page 8 8)
(offset 8 0))
The 8 bits starting from the 8th bit are designated as the page field, and
the 8 bits starting from the 0’th bit are designated as the offset field. The ac-
cessor functions to these field are addr-page and addr-offset. Thus (addr-page

#x1234) = #x12 and (addr-page #x1234) = #x34.

3.4 Infix Notation

All the functional definitions and theorems discussed in this dissertation are formally
defined and proved by the ACL2 theorem prover. Naturally, they are written in
the ACL2 syntax, which is basically the same as the Common Lisp syntax. It is

unfortunate that some people find that prefix notation of the Lisp syntax is not

18

intuitive and moreover hard to read. Therefore, we will use an infix notation of
ACL2 formulae in the body of the dissertation. This infix formulae are mechanically
generated from the corresponding ACL2 formulae.

In the infix notation, variables are printed in italics. Function application
(f x y z) is printed with usual notation f(z,y, z), unless the function is shown
in Table 3.4 or the function is an accessor function of a structure type defined by
defstructure, which will be discussed shortly. Function symbols are printed in
Roman. Constants are printed in a typewriter font. Quotation is used in the same
way as in the original ACL2 logic. For example, a list is printed like ’(a b ¢). Binary
number #b010 is printed as 010, and hexadecimal number #xa08 is printed as a081s.

Control structures are printed as follows. An if-expression (if x y z) is
printed as

if z then y else z fi.
A cond-expression (cond ((testl expl) (test2 exp2) (t exp3))) is printed as:

if test! then exp! elseif test2 then exp2 else expd fi.
A let-expression (let ((vl expl) (v2 exp2)) body) is printed as:

let vI be expl, v2 be exp2 in body .
And (let* ((vl expl) (v2 exp2)) body) is printed as:

let* v1 be expl, v2 be erp?2 in body .
Both let and let* forms are used to bind local variables. Bindings occur in parallel
in a let form, while bindings occur sequentially in a let* form.

For example, the definition of the function factorial and the theorem

assoc—+ given in Section 3.1 are printed as follows:

DEFINITION:
factorial ()

def

if z ~0 then 1

else z x factorial (z — 1)
fi

19

THEOREM: assoc-+
((z+y)+2)=(z+(y+2)

Structure definition defstructure and true list definition deflist are also
printed out specially. For example, the definition of structure type c-line and

true-list type cache in the previous section are printed as:

Defstructure c-line {

bitp valid ;
integerp addr ;
integerp data ;

}

Deflist cache-p as List of c-line

Accessor functions to the structure fields are printed as suffix operators in the infix
notation. For example, the value in the field valid is defined in (c-1line-valid x)

in the ACL2 syntax. In the infix notation, it is printed as x.valid.

20

ACL2 Syntax Infix Syntax
t t
nil nil
(not x) -y
(or x y) zVy
(and x y) T ANy
(iff x y) Ty
(implies x y) T =y
(+ xy) T+y
(- xy) T—y
(* x y) T Xy
(mod x y) z mod y
(/ xy) z/y
(1+ x) z+1
(1- x) z—1
(integerp x) z € Int
(append x y) zQy
(member-equal x y) TEY
(not (member-equal x y)) z gy
(>=x 7y T>y
> zxy T >y
(<=x7y) <y
(< xy) z <y
(equal x y) T =1y
(not (>= x y)) Tty
(not (> x y)) Tty
(not (<= x y)) <Ly
(not (< x y)) Ty
(not (equal x y)) T #y
(zbp x) z=0
(bip x) z#0
(not (zbp x)) x#0
(not (bip %)) z=0
(INST-in x y) Z EMT Y
(INST-in-order-p x y z) | z precedes y in z
(tag-in-order x y z) T <tag ¥ in 2

Table 3.3: The list of infix functions. The last seven functions are not built-in ACL2
functions. They are defined during the verification of the FM9801.

21

Chapter 4

Verification of a Simple

Pipelined Machine

In this chapter, we present the verification of a simple three-stage pipelined machine.
This will serve as an overview of our pipeline verification techniques that we later

use to verify more complex pipelined machine named FM9801.

4.1 A Three-Stage Pipelined Machine and Its Correct-

ness

Pipelining is a key idea in the design of modern microprocessors. It improves the
performance of microprocessors by overlapping the execution of instructions. A
pipelined microprocessor typically starts the execution of an instruction before the
completion of the previous instruction. However, programmers imagine that mi-
croprocessors execute instructions one-by-one. This makes it natural to define the
specification of a microprocessor as a sequential execution model. Therefore, the
verification of a pipelined microprocessor needs to prove that the pipelined imple-

mentation appears to behave as its sequential execution model does.

22

Register File

M emory -
~~~~~~~~
Latchl Latch2
valid? valid?
op op
rc rc
ra ra-val
rb rb-val

ALU

Fetch ___  Setup _.|. Write-back
Stage Stage Stage

Figure 4.1: The three-stage pipelined machine.

op . rc | ra | rb
15 1211 87 43 0

Figure 4.2: The instruction format for the three-stage pipelined machine.

To study this problem, we will consider a three-stage pipelined machine.
Figure 4.1 shows its block diagram. This machine consists of a program counter
(PC), a register file, memory, an ALU, and two pipeline latches. The register file is
a collection of registers.

The instruction format for this machine is shown in Fig. 4.2. An instruction
is a 16-bit word and it has four fields: opcode field op, destination register field rc,
source register fields ra and rb. The bits between the 12th bit and the 15th bit are
the opcode, which specifies the instruction type. The opcodes of ADD and SUB
instructions are 0 and 1, respectively. An instruction with opcode other than 0 and
1 is considered to be a NOP, which only increments the program counter.

There are three stages in the pipeline: the fetch stage, the set-up stage,

23



and the write-back stage. The machine fetches an instruction in the fetch stage,
reads source registers in the set-up stage, and performs an arithmetic operation and
updates the destination register in the write-back stage. The latches are used to store
intermediate results. The valid? flag of each latch is set to 1 when an instruction
occupies the latch. The op field stores the opcode of the stored instruction, and the
rc, ra, and rb fields store the operand register designators. The ra-val and rb-val
fields store the two source operand register values.

Let us consider the execution of the following three instructions. In this
program, the operand registers rc, ra and rb are printed in that order. For example,
ig is an ADD instruction that reads registers R1 and R3 and stores the results in

R2.

io: ADD R2, R1, R3
i1: SUB R4, R2, R5
i»: ADD R7, R5, R6

Table 4.1 shows the latches in which the intermediate results of instructions are
stored at each time. For example, the instruction 4 is fetched between time 0 and
1, it goes through the set-up stage between time 1 and 2, and it finishes the write-
back stage between time 2 and 3. Thus, the intermediate results of iy are stored in

latchl at time 1 and in latch2 at time 2.

Table 4.1: A reservation table for the three-stage pipelined machine.

Time 0 1 2 3 4 5 6
10 latchl latch2
71 latchl latchl latch2
19 latchl latch2

This table shows a typical pipelined execution. While ¢¢ is at the set-up stage
between time 1 and 2, instruction ¢; is fetched simultaneously. Since the instruction

i1 uses the value of register R2 which is the result of instruction ¢y, instruction i;

24



must wait for 79 to update R2 before reading its value in the set-up stage. Thus,
the instruction iy stalls between times 2 and 3. After i completes the write-back
stage at time 3, ¢; continues the rest of the execution in the set-up and write-back
stages. Instruction is is executed between times 3 and 6.

Because the execution of instructions is overlapped, a pipelined machine state
may not correspond to any state which programmers expect to see. For example at
time 3, the program counter points to the next instruction to be fetched, namely
i3. However, the register file records the result of i, but not ¢; yet since ¢; is still
at latchl. In other words, the program counter appears as if we have completed
two instructions ¢ and ¢1, but the registers appear as if we have only completed the
instruction ¢yp. Thus, the pipeline state at time 3 does not correspond to any state
observable by executing instructions sequentially.

To be more concrete, we define the machine in the ACL2 logic at two levels:
the instruction-set architecture (ISA) level and the microarchitecture (MA) level.
The ISA models the machine behavior that programmers have in mind. It executes
instructions one at a time. This style of execution is called sequential execution. On
the other hand, the MA model defines how the actual pipelined machine behaves.
Instruction executions are overlapped in this model, and this style of execution is
called pipelined execution.

The behavior of the ISA model is given by the following function.

DEFINITION:
ISA-step (ISA)
def

let inst be read-mem (ISA.pc, ISA.mem)
in
let op be op-field (inst),
rc be rc-field (inst),
ra be ra-field (inst),
rb be rb-field (inst)
in
if op = 0 then ISA-add(re, ra, rb, ISA)
elseif op = 1 then ISA-sub(re, ra, rb, ISA)

25



else ISA-default (ISA)
fi

This function takes the current state ISA and returns the new state after exe-
cuting one instruction. The program counter and the memory in state ISA are
represented as ISA.pc and ISA.mem using the suffix operator discussed in the last
chapter. ISA-step reads an instruction ¢nst from the memory ISA.mem at the lo-
cation addressed by the program counter ISA.pc, divides it into instruction fields,
and executes it appropriately depending on the opcode. For example, if the op-field
of inst contains 0, the ISA-step function performs an ADD instruction whose effect
is defined by the function ISA-add. Similarly, ISA-sub and ISA-default define the
effects of the SUB and NOP instructions, respectively.

We can define a recursive function ISA-stepn(ISA,n), which calculates the

result of executing n instructions. It is defined to apply ISA-step repeatedly n times.

DEFINITION:

ISA-stepn (ISA, n)

def

if n ~ 0 then ISA

else ISA-stepn (ISA-step (ISA), n — 1)
fi

The function MA-step(MA, sig) takes the current pipeline state MA and an
external input signal sig, and returns the pipeline state at the next clock cycle. It
defines the behavior of the pipelined machine at the MA level, by specifying how

individual components behave in every clock cycle.

DEFINITION:

MA-step (MA, sig)

def

MA-state (step-pc (MA, sig),
step-regs (MA),
MA.mem,
step-latchl (MA, sig),
step-latch2 (MA))

26



Functions step-pc, step-regs, step-latchl, and step-latch2 define the new
state of the program counter, the register file, and pipeline latches latchl and
latch2. The memory state does not change. Constructor function MA-state com-
bines these component states to form the new MA state. The recursive function
MA-stepn(MA, sig-list,n) applies MA-step repeatedly n times and returns the MA

state after n clock cycles later. The argument sig-list is a list of input signals.

DEFINITION:
MA-stepn (MA, sig-list, n)
def

if n ~0 then MA

else MA-stepn (MA-step (MA, car (sig-list)), cdr (sig-list), n — 1)

fi

One key idea in comparing pipelined machine states to sequential execution

states is using pipeline flushed states. An MA state is a pipeline flushed state if no
instructions are partially executed in the pipeline. In Table 4.1, the MA is in pipeline
flushed states at time 0 and 6. In a pipeline flushed state, all programmer visible
components, such as the program counter, the register file, and the memory, are
synchronized. Thus it is easy to define the corresponding ISA state for a pipeline
flushed state. We define this correspondence as a projection function proj(MA),
which returns an ISA state by extracting the program counter, the register file, and

the memory states from the pipeline state MA.

DEFINITION:

proj (MA) % 1S A-state (MA.pc, MA.regs, MA.mem)

Figure 4.3 shows the commutative diagram that represents the correctness of
our pipelined machine. Consider an initial state MA(, which we assume is a pipeline
flushed state. There are two paths to follow in the commutative diagram. One path
runs the MA model for n steps where n is an arbitrary natural number. Suppose

the final state MA,, is also a flushed state. Then we can map the final state MA,, to

27



m cycles of

@ ISA state transition @
- ISA-stepn( ISA,, m)

A A
, Prol n cycles of . ol
MA state transition
MA, T .o MA,
(flushed state) (flushed state)

MA-stepn( MA,, sig-list, n )

Figure 4.3: The commutative diagram for the pipelined machine.

ISA,, with the projection function. Let m be the number of instructions executed
during the state transition from MAy to MA,. The other path first projects the
initial state MAy to ISAy and runs the ISA for m cycles to reach ISA,,. If the MA
correctly implements the ISA, the same ISA,, must be obtained by following the

two paths. We will prove this commutative diagram in the rest of the chapter.

4.2 Intermediate Abstraction and Invariant

It is often difficult to directly verify an entire pipelined machine. Our example
machine is simple, but a typical pipelined microprocessor has a long pipeline with
a complex control logic. Instead of directly analyzing the entire microarchitecture,
we show that each instruction is executed correctly. This allows us to verify the
machine design incrementally, and later combine the results together to prove the
commutative diagram.

To pursue this idea, our verification approach first defines an intermediate
abstraction, which builds a list of completely executed instructions and in-flight
instructions. For example at time 4 in Table 4.1, instruction iy has been completely
executed, and ¢; and i are in-flight. The intermediate abstraction represents the
MA state at time 4 with a list of instructions iy, 7; and 7».

More precisely speaking, the status of each instruction is recorded in the

28



intermediate abstraction. We represent the status of an instruction with a structure
type named INST. In ACL2, the structure can be defined with the defstructure
macro discussed in the last chapter.

Defstructure INST {

stage-p stg ; // Current Stage
ISA-state-p pre-ISA ; // Pre-ISA state
ISA-state-p post-ISA ; // Post-ISA state
}

This structure has three fields stg, pre-ISA, and post-ISA. Field stg represents
the current stage of the represented instruction, and pre-ISA and post-ISA store
ISA states which we will describe shortly. Fields values of INST structure i are
represented as i.stg, i.pre-ISA and i.post-ISA.

Let zfc denote the INST structure representing the status of instruction i at
time ¢ in Table 4.1. Since ig is at latchl at time 1, i}.stg = *latchl. Similarly,
i3.stg = ’latch2. The stage of completed instructions is defined as ’retire, so
i3.stg = ’retire.

Using this instruction representation, we define the intermediate abstraction
state. We call this intermediate abstraction Microarchitecture Execution Trace Table
(MAETT)[SH97]. It is defined using the ACL2 structure:

Defstructure MAETT {

ISA-state-p init-ISA ; // Initial ISA state
INST-listp trace ; // List of Executed Instructions
}

The trace field stores the list of completed and in-flight instructions. Let
MT; be the MAETT for the MA state at time ¢ in Table 4.1. The trace field of
initial MAETT MT, contains an empty list nil. As more instructions are fetched,
the MAETT adds to the list INST items which represent the fetched instructions.
For example, the trace field of MT1 and M T store list (i) and (i3 i2), respectively.

The init-ISA field of a MAETT stores the initial ISA state before the execu-
tion of the first instruction in the program. Additionally, the pre-ISA and post-ISA

29



MAETT MT 4

- init-ISA

trace

stg: retire
pre-ISA
post-1SA

stg: latch2
prelsa | j4
post-1SA

stg: latchl

pre-ISA i 4
e | 1%
"

Figure 4.4: The structure of the MAETT intermediate abstraction.

nil

fields of the INST structure store the ISA state before and after executing the rep-
resented instruction in the ISA model. We call these states the pre-ISA state and
the post-ISA state of the instruction. Figure 4.4 shows the entire structure of the
MAETT MT,. The trace field stores the list (ig if i3). The init-ISA field stores
the initial ISA state ISAg. This is also the pre-ISA state of the first instruction ;.
The result of executing ig is ISA; and it is the post-ISA state of ig. Since it is the
state before executing the next instruction, ISA; is the pre-ISA state of ¢;. In this
way, the MAETT stores all ISA states that appear during the ISA execution of the
program. The dashed lines in the figure show the ISA state transitions.

We can define many values related to an instruction using its INST repre-
sentation. For example, the function INST-word (i) defines the instruction word of
i as the memory value addressed by the program counter in the pre-ISA state of
ix. In the following definition, function read-mem(a, mem) defines the value of the

memory mem at address a.

30



DEFINITION:
INST-word (%) def read-mem ((z.pre-ISA).pc, (¢.pre-ISA).mem)

From the instruction word, we can calculate the values in the instruction fields op,

ra, rb, and rc.

DEFINITION:

INST-op (i) & op-field (INST-word (i))

DEFINITION:

INST-ra (%) def ra-field (INST-word (%))

DEFINITION:
INST-rb (i) %/ rb-field (INST-word (i)

DEFINITION:

INST-rc (i) % re-field (INST-word (i))

We can further define the correct source operand values by reading the source reg-
isters in the pre-ISA state. Function read-reg(r,regs) returns the value of register r
in the register file regs.

DEFINITION:

INST-ra-val (7) def read-reg (INST-ra (%), (i.pre-ISA).regs)

DEFINITION:
INST-rb-val (7) def read-reg (INST-rb (z), (i.pre-ISA).regs)

Finally, we define INST-result which calculates the execution result of an instruction.
The function ALU-output(op, srcl, src2) returns the value from the output port of
the ALU when the opcode op, and source operand values src! and src2 are given

to the input ports of the ALU.

DEFINITION:
INST-result (z)
def

ALU-output (INST-op (i), INST-ra-val (), INST-rb-val (¢))

31



These functions are used in the definition of properties that the pipelined
machine should satisfy. For example, predicate INST-latchl-inv defines the correct

intermediate values stored in latchl.

DEFINITION:
INST-latchl-inv (i, MA)
def

(((MA.latchl).valid?) = 1)

(((MA.latchl).op) = INST-op (%)
(((MA.latchl).rc) = INST-rc ()
(((MA.latchl).ra) = INST-ra (1))
(((MA.latchl).rb) = INST-rb (¢))

)

> > > >

We assume that INST ¢ represents an instruction at latchl in state MA. The busy
flag valid? of latchl should be 1, because the latch is occupied by the instruction
represented by i. The opcode of i, which has been defined as INST-op(i), should
be stored in the op field of latchl. Similarly, the predicate checks whether the
correct rc, ra, and rb register designators are stored in the corresponding fields of
latchl. Another predicate INST-latch2-inv defines the correct intermediate values
for latch2.

Using these functions, we define the predicate INST-invariant(z, MA), which
is true if and only if the intermediate values for instruction 7 are correct in state MA,
regardless of the stage of i. We define MT-INST-invariant(MT, MA) as a predicate
that checks every INST ¢ recorded in the trace field of MAETT MT satisfies the con-
dition INST-invariant(i, MA). Intuitively speaking, MT-INST-invariant(MT, MA)
checks all pipeline intermediate values are correct.

DEFINITION:
INST-invariant (i, MA)
def

if (i.stg) = "latchl then INST-latchl-inv (i, MA)
elseif (i.stg) = ’latch2 then INST-latch2-inv (¢, MA)
else t

fi

32



DEFINITION:

trace-INST-invariant (trace, MA)
def

if endp (trace) then t
else  INST-invariant (car (¢race), MA)
A trace-INST-invariant (cdr (trace), MA)
fi

DEFINITION:

MT-INST-invariant (MT, MA) def trace-INST-invariant (M T .trace, MA)

Another property regs-match-p(MT, MA) is true if and only if the register
file in state MA is correct, that is, the results of all completed instructions are stored
in the register file. In other words, the register file appears as if it were in the post-
ISA state of the last completed instruction. With the example given in Table 4.1,
the register file state at time 5 should be the same as that in the post-ISA state
of 4;. This ideal register file state is calculated from the MAETT with function
MT-regs(MT).

DEFINITION:

trace-regs (trace, ISA)
def

if endp (trace) then ISA.regs
elseif (car (trace).stg) # 'retire then ISA.regs

else trace-regs (cdr (trace), car (trace).post-ISA)
fi

DEFINITION:

MT-regs (MT) def trace-regs (M T .trace, M T .Init-ISA)
DEFINITION:

regs-match-p (MT, MA) def MT-regs (MT) = (MA.regs)

Like MT-INST-invariant(MT, MA) and regs-match-p(MT, MA), we define
other properties of our pipelined machine as predicates of the machine state and
its MAETT. The following predicate invariant(MT, MA) is the conjunction of such

properties.

33



DEFINITION:

invariant (MT, MA)

def

pc-match-p (MT, MA)
regs-match-p (MT, MA)
mem-match-p (MT, MA)
ISA-chain-p (MT)
MT-INST-invariant (M T, MA)
MT-contains-all-insts (MT, MA)
MT-in-order-p (MT)

> > > > > >

In order to introduce the following two theorems, we need three additional
functions. The function flushed?(MA) returns 1 if and only if MA is a pipeline
flushed state. The function init-MT(MA) defines the MAETT for any pipeline
flushed state MA. The function MT-step(MT, MA, sig) defines the MAETT for the
next MA state given that MA is the current MA state and MT is its MAETT.

THEOREM: invariant-init-MT
(MA-state-p (MA) A (flushed? (MA) = 1)) — invariant (init-MT (MA), MA)

THEOREM: invariant-step
(invariant (MT, MA) A MAETT-p (MT) A MA-state-p (MA) A MA-sig-p (sig))
— invariant (MT-step (MT, MA, sig), MA-step (MA, sig))

Theorem invariant-init-MT states that every pipeline flushed state satisfies
invariant(MT, MA). Theorem invariant-step states that, if invariant(MT, MA) is
true for the current state, it is also true for the next state. These two theorems
show that property invariant(M7T, MA) is an invariant condition, and all machine
states reachable from a pipeline flushed state satisfy it. In the next section, we prove

our commutative diagram using this fact.

4.3 Proving the Commutative Diagram

First we introduce the theorem that we would like to prove. The following theorem

is the formal statement of the commutative diagram discussed earlier.

34



THEOREM: commutative-diagram
( MA-state-p (MA)
A MA-sig-listp (sig-list)
A (n < len (sig-list))
A (flushed? (MA) = 1)
A (flushed? (MA-stepn (MA, sig-list, n)) = 1))
— ( proj (MA-stepn (MA, sig-list, n))
= ISA-stepn (proj (MA), num-insts (MA, sig-list, n)))

In this theorem, MA is the initial state from which the MA execution starts,
and it corresponds to MAj in Fig 4.3. We consider the execution of n-steps with
the list of input signals sig-list. The length of sig-list should be larger than or
equal to n. The result of n-step execution is given as MA-stepn(MA, sig-list, n),
which corresponds to MA,, in the figure. Suppose the initial state MA and the final
state MA-stepn(MA, sig-list,n) are both pipeline flushed states. The equality in the
conclusion compares the two paths of the commutative diagram. The left-hand side
runs the MA machine for n-steps and projects the result to the final ISA state.
The right-hand side first projects MA to the initial ISA state proj(MA) and then
runs the ISA machine for num-insts(MA, sig-list,n) steps. The function num-insts
returns the number of instructions executed in the n-step MA execution, which is
given as m in Fig. 4.3.

One question is how the function num-insts counts the number of instructions
executed during the n-step MA execution. The function num-insts(MAy, sig-list, n)
first constructs the MAETT for the final MA state MA,,. This MAETT is a complete
history of instructions executed during the n-step MA execution. The function num-

insts simply counts the number of the instructions recorded in this MAETT.

DEFINITION:

MT-num-insts (M T') def len (MT .trace)

DEFINITION:
num-insts (MA, sig-list, n)
def

MT-num-insts (MT-stepn (init-MT (MA), MA, sig-list, n))

35



A proof sketch of THEOREM commutative-diagram follows. Component by
component, we show the equality in the theorem. There are three components to
compare: the program counter, the register file, and the memory. We will discuss the
equality with respect to the register file in detail. Equalities for other components
are proven similarly.

To ease the following arguments, we use the symbols shown in Fig. 4.3.
The left-hand side of the conclusion of THEOREM commutative-diagram is given as
proj(MA,;). Since the initial ISA state proj(MA) is ISAy in the figure, the right-
hand side is given as ISA-stepn(ISAg, m). We need to prove the following equality
for the register file:

(proj(MA,)).regs = (ISA-stepn(ISAg, m)).regs . (4.1)

Let us assume that MT, represents the MAETT for state MA,. From
the two lemmas invariant-init-MT and invariant-step, invariant(M T, MA,,) is true.
With the definition of invariant(MT, MA), the property regs-match-p(MT,, MA,,)
is derived. The definition of regs-match-p implies that the final register file state
MA,, regs is equal to the ideal register file state MT-regs(MT},). Using the definition

of proj,
(proj(MA,)).regs = MA,.regs = MT-regs(MT),,) .

Let (i ... i,_;) be the list of instructions in the trace field of MAETT
MT,,. Because the final state MA,, is flushed, the execution of all instructions in
this list are completed and i} .stg = ’retire for all £ such that 0 < k& < m. Hence,
MT-regs(MT,) = (i',_;.post-ISA).regs because MT-regs(MT,,) returns the regis-

ter file in the post-ISA state of the last completed instruction, which is represented

by i _,. Since the post-ISA state of i)}, _; is the state that results from execut-
ing m instructions iy through i,_1 by the ISA, it is equal to ISA-stepn(ISAg, m).

Therefore,

36



MT-regs(MT},)
= INST-post-ISA (i}, _,).regs
= ISA-stepn(ISAg, m).regs .

From the equalities shown above, we derive Formula (4.1) and conclude the proof
of the commutative diagram with respect to the register file.

The THEOREM commutative-diagram is vacuous if the MA never reaches a
pipeline flushed state, because the last hypothesis of the theorem does not hold.
However, the following theorem proves that we can flush the pipelined machine by
running the MA model long enough without fetching new instructions. The input
signal to the pipelined machine controls instruction fetching, and the machine does

not fetch a new instruction when the input is 0.

THEOREM: liveness
MA-state-p (MA)
— (flushed? (MA-stepn (MA, zeros (flush-cycles (MA)), flush-cycles (MA))) = 1)

Function zero(n) returns a list of 0’s whose length is n. The witness function
flush-cycles(MA) returns the number of steps necessary to flush out all instructions
in the pipeline, proving the existence of such a number.

Even though the 3-stage pipelined machine verified here is simple, our ver-
ification approach can be scaled to a more complex pipelined machine model. We
later use a similar approach to verify a microprocessor model which issues and com-
pletes instructions out-of-order, executes instructions speculatively, and implements
interrupts. To verify such a processor model, we had to extend the MAETT to
record more information about instructions. Also we needed to verify more complex
invariants than the 3-stage pipelined machine. However, the general approach to

the problem does not change.

37



Chapter 5

Machine Specification of the
FM9801

The FM9801 microprocessor is a new microprocessor model we invented for our
research project[SH98]. The verification of this microprocessor design is the main
topic of this dissertation. The FM9801 implements various microprocessor design
techniques found in modern microprocessors such as speculative execution, precise
exceptions, and out-of-order issue and completion of instructions. The FM9801
microprocessor model is not intended to be fabricated, nor it is not as complicated
as industrial microprocessors. Still it is not a toy example, but a realistic model
which reveals verification problems that may not be foreseen by verifying simplified
models.

We formally specify the FM9801 microprocessor at the instruction-set archi-
tecture (ISA) level and the microarchitecture (MA) level. The ISA model contains
only the components visible to the programmer, such as the program counter, the
register file and the memory. The ISA defines how individual instructions modify
the states of programmer visible components. The ISA model executes instructions

sequentially, completing one instruction before starting another. On the other hand,

38



the MA model is a clock-cycle-accurate model of a pipelined machine implementa-
tion; the state transition of the MA model corresponds to a hardware clock cycle.
The MA model contains all microarchitectural components, regardless of their visi-
bility to the programmer. The ISA model is our machine specification, and the MA
model is our verification target.

We first discuss the basic components of the FM9801 in Section 5.1. We then
discuss the ISA model of the FM9801 in Section 5.2. Finally, we explain its MA

model in Section 5.3.

5.1 Basic Components of the FM9801

In this section, we discuss the program counter, the general-purpose register file,
the special register file, and the memory in the FM9801. These are the components
visible to the programmer and they are included in both the ISA and the MA.

5.1.1 Address and Data Word

The size of the memory space for the FM9801 is 2'6, and a 16-bit address word
can address the entire memory. The memory at each address contains a 16-bit
instruction and data word, not a 8-bit byte. A similar memory architecture is used
in the design of FM8501 and FM9001 [Hun94, BHK94].

With the THS library, we represent a 16-bit address word with an integer
between 0 and 216 —1. The type predicate, addr-p, and type coercion function, addr,
are defined by the defbytetype macro in the IHS library to satisfy the following

theorems:

THEOREM: addr-p-type-def
addr-p (z) + ((z € Int) A (0 < z) A (z < expt (2, 16)))

THEOREM: addr-mod
(z € Int) — (addr (z) = (¢ mod expt (2, 16)))

39



The type coercion function addr(z) converts = to an integer representing a 16-bit
address word.

Data words in the register and the memory of the FM9801 are 16-bit. The
THS defbytetype macro defines the type predicate, word-p, and the type coercion

function, word, to satisfy the following:

THEOREM: word-p-type-def
word-p (z) < ((z € Int) A (0 < z) A (z < expt (2, 16)))

THEOREM: word-mod
(z € Int) = (word (z) = (¢ mod expt (2, 16)))

5.1.2 Program counter

The program counter stores the address from which the next instruction is fetched.
When an instruction is fetched, the program counter is incremented modulo 2. If
pc is the current program counter value, the new program counter value is expressed
as addr(pc + 1). Thus, if the current program counter value is 2'6 — 1, the program

counter is set to 0 after fetching an instruction.

5.1.3 Register Files

The FM9801 has two register files: one for general-purpose registers, and the other
for special registers. We may call a general-purpose register simply a register in
this dissertation. General-purpose registers hold the data used in normal program
executions. Special registers store the information related to exceptions and the
processor’s privilege mode.

The FM9801 has 16 general-purpose registers, each of which stores a 16-
bit data word. We represent a general-purpose register file state with a list of 16
integers representing data words. The type predicate RF-p(RF) is true if RF is a

list representing a general-purpose register file state.

40



The register accesses to the general-purpose register file are defined by two
functions read-reg(r, RF') and write-reg(v,r, RF'). The function read-reg(r, RF) re-
turns the value of the register designated by r in register file RF. The register
designator r satisfies type predicate rname-p(r), whose definition is shown in Ap-
pendix B.1. The function write-reg(v, 7, RF') defines the state of register file RF
after the register designated by r is modified with the new value v. We define

read-reg and write-reg as:

DEFINITION:

read-reg (r, RF) def nth (r, RF)

DEFINITION:

d
write-reg (val, r, RF') def update-nth (r, val, RF')

where nth(n, Ist) returns the n’th element of list Ist, and update-nth(v, n, Ist) returns
list Ist after replacing the n’th element with v. The functions read-reg and write-reg

satisfy the following lemma.

THEOREM: read-reg-write-reg
(rname-p (r1) A rname-p (r2) A RF-p (RF))
— ( read-reg(rl, write-reg (val, r2, RF))
= if r1 = r2 then val
else read-reg(r1, RF)
fi)
This theorem shows that write-reg(v, 72, RF') modifies the register designated by r2
and keeps other registers unchanged.

The special register file contains two 16-bit special registers and a flag to
specify the privilege mode. A special register file state is defined as a structure
SRF(su, sr0,srl) in Appendix B.2, whose type predicate is SRF-p(SRF'). The
field su is the 1-bit flag indicating the privilege mode, sr0 is special register 0,
and srl is special register 1. When the flag su is 1, the processor is in supervisor

mode. Otherwise, the processor is in user mode. Privileged instructions can be

safely executed only in supervisor mode. Execution of a privileged instruction in

41



user mode raises an illegal instruction exception. The memory protection is also
enforced only in supervisor mode.

Read and write accesses to the special registers 0 and 1 are defined by the
functions read-sreg(sr, SRF') and write-sreg(v, sr, SRF’), where sr is the special reg-

ister designator satisfying srname-p(sr). They satisfy the following theorem:

THEOREM: read-sreg-write-sreg
(srname-p (r1) A srname-p (r2) A SRF-p (SRF'))
— ( read-sreg (71, write-sreg (val, r2, SRF'))
= if r1 = r2 then val
else read-sreg (r1, SRF')
fi)

5.1.4 Memory

The FM9801 has a 2!% bit address space. A memory read access is defined by
a function read-mem(a, mem), which returns the 16-bit data word stored in the
memory mem at address a. The function write-mem(v, a, mem) defines the memory
state after modifying the memory mem at address a with data word v. Functions

read-mem and write-mem satisfy the following theorem:

THEOREM: read-mem-write-mem
(addr-p (ad1) A addr-p (ad2) A mem-p (mem))
— ( read-mem (ad1, write-mem (val, ad2, mem))
= if adl = ad2 then val
else read-mem (ad1, mem)
fi)

The FM9801 memory system has page-wise memory protection. A memory
page consists of 21 words and has its own protection mode. There are three memory
protection modes: ’no-access, ’read-only, and ’read-write. If a page is in
the ’no-access mode, neither read accesses nor write accesses are allowed to any
memory words in the page in user mode. If the page is in the ’read-only mode,

only read accesses are allowed. If it is in the ’read-write mode, both read and

write accesses are allowed. The function readable-addr?(a, mem) returns 1 iff the

42



address a is readable in memory state mem. The function writable-addr?(a, mem)
returns 1 iff the address a is writable. The FM9801 enforces the memory protection

only when the processor is in user mode.

5.1.5 Efficient Memory Model

The formal specification of the FM9801 memory must provide a well-defined se-
mantics of the memory accesses for verification. The execution speed of the formal
specification is also important because we use the same specification for simulation
purposes. In this subsection, we discuss a number of approaches to formally specify
a memory system, and explain our approach to the problem.

Representing the entire memory with a linear linked list or a linear array is
not a realistic solution for simulations because it consumes a huge memory space
in the simulating machine. Although the FM9801 memory space is relatively small
with only 2!6 data words, memory systems with a 32-bit or 64-bit address space are
more common today. It is also difficult to define the formal semantics of destructive
accesses to an array in an applicative functional language like the ACL2 logic

One approach to the compact representation of memory states with a well-
defined semantics uses association lists. A tuple (a . v) represents a memory value
v stored at an address a. The entire memory state is represented as a list of such
association tuples. If (a . v) is the first tuple in the list whose first element is a, we
interpret the memory value at address a to be v. If no tuple in the list has a as its
first element, we interpret that the memory at address a stores the default value.
This approach can concisely represent the entire memory space by recording the
values in only the modified portion of the memory. The semantics of the model in
an applicative functional language is straightforwardly defined. However, simulating
a memory read access may have to scan the entire list. A memory write operation is

simply appending a tuple of the accessed address and the new value at the head of

43



the list. However, the association list grows as more write operations are simulated,
making the simulation of read operations increasingly time-consuming.

The ACL2 theorem prover system provides the ACL2 array facility. The
idea is using an association list representation to provide a formal semantics of array
accesses, while allowing an efficient simulation using a real array. The association list
and the array are tied together “under the hood”, and the implementation details
are hidden from a user. Consequently, the time required to simulate read and write
accesses to an array is constant. However, defining the entire memory space as an
ACL2 array is not practical because the ACL2 array allocates the entire space as a
real array during the simulation.

A binary tree representation of the memory can be a good compromise be-
tween the simulation performance and the space requirement [Yu90, BHK94]. A
binary tree can concisely represent the entire memory address space by dynamically
allocating a tree node corresponding to a memory address when the first access to
the address is simulated. A single memory access can be simulated in the time
logarithmic to the size of the simulated memory address space. However, in the
simulation of the memory with a 16-bit address space, a memory access needs to
traverse 16 nodes in the binary tree, making the execution speed significantly slower
than the linear array representation of a memory model.

We implement the FM9801 memory model using a hierarchical data-structure
using the ACL2 arrays. Figure 5.1 illustrates the data-structure with two levels.
The array at the upper level contains a page entry at each index. Each page entry
contains a pointer to an array at the lower level. Each array at the lower level records
210 words in the represented page. The lower level array is allocated dynamically
when the first access to the corresponding page is simulated. Since all arrays in the
memory models are ACL2 arrays, the semantics of the memory model is well-defined

in the ACL2 logic.

44



Array of page entries

Figure 5.1: Data Structure for Memory Model

By using the two level data-structure and allocating the second level arrays
on demand, the space required to simulate a memory system is proportional to the
number of actually used pages. The time required to simulate a memory access is
constant and comparable to the linear array representation of the memory, because

we need only two array references to simulate each memory access.

5.2 Instruction-Set Architecture of the FM9801

The instruction-set architecture (ISA) defines the behavior of the machine from
the programmer’s viewpoint by specifying the effect of individual instructions. The
ISA executes instructions sequentially, completely executing one instruction before
starting another. The ISA plays the role of the specification as opposed to the

microarchitectural design which is our implementation.

5.2.1 Imstruction-Set Architecture State

An TSA state consists of the states of programmer visible components. An ISA state
is represented as ISA-state(pc, rf, srf, mem) where pc, 7f, srf, and mem represent the
states of the program counter, the general-purpose register file, the special register
file, and the memory, respectively. See Appendix B.3 for the formal definition of

the data structure used to represent ISA states.

45



5.2.2 The Instruction Set of the FM9801

The FM9801 implements 11 instruction types. We could have implemented more
instructions without adding too much complexity to the machine design. For exam-
ple, additional integer instructions could have been added. Their behaviors in the
pipeline can be exactly the same as that of an add instruction, except that they per-
form different arithmetic operations on their operand values. This only increases the
complexity of the arithmetic logic unit; however, it hardly complicates the control
logic of the implemented machine. Instead, we have implemented a small number of
instruction types, whose behaviors are significantly different from each other in the
microarchitectural implementation of the FM9801. Each instruction can be consid-
ered as a representative of similar instruction types, like an addition instruction is
a representative of all integer instructions with similar control complexity.

We have implemented instruction types that seem interesting from the per-
spective of the verification of pipelined machines. The FM9801 instruction set in-
cludes a conditional branch instruction, memory load and store instructions, privi-
leged instructions, and instructions that synchronize the pipeline or that change the
privilege mode of the processor.

The FM9801 uses a 16-bit data word to represent an instruction. There are
four instruction formats, A, B, C, and D, as shown in Fig 5.2. The field opcode
specifies the instruction type. The fields ra, b, and rc designate operand registers.
The field m stores an immediate value.

The instructions implemented in the FM9801 are listed in Table 5.1. An
instruction word whose opcode field value is not shown in the table is an illegal in-
struction. Some instructions are privileged. Privileged instructions can be executed
only when the processor is in supervisor mode.

In the rest of this section, we explain the semantics of each instruction. The

effect of normal execution of an instruction is provided as a sequence of assignments.

46



Format A

Format B

Format C

Format D

opcode; rc | ra | rb
15 1211 87 43 0
opcode’ rc | im

15 1211 87 0
opcodel rc | ra | notused
15 1211 87 4 0
opcode not used

15 12 0

Figure 5.2: Instruction format A, B, C, and D for the FM9801

Mnemonic opcode Format Privileged Semantics

ADD 0 A No Add

MUL 1 A No Multiply

BR 2 B No Conditional Branch

LD 3 A No Load

ST 4 A No Store

SYNC 5 D No Synchronize

LDI 6 B No Load with Immediate Address
STI 7 B No Store with Immediate Address
RFEH 8 D Yes Return from Exception Handling
MFSR 9 C Yes Move Word from Special Register
MTSR 10 C Yes Move Word to Special Register

Table 5.1: FM9801 Instruction Set

47




In these assignments, pc, RF, SRF and mem represent the current states of the
program counter, the general-purpose register file, the special register file, and the
memory. Primed variables, pc/, RF’, SRF' and mem' represent the new states
of the corresponding components after the instruction is executed. The effects of
exceptions and interrupts are discussed later.

Addition — ADD rc,ra,rb

val <« word(read-reg(ra, RF') + read-reg(rb, RF'))
RF' <« write-reg(val, rc, RF)
pc  + addr(pc+1)

An ADD instruction adds the values of the registers designated by the ra and rb
fields and stores the result into the register designated by the rc field. If the result
overflows, the least significant 16 bits of the sum are stored in the register rc.

Multiply — MUL r¢,ra,rb

val <+ word(read-reg(ra, RF') x read-reg(rb, RF))
RF' <« write-reg(val, rc, RF)
pcd  + addr(pc+1)

The values of the ra and rb registers are multiplied and the result is stored in the rc
register. If the result overflows, the least significant 16 bits are used as the result.

Conditional Branch — BR rc,im

If read-reg(rc, RF) =0 then pc’ + addr(pc+ logextu(8,16,im)),
otherwise, pc’ + addr(pc + 1).

A conditional branch is taken when the rc register is 0. The branch target address
is calculated by sign-extending the 8-bit immediate value im to 16-bits, adding it
to the old program counter value, and taking the modulo 2!¢ of the result. The
function logextu(n,m, z) interprets integer z as a n-bit bit vector and sign-extends

it to m bits. When the value of the rc register is equal to 0, the branch is taken and

48



the branch target is stored in the program counter. Otherwise, the branch is not
taken; the program counter is set to the wrap-around increment of the old program
counter value.

Load — LD re,ra,rdb

ad ¢+ addr(read-reg(ra, RF') + read-reg(rb, RF'))

val <+ read-mem(ad, mem)

RF' <« write-reg(val,rc, RF)

pc  « addr(pc+1)
A data word is read from the memory and stored in the rc register. The memory
access address is the wrap-around sum of the ra and rb register values. If an LD
instruction is executed in user mode and if the access address is read-protected, a
data access error exception occurs. The exception does not occur if the processor is
in supervisor mode.

Store — ST rc¢,ra,rb

ad < addr(read-reg(ra, RF) + read-reg(rb, RF'))

val + read-reg(re, RF)

mem' < write-mem(val, ad, mem)

pc +— addr(pc+1)
The value of the rc register is stored in the memory at the access address, which
is the wrap-around sum of the ra and rb register values. If an ST instruction
is executed in user mode and if the access address is write-protected, a data-access
error exception occurs. The exception does not occur if the processor is in supervisor
mode.

Synchronization — SYNC
pc’ <+ addr(pc + 1)

This instruction can be used to serialize the execution of instructions. No state

changes occur on programmer visible components except that the program counter

49



is incremented. However, the pipelined implementation of the FM9801 will flush
the instructions in the pipeline and synchronize the machine when the instruction
is executed. This is useful when explicit serialization is necessary. For example,
self-modifying code can be safely executed by first executing the instructions that
modify the program, synchronizing the machine, and then executing the modified
instructions.

Load with Immediate Address — LDI rc,im

ad <+ addr(im)
val <+ read-mem(ad, mem)
RF' < write-reg(val,rc, RF)

pcd  + addr(pc+1)

The memory access address is calculated by unsigned-extending the 8-bit immediate
value im to 16-bits. The memory value at the access address is stored in the rc
register. If an LDI instruction is executed in user mode and the access address is
read-protected, then a data access error exception occurs.

Store with Immediate Address — STI rc,im

ad + addr(im)
val + read-reg(rc, RF)
mem' <+ write-mem(val, ad, mem)

pc + addr(pc+1)

The memory access address is calculated by unsigned-extending the 8-bit immediate
value im to 16-bits. The rc register value is stored in the memory at the access
address. If an STI instruction is executed in user mode and the access address is

write-protected, a data access error exception occurs.

50



Return From Exception Handler — RFEH

sr0 < read-sreg(0, SRF)
srl < read-sreg(1, SRF)
su + logcar(srl)

SRF' <« SRF(sv/,sr0,srl)
pc < addr(sr0)

This instruction is the only way to switch from supervisor mode to user mode.
The transition from user mode to supervisor mode only occurs when an exception
or an interrupt is processed. A typical use of this instruction is to return from
an exception handler to the interrupted user program. The least significant bit of
special register 1 is used as the new value of the su flag. In other words, special
register 1 specifies the privilege mode after the RFEH instruction is executed. The
program counter is set to the value of the special register 0. An RFEH instruction
synchronizes the machine so that the subsequent instructions are executed in the
correct privilege mode. RFEH is a privileged instruction. More discussions about
exception handling can be found in Subsection 5.2.3.

Move from Special Register — MFSR rc¢,ra

val < read-sreg(ra, SRF)

RF' <« write-reg(val,rc, RF)

pc « addr(pc+1)
The value of the special register designated by the ra field is stored in the general-
purpose register designated by the rc field. Legitimate ra field values are 0 and

1. Otherwise, ra does not designate an existing special register, and an illegal

instruction exception occurs. MFSR is a privileged instruction.

51



Move to Special Register — MTSR rc,ra

val + read-reg(rc, RF)

SRF' <« write-sreg(val,ra, SRF)

pc +— addr(pc+1)
The value of the general-purpose register designated by the rc field is stored in
the special register designated by the ra field. Legitimate ra field values are 0

and 1. Otherwise, an illegal instruction exception occurs. MTSR is a privileged

instruction.

5.2.3 Exceptions and Interrupts in the FM9801

The FM9801 implements exceptions and interrupts. When an exception or an inter-
rupt is detected, the program execution is suspended and the processor starts the
execution of another program called the ezception handler.

We introduce four types of exception and interrupts. Sometimes the terms
“interrupts” and “exceptions” are used interchangeably. “There is no accepted
nomenclature associated with interrupts; every manufacturer seems to be creative in
their use of terms.”[Cra96] In this dissertation, we classify exceptions and interrupts

in the FM9801 as follows:

e External Interrupt or simply interrupt. External interrupts are caused by
signals to the microprocessor. Upon receiving an external interrupt signal, the
FM9801 interrupts the currently executing program, and starts the execution
of the exception handler. The program is interrupted asynchronously; any

instruction can be interrupted by an interrupt signal.

e Internal Exception or simply exception. When the microprocessor detects
an error during the execution of an instruction, the program execution is
interrupted at the instruction and the exception handler is executed. The

FM9801 implements three internal exceptions:

52



— Fetch Error Exception If the processor attempts to fetch an instruc-
tion from a read-protected portion of the memory in user mode, a fetch

error exception is raised.

— Illegal Instruction Exception If an instruction has a non-defined
opcode, an illegal instruction exception is raised. An illegal instruction is
also detected if the processor attempts to execute a privileged instruction
in user mode, or the instructions specify non-existing special registers as

operands.

— Data Access Error Exception If a memory-load instruction attempts
to read from a read-protected portion of the memory in user mode, a data
access error exception is raised. Similarly, if a memory-store instruction
attempts to write to a write-protected portion of the memory, a data

access error exception is raised.

No exceptions and interrupts are maskable, i.e., there is no way to disable
exceptions and interrupts. The highest priority is given to the external interrupt,
followed by the fetch error, the illegal instruction, and the data-access error in that
order.

Assume, in the ISA state before an exception is detected, that the values of
the program counter, the privilege mode flag, special register 0, and special register
1 are given as pc, su, sr0, and srl, respectively. The states of these components at

the beginning of exception handling are represented as pc’, su’, sr0’, and sr1’ below.

pc < Exception Handler Address >

sul 1

word(pc+ 1)  if execution resumes at the next instruction
sr0

word(pc) if execution resumes at the current instruction

srl’ « word(su)

53



Exception Type

Exception Handler
Address (Hex)

Resume Execution From

External Interrupt
Fetch Error

Tllegal Instruction
Data Access Error

0030
0010
0000
0020

current instruction
current instruction
next instruction

current instruction

Table 5.2: Exception and Interrupts in the FM9801

When an exception is detected, the program counter is set to the first instruction
of the exception handler, whose address is shown in Table 5.2 for each exception
type. The privilege mode is set to supervisor mode. The old state of the privilege
mode flag, su, is saved in the special register 1. The old program counter value is
saved in special register 0. The program counter value is incremented before it is
saved, if the interrupted program is supposed to resume its execution from the next
instruction. Table 5.2 shows whether the program should resume its execution from
the interrupted instruction or the next instruction depending on the exception type.
For example, a resumed program does not execute the illegal instruction that has
caused an exception.

When the exception handling completes, an RFEH instruction is used to
resume the execution of the interrupted program. The effect of the RFEH instruc-
tion was discussed in the previous subsection. Upon calling RFEH, the exception
handler should set the special register 0 to the return address, and specify the new
privilege mode by setting the least significant bit of the special register 1. If the ex-
ception handler has not changed both special registers after the exception is raised,
the execution of the RFEH instruction restores the original privilege mode and the

program counter value.

54



5.2.4 Formal Definition of the ISA

We formally define the FM9801 ISA in the ACL2 logic. Using a Lisp-like language
such as the ACL2 logic enables us to define an executable instruction-set specifica-
tion [Cra83]. Not only we can use our ISA definition as the specification of the MA
implementation during the formal verification, but it can also be used for simulation.
A programmer can also refer to the ISA specification as a “formula manual” of the
microprocessor [HS99].

The next ISA state function ISA-step(ISA, intr) specifies the behavior of the
ISA. This function takes the current state ISA and external interrupt signal intr
and returns the ISA state after executing one instruction. It is natural to define the
ISA-step by specifying the effect of individual instructions.

The effect of each instruction type is defined with the functions shown in
Table 5.3. For example, ISA-add(rc,ra,rb, ISA) defines the next ISA state after

executing an ADD instruction with operands rc, ra, and rb.

DEFINITION:
ISA-add (re, ra, rb, ISA)
def

let* pc be ISA.pc,
RF be ISA.RF,
val be word (read-reg (ra, RF') + read-reg (rb, RF'))
in

ISA-state (addr (pc + 1), write-reg (val, re, RF), ISA.SRF, ISA.mem)

We also define four functions to specify the effects of interrupts and excep-
tions listed in Table 5.4. These functions take as an argument the current ISA state
and return the ISA state at the beginning of the execution of the exception handler.

For example, ISA-fetch-error(ISA) is defined as follows:

DEFINITION:
ISA-fetch-error (ISA)
def

ISA-state (1016, ISA.RF, SRF (1, word (ISA.pc), word (ISA.SRF .su)), ISA.mem)

55



Instruction Function

ADD ISA-add(rc, ra,rb, ISA)
MUL ISA-mul(re, ra, rb, ISA)
BR ISA-br(re,im, ISA)

LD ISA-1d(re, ra, rb, ISA)
ST ISA-st(re,ra,rb, ISA)
SYNC ISA-sync(re, ISA)

LDI ISA-1di(re, im, ISA)
STI ISA-sti(re, im, ISA)
RFEH ISA-rfeh(ISA)

MFSR ISA-mfsr(rc, ra, ISA)
MTSR ISA-mtsr(re, ra, ISA)

Table 5.3: Functions defining the effect of instructions

Exception Type Function

Fetch Error ISA-fetch-error(1ISA)
Illegal Instruction  ISA-illegal-inst(ISA)
Data Access Error ISA-data-accs-error(ISA)
External Interrupt ISA-external-intr(ISA)

Table 5.4: Functions defining the effect of exceptions and interrupts

56



This function defines the state after a fetch error is detected. The program counter
is set to 1016. The privilege mode flag is set to 1, the old program counter value
ISA.pc is saved in special register 0, and the old privilege mode flag ISA.SRF .su is

saved in the special register 1.

DEFINITION:
ISA-step (ISA, intr)
def

if ISA-oracle-exint (intr) =1 then ISA-external-intr (ISA)
elseif read-error? (ISA.pc, ISA.mem, ISA.SRF.su) =1
then ISA-fetch-error (ISA)
else let inst be read-mem (ISA.pc, ISA.mem)
in
let op be opcode (inst),
rc be rc (inst),
ra be ra (inst),
rb be rb (inst),
im be im (inst)
in
if op = 0 then ISA-add (rc, ra, rb, ISA)
elseif op = 1 then ISA-mul(re, ra, rb, ISA)
elseif op = 2 then ISA-br(re, im, ISA)
elseif op = 3 then ISA-ld (re, ra, rb, ISA)
elseif op = 6 then ISA-1di(re, im, ISA)
elseif op = 4 then ISA-st (rc, ra, rb, ISA)
elseif op = 7 then ISA-sti(rc, im, ISA)
elseif op = 5 then ISA-sync (ISA)
elseif op = 8 then ISA-rfeh (ISA)
elseif op = 9 then ISA-mfsr (re, ra, ISA)
elseif op = 10 then ISA-mtsr(rc, ra, ISA)
else ISA-illegal-inst (ISA)
fi

The definition of ISA-step shown above reads an instruction from the mem-
ory, determines the type of the instruction from the opcode of the instruction, and
calls the corresponding function with operand values. It also specifies the behav-
ior on the interrupts and exceptions. If the argument intr is 1, the ISA interrupts
the next instruction. The function ISA-stepn(ISA, intr-list,n) defines the ISA state

after an n-step execution with a list of external interrupt signals intr-list.

57



DEFINITION:
ISA-stepn (ISA, intr-lst, n)
def

if n ~ 0 then ISA
else ISA-stepn (ISA-step (ISA, car (intr-lst)), cdr (intr-lst), n — 1)
fi

5.3 Microarchitectural Design of FM9801

The FM9801 specification at the MA level is a clock-cycle accurate model of the
microprocessor design. It defines the behavior of all components used in the imple-
mentation regardless of their visibility to the programmer.

The block diagram of the FM9801 is shown in Fig. 5.3. When an instruction
is fetched, it is initially stored in the instruction fetch unit (IFU). The fetched
instruction is decoded and sent to the dispatch queue. The instruction is then
dispatched to one of the reservation stations where it waits for its operands. When
all its operands become ready, the instruction is issued! to an execution unit. There
are four execution units in the FM9801: the integer unit, the multiply unit, the
branch unit, and the load-store unit. Each instruction is executed in the execution
unit appropriate for the instruction type. When the execution unit completes the
execution of an instruction, the result is routed through the common data bus (CDB)
to the reorder buffer. The instruction waits in the reorder buffer to be committed.
It is when the instruction is committed that its result is written to the register file.
The results from the execution units are also forwarded through the CDB to the
reservation stations, where other instructions wait for the results as operands. The
data memory access for a store instruction may be pending in the write-buffer in
the load-store unit even after the instruction is committed. When all operations

related to an instruction complete, the instruction is said to be retired. When a

!The terms “dispatch” and “issue” are sometimes used differently. Some people regard the
reservation station as a virtual execution unit instead of as an instruction window. They call
instruction dispatch and issue in our definitions “issue” and “release”, respectively.

58



predictor
v v v
| dispatch| register re-order
queue file buffer
L]
v
YV Y YV Y vV vV Reservgti on
T I T——- - 1
\ \ Y \
load-store | integer multiply branch
" unit unit unit unit

Common Data Bus (CDB)

Figure 5.3: Block Diagram of the FM9801.

59




conditional branch instruction is decoded, a branch predictor predicts whether the
branch will be taken. Instructions following a conditional branch are speculatively
executed until the branch instruction is committed.

A state of the FM9801 MA model is represented in the ACL2 logic with
data-structures defined with the defstructure macros. The definition of the data-
structure is given in Appendix B.4.

In the following subsections, we will discuss each component of the FM9801
microarchitectural design. Detailed descriptions of design techniques used in the

FM9801 can be found in the literature [Joh91, PH96, Cra96].

5.3.1 Instruction Fetch Unit and Dispatch Queue.

The IFU fetches an instruction word from the memory addressed by the program
counter. The FM9801 fetches at most one instruction in every clock cycle. Figure 5.4
shows the IFU and the dispatch queue. The fields of the IFU, valid?, excpt, pc, and
word, store a busy flag, the exception status, the associated program counter value,
and the fetched instruction word, respectively. The 3-bit field, excpt, represents the
exception status for the fetched instruction. The encoding shown in Table 5.5 is
used to represent an exception status in several components in the FM9801. For
example, if an instruction fetch error is detected by the IFU, the ezcpt field is set to
1012. The value stored in the pc field is the address of the fetched instruction word.
The fetched instruction is decoded next, and it is sent to the dispatch queue.
The dispatch queue of the FM9801 works as a centralized instruction window, which
buffers decoded instructions and constantly supplies them to the execution units.
The IFU may not fetch instructions fast enough due to slow memory responses.
The dispatch queue is a first-in-first-out (FIFO) buffer with four entries DQO0,
D@1, DQ2, and D@Q3. The fields, valid?, pc, and excpt, in dispatch queue entries are

similar to those in the IFU. The opcode of the instruction is decoded into a control

60



IFU valid?§ excpt§ pc: word ‘

branch
decoder predictor
dispatch queue

pQ3 | valid? excpt | pc }cntlv rc ra br -target

DQ2 valid?iexcpt pc icntlv< rc! rai rb§ im ‘br-target

DO 1 valid?iexcpt pc icntlv<i rci rai rb§ im ibr-target

DQO valid’.i:excpt pc i(:ntlv<3 rci rai rb§ im ibr-target

Figure 5.4: The IFU and dispatch queue of the FM9801.

Exception Type excpt field
No Exception Detected 0XXj
Tllegal Instruction 1002
Fetch Error 1014
Data Access Error 1104
(External Interrupt) 111,

Table 5.5: Encoding for the exception flags in the FM9801. X represents a “don’t
care” bit. Flags for an external interrupt, 1115, is not used in the current imple-
mentation of the FM9801.

vector and stored in the field cntlv. The definition of the control vector is given in
Table B.3 in the appendix. The dispatch queue fields ra, rb, rc, and im store the
values from the corresponding instruction fields of the original instruction word.
When a BR instruction is decoded, a branch predictor predicts whether the
conditional branch will be taken. A bit of the control vector is used to store the
branch prediction result. The branch target address is calculated at the same time
and stored into the field br-target. We will discuss branch prediction and speculative

execution in Subsection 5.3.7 in detail.

61



5.3.2 Tomasulo’s Algorithm

The FM9801 may issue and complete instructions out of the original program order.
This is called out-of-order issue and out-of-order completion of instructions. On the
other hand, the instructions are fetched, dispatched and committed in-order; that
is, the FM9801 fetches, dispatches and commits instructions exactly in program
order. We use Tomasulo’s algorithm [Tom67] to implement out-of-order issue and
completion. This algorithm keeps track of the dependencies between instructions
and forwards the results of instructions to other instructions that will use previous
results as operands.

The key technique in Tomasulo’s algorithm is associating a tag to each in-
struction. Tags are used to identify the instructions that produce the operand values.
When an instruction is dispatched from the dispatch queue to one of the reservation
stations, a tag is assigned to the dispatched instruction. In the FM9801, a reorder
buffer entry is also allocated for an instruction when it is dispatched. We use the
index to the allocated reorder buffer entry as the tag of the instruction.

The register reference table, the reservation stations, the CDB, and the re-
order buffer cooperate to implement Tomasulo’s algorithm. In the following Subsec-
tions 5.3.3, 5.3.4, and 5.3.6, we describe the behavior of each component and discuss

how Tomasulo’s algorithm works.

5.3.3 Register Reference Table

The register reference table keeps track of instructions that will modify registers.
When an instruction is dispatched, the tag of the dispatched instruction is stored in
the register reference table entry associated with its destination register. By doing
this, the register reference table keeps track of the instructions that will produce
the newest register values.

The general-purpose register file and the special register file have separate

62



register file  register reference table

wait? tag

RO old value 1! tg
R1 new value 0 X
R15 old value 1 tg’

reservation station

MU RSO | valid?iop: tag readyl? vall srcl iready2?: val2: sc2

MU RSL | valid?iop: tag readyl? vall srclready2?: val2: sc2

Figure 5.5: The register file, the register reference table and a reservation station.

register reference tables. Figure 5.5 shows the general-purpose register file and its
register reference table, as well as the reservation station attached to the multiply
unit which we will discuss in the following section. Each register has a corresponding
register reference table entry with fields wait? and tag. The field wait? is set to 1
when there are dispatched instructions that will produce a new register value. The
field tag contains the tag of the most recently dispatched instruction that will update
the register. As mentioned earlier, the index to the reorder buffer entry assigned
to the instruction is used as its tag in the FM9801. For example, in Fig. 5.5, we
assume that some dispatched instruction will update register 0, but no instruction
modifies register 1. The wait? fields record which registers have a pending write.
The instruction that will modify register 0 has tag tg.

The register reference table should be updated as follows. When the proces-
sor dispatches instruction ¢ that will modify register r, the wait? field for register
r is set to 1, and the tag field is overwritten with the tag of instruction ¢. Since

the instructions are dispatched in order, simply overwriting the tag field with the

63



tag of the newly dispatched instruction will keep track of the instruction that will
produce the newest register value. When the register is updated with the new value

produced by this instruction, the wait? field is reset to 0.

5.3.4 Reservation Station and Common Data Bus

The reservation station is where instructions wait for their operands. The key tech-
nique is associating each operand with the tag of the instruction that will produce
the operand value. All reservation stations in the FM9801 work on the same prin-
ciple. As an example, we closely describe the reservation station attached to the
multiply unit.

Figure 5.5 shows the reservation station attached to the multiply unit. The
reservation station has two entries, RSO and RS1. The field tag of an entry records
the tag of the instruction which is stored in the entry. The fields ready? and ready2?
indicate the availability of the operand register values specified by the instruction
fields ra and rb, respectively. If the flags are 1, the fields vall and wval2 store the
values of the corresponding operand registers. If they are not, the fields srci and
src2 hold the tags of the instructions that will produce the operand values.

When an instruction is dispatched, the wait? fields of the register reference
table are looked up to determine whether there are pending writes to the operand
registers. If no writes are pending, the register values are sent to the fields vall and
val2 in the reservation station. Otherwise, the tag fields of the register reference
table record the tags of the instructions that will produce the operand value. These
tags are sent to the src! and src2 fields of the reservation station.

The instruction in the reservation station waits for its operand values to
be generated by previous instructions and forwarded through the CDB. Figure 5.6
shows the CDB and the data forwarding logic. The CDB has four buses, CDB-ready?,
CDB-tag, CDB-val, and CDB-excpt. The bus CDB-excpt is not shown in the figure,

64



connected to other
reseration stations

and the re-order buffer ’ W]

Lim e N
reservationstation‘ | | FD i | ’_TFD l ’_T

MU RS0 | valid? op| tag ireadyl? vallsrcl ready2? val2, sic2

MU RsL | valid? op| tag readyl? vallsrcl ready2? val2, sic2

multiply
execution
unit
rdy? tag result

CDB-va
connected to other
execution units

CDB-tag

CDB-ready?

Figure 5.6: A reservation station, the multiply unit and the CDB.

because it is not used for data-forwarding. When the execution of an instruction is
completed, the execution unit sets the buses CDB-ready? to 1, CDB-val to the result,
CDB-tag to the tag of the completing instruction, and CDB-ezcpt to its exception
status.

The reservation station compares the tag in its src! and src2 fields with the
tag on the bus CDB-tag. When these tags match, the reservation station reads
the result on the bus CDB-val into the appropriate field vwall or val2. A tag match
indicates that the completing instruction is the one that produces the operand value.

When both operands become ready, the instruction is issued to the execution
unit. Since the instruction is issued as soon as operands become ready, instructions

can be issued out of order.

65



5.3.5 Execution Units

Instructions are processed in the execution unit appropriate for the instruction type.
The integer unit executes ADD, MFSR, and MTSR instructions. The branch
instruction handles BR instructions and determines whether conditional branches
are taken. The multiply unit processes the MUL instruction with a three-stage
pipelined multiplier. The load-store unit executes memory-access instructions such
as LD, ST, LDI, and STI. We discuss the load-store unit in Subsection 5.3.9.

SYNC and RFEH instructions have no corresponding execution unit.

5.3.6 Reorder Buffer

The reorder buffer is the place where instructions wait to be committed. The ex-
ecution units may complete the execution of instructions out-of-order, but they
are committed in-order after the reorder buffer recovers the original order of the

instructions. The reorder buffer is also used for the following purposes:
e Implementing register renaming, and
e Implementing precise exceptions and interrupts.

Register renaming is a technique to permit additional registers to be associated with
the architected registers dynamically. A reorder buffer implements register renaming
by providing additional space to store register values temporarily. A reorder buffer
also helps to implement precise exceptions by forcing instructions to commit in
order. We will discuss precise exceptions in Subsection 5.3.8.

The reorder buffer in the FM9801 is a circular buffer with 8 entries. When
an instruction is dispatched, the reorder buffer entry is allocated for the dispatched
instruction. The FM9801 uses the index to the allocated reorder buffer entry as the

tag of the instruction for Tomasulo’s algorithm. When an execution unit completes

66



the execution of an instruction, the result of the execution is temporarily stored in
the allocated reorder buffer entry.

The instructions are committed from the head of the reorder buffer. The
result of the instruction is copied from the reorder buffer to the destination register
when the instruction is committed. Since instructions are committed in order, the

register file always appears as if instructions were executed sequentially.

5.3.7 Speculative Execution

The FM9801 implements speculative execution with a branch predictor. Speculative
execution allows the processor to execute instructions beyond a conditional branch
before it is determined whether the branch is taken. The branch predictor decides
whether the branch is likely to be taken. The processor speculatively executes in-
structions from the branch target which is more likely to be taken. Branch prediction
is performed when a branch instruction is at the IFU unit.

In the FM9801 project, we did not verify the correctness of a branch predictor
implementation. Our branch predictor is modeled to nondeterministically return 1
or 0, which indicate that the branch is likely to be taken or not taken, respectively.
This suits our verification purposes because we want to verify that the FM9801
correctly executes instructions regardless of the accuracy of the branch prediction.

The branch predictor only predicts whether a branch is likely to be taken. It
is the branch execution unit that determines whether a branch is actually taken. If
the branch prediction turns out to be incorrect, speculatively executed instructions
are abandoned when the branch instruction is committed, and the processor resumes
the execution from the correct branch target. If another branch instruction is fetched
during the speculative execution, the FM9801 further predicts whether this branch

is likely to be taken and continues the speculative execution.

67



5.3.8 Implementation of Exceptions and Interrupts

The FM9801 implements precise exceptions and precise interrupts [SP85]. Precise
exceptions and interrupts allow the processor to resume the program execution from
the point where it is interrupted. Precise exceptions and interrupts should satisfy

the following conditions?:

e All instructions preceding an exception or an interrupt should be completely

executed before the exception handling starts.

e All partially-executed subsequent instructions should be abandoned without

any side-effects on the programmer visible states.

o The interrupted instruction may or may not have been executed depending
on the type of the exception. Its execution should be completed or totally

abandoned.

The FM9801 implements precise exceptions using the reorder buffer. When
an instruction is committed in the reorder buffer, the processor checks whether
the instruction has raised an exception. If it has, the FM9801 abandons all the
subsequent instructions and starts the execution of an exception handler. Since the
reorder buffer commits instructions in order, the register file always appears as if
instructions were executed sequentially. This enables the FM9801 to satisfy the
conditions for precise exceptions without restoring an old state of the register file.

A mispredicted branch and an exception are handled in similar ways. Both
require abandoning subsequent instructions. A similar action is needed to handle the
instructions that synchronize the machine. In the FM9801, the SYNC and RFEH
instructions flush and synchronize the pipeline. We call them context synchronizing

instructions. Later during the verification, we generalize the concept of speculative

2 An exception that does not satisfy these conditions is imprecise. The behavior of an imprecise
exception cannot be rigorously specified. It is not our interest to verify such an ambiguous behavior,
and we will consider only precise exceptions in this dissertation.

68



execution which is caused not only by a mispredicted branch, but also an exception
or a context synchronizing instruction.

An external interrupt is handled in a slightly different way. An external inter-
rupt is asynchronous; a microprocessor can interrupt any instruction in the pipeline
as long as the interrupt is processed in a reasonably prompt manner. In fact, the
FM9801 can interrupt the instruction in the middle of the pipeline. Upon receiving

an interrupt signal, the following steps are taken to interrupt an instruction:
1. Halt further instruction dispatching to the reservation stations.
2. Wait until all dispatched instructions retire.

3. Interrupt the oldest undispatched instruction in the pipeline. If no instructions

are in the pipeline, the next instruction to be fetched will be interrupted.

This process ensures that the two condition for the precise exception are satisfied.

5.3.9 Memory Access by the FM9801

The load-store unit in the FM9801 handles memory access instructions. The basic
organization in the load-store unit is shown in Fig. 5.7. It has a two-entry write
buffer, a single entry read-buffer, a result latch, and a two-entry reservation station.

When a load instruction, either LD or LDI, is issued from a reservation
station, it advances to the read buffer. Since the memory takes an indefinite number
of clock cycles to respond, the load instruction waits for the memory to return the
value in the read buffer. The memory protection is checked at this time. When
the memory value is returned, the loaded value is sent to the result latch. Finally,
the result latch places the loaded value on the CDB, and the execution of the load
instruction completes.

A store instruction, either ST or STI, takes the following steps in the load-

store unit.

69



dispatch queue

CcDB
reservation station
RSO
RS1
write buffer ‘ ‘
read buffer
wbufl
memory <:| rbuf memory
whbof0
Ich
l result latch
CDB

Figure 5.7: The load-store unit of the FM9801.

. When issued from the reservation station, a store instruction advances to the
write buffer. The write buffer is a FIFO queue. The entry wbuf0 always holds

the value for an older store instruction than the entry wbufI.

. Memory protection is checked, and a data-access error exception is detected

if it is write-protected.

. The exception status is sent to the result latch. The write-buffer continues to

hold the address and data which will be used for the memory write operation.

. The exception flags for the instruction are sent through the CDB to the reorder
buffer.

. The store instruction is committed while the associated memory-write opera-

tion is still buffered in the write-buffer.

. The memory-write operation in the write buffer is actually performed on the
memory, and the related information is removed from the write buffer. We

say the store instruction is released from the write buffer.

70



This complex process for a store instruction is needed to implement precise
exceptions. Since the modification of the memory is not easy to undo, a memory-
write operation should not be performed until the processor determines that no
preceding exceptions have occurred. We postpone a memory-write operation until
after the corresponding store instruction is committed, at which time the instruction
is known to be executed safely.

The load-store unit implements a couple of optimizing techniques to improve
the performance of the processor. When load and store instructions are executed
simultaneously, memory access may be performed out of the original program order,
and priorities are given to the load instructions. Because the load instructions may
supply operands to the subsequent instructions, this is likely to improve the perfor-
mance of the processor. The technique is called load-bypassing. Load-bypassing is
performed only when the memory access address of the load and store instructions
are different.

If store and load instructions access the same memory address, and if the
store instruction is followed by the load instruction, the stored value is the result
of the load instruction. The load instruction can “steal” the operand value of the
store instruction, so that the load instruction can be executed without accessing
the memory at all. The FM9801 implements this optimization technique called

load-forwarding.

5.3.10 Formal Specification of the FM9801 Microarchitecture

We formally define the FM9801 microarchitecture using the ACL2 logic, as we have
done for the ISA in the last section. We can use the ACL2 definition of the MA
to simulate the design, and by simulation we eliminated most of the design faults
before attempting its formal verification. Being able to use the same MA definition

for simulation and verification is a major advantage of having an executable formal

71



specification.

The next MA state function, MA-step(MA, sigs), takes the current MA state,
MA, and the input signals, sigs, and returns the MA state after one clock cycle. In-
put signals, sigs, are represented with the structure type MA-input, which is defined

in Appendix B.4. The structure type MA-input includes the following signals:
e External interrupt signal,
e Acknowledgment from the memory system for an instruction fetch,
e Acknowledgment from the memory system for a data access, and
e An oracle to determine the current branch prediction.

An external interrupt signal initiates interrupt handling. The acknowledgments
from the memory are used to model the asynchronous behavior of the memory.
When an instruction or a datum is returned from the memory to the processor,
the acknowledgment is set to 1. An oracle is used to model the nondeterministic
results from the branch predictor. Our branch predictor model returns the provided
oracle as the “prediction” result. By verifying that the machine correctly operates
for all possible oracle sequences, the machine is guaranteed to work for any branch

predictor.

DEFINITION:

MA-step (MA, sigs)

def

MA-state (step-pc (MA, sigs),
step-RF (MA),
step-SRF (MA, sigs),
step-IFU (MA, sigs),
step-DQ (MA, sigs),
step-ROB (MA, sigs),
step-1U (MA, sigs),
step-MU (MA, sigs),
step-BU (MA, sigs),
step-LSU (MA, sigs),
step-mem (MA, sigs))

72



The definition of MA-step(MA, sigs) is given above. The next state of the
MA machine is defined by specifying the next states of individual components, such
as the program counter, the register file, and so on. The next component state
functions are defined by further specifying the next states of subcomponents. For
example, the next-state function, step-LSU (M4, sigs), is defined by specifying the
next states of the subcomponents of the load-store unit, such as the reservation
station, the write buffer, the read buffer, and the result latch.

DEFINITION:

step-LSU (MA, sigs)

def

let LSU be MA.LSU

in

load-store-unit (step-RS1-head? (LSU, MA, sigs),
step-LSU-RS0 (LSU, MA, sigs),
step-LSU-RS1(LSU, MA, sigs),
step-rbuf (LSU, MA, sigs),
step-wbuf0 (LSU, MA, sigs),
step-wbufl (LSU, MA, sigs),
step-LSU-Ich (LSU, MA, sigs))

The function MA-stepn(MA, sig-list, n) defines the MA state after n steps of
MA execution. The argument sig-list is the list of signals to the MA model for each
step.

DEFINITION:
MA-stepn (MA, sigs-lst, n)
def

if n ~0 then MA
else MA-stepn (MA-step (MA, car (sigs-Ist)), cdr (sigs-Ist), n — 1)
fi
The next ISA state function and the next MA state function are specified
in significantly different styles. The next ISA state function focuses on specifying
the effects of individual instructions, while the next MA state function is defined
by specifying the behavior of each microarchitectural component. There exists a

complex time abstraction between the ISA and the MA machines, which complicates

73



the verification problem. In the following chapters, we consider how to relate the
states of these two different models, and how to verify this relationship.

We conclude this chapter by presenting two more definitions needed for the
verification of our MA design. The function proj(MA) projects an MA state to
an ISA state by removing the states of components invisible to programmers. The
predicate flushed-p(MA) is true when the state MA is a flushed state, that is, no
partially executed instructions are in the pipeline of the MA state. In the following
definition, flushed-p(MA) checks all components are empty and no external interrupt

is pending. The function bs-and returns 1 iff all its arguments are 1.

DEFINITION:

proj (MA) % 1SA-state (MA.pc, MA.RF, MA.SRF, MA.mem)

DEFINITION:
MA-flushed? (MA)
def

bs-and (IFU-empty? (MA.IFU),
DQ-empty? (MA.DQ),
ROB-empty? (MA.ROB),
ROB-entries-empty? (MA.ROB),
IU-empty? (MA.IU),
MU-empty? (MA.MU),
BU-empty? (MA.BU),
LSU-empty? (MA.LSU),
b-not (exintr-flag? (MA)))

DEFINITION:

flushed-p (MA) < MA-flushed? (MA) = 1

74



Chapter 6

Correctness Criteria for

Pipelined Machines

This chapter discusses correctness criteria for microprocessor verifications. Our goal
is to verify pipelined machines with various features. We first look at the correctness
of machines that execute instructions sequentially, and then discuss the correctness
criteria for pipelined machines. We also discuss what should be considered when
features such as speculative execution and exceptions are added to pipelined ma-

chines.

6.1 Commutative Diagram

A widely used goal of microprocessor verification is to show that the implementa-
tion machine behaves as defined by its specification. Particularly, we are interested
in showing the execution results of instructions in the implementation machine are
exactly the results defined by the specification. This is our primary goal of verifica-
tion.

In this dissertation, our specification machine is the ISA. The ISA specifica-

75



tion defines the behavior of the microprocessor from the programmer’s viewpoint,
and it contains only the programmer visible components. It executes exactly one
instruction at every state transition. In this way, the ISA specification defines the
effect of individual instructions. Our implementation machine is the MA design.
The MA is the clock-cycle accurate model of the actual hardware implementation.
It specifies the behavior of microarchitectural components in every clock cycle as
discussed in the last chapter.

A commutative diagram is often used to represent the correspondence be-
tween the MA design and its ISA specification. If the MA executes one instruction
every machine cycle, the simple diagram in Fig. 6.1 can express the correspondence
of the two machines. In this figure, the solid arrow represents a state transition at
the corresponding machine level. The dashed arrow represents the state projection
from an MA state to an ISA state; we remove from the MA state the invisible com-
ponent states which are not part of the ISA. The commutative diagram in Fig. 6.1
compares two paths from the initial MA state MA, to the final ISA state ISA;; one
path runs the MA for one machine cycle to get to MA;, which is then projected to
the ISA state, while the other path first projects MAy to ISAy and steps the ISA
once. Since the ISA and the MA execute the same instruction, both paths should
result in the same state ISA;, provided that the MA correctly implements the ISA.
1

If an MA design takes more than one clock cycle to execute a single instruc-
tion, we need to use a slightly more complex diagram. We need to compare multiple
steps of MA execution with a single step of ISA execution. This is depicted in
Fig. 6.2. Since the machine still executes the same single instruction at both levels,
it must obtain the same results. For example, the verification of the FM8501 used

this diagram[Hun94].

!This diagram may not hold if MAy is an unreachable illegal state.

76



Instruction-Set

Architectural
State Transition
A A
State Projection State Projection

3 Micro-Architectural 3
State Transition

MA, MA,

Figure 6.1: Commutative Diagram without Time Abstraction

Single Step of ISA State Transition
ISA, 1A,

A A
| Projection ! Projection

MAo MA, " EHEE - MA,
Multiple Steps of MA State Transitions'

Figure 6.2: Correctness diagram for a machine that takes n cycles to execute a single
instruction.

The MA model and the ISA model take different number of machine cycles
to execute a single instruction. The ISA model simplifies the behavior of the MA,
which may take a varying number of machine cycles to execute a single instruction.
This elimination of the timing detail is called timing abstraction. Data abstraction
removes the detail of data representation. For instance, using rational numbers
to represent IEEE floating point numbers instead of binary representations is data
abstraction. Control abstraction hides the detail of control logic. Between our ISA
and MA models, there exist timing abstraction and control abstraction, but not
data abstraction. Bridging the timing abstraction between the ISA and the MA is
a critical problem in pipelined machines, as we will discuss in the next section.

Commutative diagrams can be extended in vertical directions. For instance,
the verification of the FM9001 uses four levels of hardware specification: specifica-

tion level, two-valued logic level, four-valued logic level, and the net-list level. The

7



specification and two-valued logic levels correspond to our ISA and MA, respectively.
By showing that each level is equivalent to the adjacent level, Hunt and Brock have
shown that the actual hardware implements their specification [HB92]. On top of
the verified microprocessor design, an assembler and a compiler are proven to be
correct[Coh86, M0096]. These multiple layers of verified hardware and software is

called the CLI stack.

6.2 Earlier Approaches for Pipelined Machines

Simple commutative diagrams presented in Fig 6.1 and 6.2 do not apply to pipelined
implementations. Unlike sequential execution, pipelined machines start executing
instructions before the completion of previous instructions. Typically, an MA state
contains partially executed instructions in the pipeline. As a result, a simple pro-
jection of an MA state may not correspond to any ISA state observed during the
ISA execution.

In order to illustrate the problem concretely, we introduce a simple three-
stage pipelined machine. Figure 6.3 shows a block diagram of the machine. This
machine has three stages: fetch, execution, and write-back. These stages are sepa-
rated by pipeline latches named “latchl” and “latch2”. The fetch stage fetches an
instruction and reads operands from the register file (RF). The program counter is
updated at this time. The execution stage executes the instruction, and performs
the data-access to the memory. The memory modification can take place only in
the execution stage. The write-back stage stores the result of the instruction into
the register file.

Let us consider the execution of instructions ig, i1, io and i3, in that order.
A reservation table[Cra96] in Table 6.1 shows how instructions advance through the
three-stage pipeline as the time progresses. For instance, instruction ¢y is fetched

and stored in latchl at time ¢;, it advances to the latch2 at time ¢2 and completes

78



Fetch __|_ Execute __|_Write-back

Stage Stage Stage
RF
i g g
=8 %
By

‘ memory ‘

Figure 6.3: An example pipelined machine .

Time — to t1 to t3 (7
10 latchl | latch2
7 latchl | latch2
19 latchl | latch2
i3 latchl

Table 6.1: Reservation table for the simple pipelined machine.

its operation by time t3.

In this example execution, the effect of instructions appears on programmer
visible components with timing delays. For instance, the program counter is updated
between time ty and ¢; due to the instruction fetch of 3. Instruction iy can only
modify the memory between time ¢; and ¢, and the register file between ¢2 and
t3. Because of the timing delays between microarchitectural components, states of
different components in the MA are related to different ISA states.

This timing delay is best expressed with Fig. 6.4. The MA state at time ¢ is

79



MA-step MA-step MA-step

———————— =  Mapping of the Program Counter
———————— »  Mapping of the Memory
»  Mapping of the Register File

Figure 6.4: Relation of ISA and MA states with timing delay.

represented as MA; in the figure. The program counter value in ISA; is the same as
that in MA;, but the memory state in ISA; is the same as in the next state MA; 1,
and the register file state is the same as in MA;s.

One approach to relate ISA and MA states is to use a skewed abstraction
function[SM95]. Instead of directly mapping an MA state to an ISA state, a skewed
abstraction function relates the states of individual microarchitectural components
at different time to a single ISA state. For the example in Fig. 6.4, the abstraction
function maps the current program counter value in the MA at time ¢, the register
file at time ¢ + 2 and the memory at time ¢ to the ISA state at time ¢. The relation
between the MA and the ISA can be checked by verifying the following equality for

every t:
ISA; = ISA-state(MA;.pc, MAy2.RF, MAy 1. mem),

where function ISA-state constructs an ISA state from individual component states.

Even though the skewed abstraction function technique works with a simple
pipelined machine, it is difficult to define such an abstraction function for a complex
pipelined architecture. The skewed abstraction function needs to specify the timing
delays explicitly. Timing delays vary because of pipeline stalls and non-predictable

external interactions such as memory accesses. Since the skewed abstraction func-

80



tion should take into account all factors affecting the delays, its definition becomes
complex and large for a realistic pipelined machine. It is also vulnerable to minor
design changes in the pipelined machine implementation. All of the pipelined ma-
chines verified with the skewed function technique have a short pipeline with few
stalls[TK94, Coe94, WC95, SM95].

Burch and Dill introduced the pipeline flushing diagram [BD94] for expressing
the correctness of pipelined machines. Fig. 6.5 shows a pipeline flushing diagram.
Pipeline flushing is performed by executing the pipelined MA without fetching new
instructions until all the partially executed instructions complete. This diagram
contains two paths from MAj to ISA,; Burch and Dill called the lower and upper
paths implementation-side path and specification-side path, respectively. On the
implementation-side path, we run the MA for one machine cycle from MAy to MA;,
flush the pipeline to obtain MA], and project it to ISA,. The specification-side path
flushes the pipeline to get to MAj, projects it to ISAg, and runs the ISA machine for
k cycles, where k is the number of instructions fetched during the transition from
MAy to MA;. Typically, k is 1 or 0, depending on whether an instruction is fetched
or not during the transition from MA( to MA;. Since both paths completely execute
all the partially executed instructions in initial state MAq plus & more instructions,
the resulting state ISA,, obtained by following two different paths should be the same
if the MA design implements the ISA correctly. Let flush(MA) denote the machine
state obtained by pipeline flushing from state MA. Using the state transitions
functions for the MA and the ISA models introduced in the last chapter, the flushing

diagram can be expressed as:
proj(flush(MA-step(MA, sigs))) = ISA-stepn(proj(flush(MA)), intr-list, k).

Since we have not yet considered external interrupt here, we assume that the external
input signal sigs and intr-list do not cause external interrupts. The equation should

hold even for pipelined machines that execute instructions out of program order,

81



k cycles of

ISA state
transition
. ISA-stepn
I 1
! proj ! proj
MA MA
0 1
Pipeline
Flushing | flush flush
MAg MA;
MA-step

Figure 6.5: Burch and Dill’s Flushing Diagram.

because the result of out-of-order execution should appear as if the instructions
were executed sequentially. The equation also holds for superscalar machines, for
which k can be larger than 1 [Bur96, WB96].

The advantage of Burch and Dill’s approach is the use of the pipelined im-
plementation itself as an abstraction function from an MA state to an ISA state.
This simplifies the construction of the relationship between the ISA specification
and the MA design. Their approach also employs a symbolic simulation technique
using so called uninterpreted functions. Uninterpreted functions are functions whose
definitions are not elaborated. By expressing the output of data-path logic with un-
interpreted functions, their technique symbolically simulates machine executions,
and syntactically compares the expressions representing the resulting states?.

In Burch and Dill’s approach, the size of the expression representing the sim-
ulation result may explode as the number of machine cycles grows, and the pipeline

flushing can take many cycles to complete. It also verifies the entire architecture

2The idea of uninterpreted functions had been frequently used in the theorem proving commu-
nity. In Ngthm [BMS88], the user can use command toggle to effectively convert a function into
an uninterpreted function. In ACL2, the user can disable a function definition to obtain the same
effect. Uninterpreted functions were used extensively in the verification of the FM8501 [Hun94] and
FM9001 microprocessors [HB92].

82



directly without decomposing the design into pieces. As a result, their approach is
intractable for complex pipelined designs. Moreover, their approach must assume
that the initial state MA satisfies certain invariant conditions, because the flushing
diagram may not hold if MA, is an inconsistent machine state. Burch and Dill did
not mention how to find or verify these invariant conditions in their original paper.
In fact, we believe finding and verifying invariant conditions are the most difficult
part in the verification of hardware. There have been a number of studies to improve
the efficiency of Burch and Dill’s verification approach[JDB95, VB9S].

Even though Burch and Dill’s flushing diagram can be applied to a wide
range of pipelined designs including superscalar processors, there are limitations
in its applicability. The flushing diagram cannot be directly applied to processors
with speculative execution. In the original flushing diagram in Fig. 6.5, the number
k represents the number of instructions fetched during the transition from MAj
to MA;. However, this number can be incorrect because a processor may fetch
instructions speculatively and abandon them later. One modified definition of & is
the number of fetched instructions that will be completed by the end of pipeline
flushing. However, processors with a branch prediction mechanism require a more
complicated definition of k, because the fetched instructions may or may not be
completed depending on the prediction.

The pipeline flushing diagram does not apply to machines with external
interrupts, either. The ISA specifies the correct behavior for external interrupts:
when the ISA receives an external interrupt signal, it immediately interrupts the
next instruction to be executed. In the pipelined MA model, however, the machine
takes many cycles to synchronize the pipeline and then interrupts an instruction as
discussed in the last chapter. Which instruction is actually interrupted depends on
the MA implementation.

In fact, the FM9801 may interrupt an instruction in the middle of the

83



pipeline. Because of this, the flushing diagram may not hold. For example, let
us consider the following scenario. Suppose an instruction j is fetched during the
single MA step from MAy to MA;. Further assume that an external interrupt signal
is sent to the MA during this step. Because of the way the MA design processes an
interrupt signal, this may interrupt an earlier instruction ¢, instead of j. However,
in the corresponding ISA execution from ISAy to ISA;, the only instruction that
can be interrupted by an external signal is j. Furthermore, the ISA state obtained
by following the implementation side throws away all subsequent instructions of ¢,
which are executed in the specification side. Thus, it is not straightforward to check

the correctness of external interrupts with the flushing diagram.

6.3 Correctness Criterion for Pipeline Machines

We want to define a correctness criterion which is applicable to a wide range of
pipelined machines. Our targets of verification are pipelined machines that may
execute instructions out-of-order and speculatively with internal exceptions and ex-
ternal interrupts. The correctness criteria discussed in the previous section do not
apply to these types of pipelined machines. We also want our correctness criterion
to be implementation independent. For example, the definition of a skewed abstrac-
tion function heavily depends on the hardware design. This makes the correctness
criteria complex and vulnerable to minor design changes in the implemented hard-
ware. It is hard to trust a correctness criterion itself if its definition is complex. In
the rest of this section, we will present our approach to the correctness criterion.
For the moment, we assume our processors do not have external interrupts and
self-modifying code. We discuss these issues in the following sections.

Figure 6.6 shows our correctness diagram. The diagram defines the validity
of arbitrary MA executions that start and end with flushed pipeline states. There

are two paths in the diagram. The lower path runs the MA for n clock cycles from

84



m cycles of

|SA state transition
ISA-stepn( 1SA, , m)

I I

, Prol n cycles of . Pl
MA state transition
MA, MA,
(flushed state) (flushed state)

MA-stepn( MAy, n)

Figure 6.6: Correctness diagram. This diagram compares n cycles of MA execution
and m cycles of ISA execution, where m is the number of instructions executed
during the MA execution.

a flushed pipeline state MA( to another flushed state MA,,. The final flushed state
MA,, is then projected to ISA,,. Suppose this n-step MA state transition executes
m instructions. The upper path first projects MAq to the initial ISA state ISAy and
then runs the ISA specification for m steps to get the final state ISA,,. If the two
paths lead to the same ISA,, for arbitrary n-step MA executions for every n, we say
that the MA design always executes instructions as specified by the ISA.

We use the n-step MA function MA-stepn(MA, n), the ISA n-step function
ISA-stepn(ISA,n), the projection function proj(MA), and flushed state predicate
flushed-p(MA) in the following definition of our correctness criterion. We will not
consider external interrupts for the moment, and in this section we use a simplified
version of n-step functions which take the current states and numbers of steps, but

not external input signals. We assume no instructions are interrupted.

Criterion 1 (Correctness Criterion without Interrupts) There exists a witness func-

tion Wy, and

flushed-p(MAp) A flushed-p(MA-stepn(MAy, sig-list,n))
_)

proj(MA-stepn(MAg, n)) = ISA-stepn(proj(MAy), Wn(MAg, n))

for any initial state MAy and natural number n.

85



The witness function Wy (MAp, n) returns the number of instructions com-
pletely executed during the n-step MA execution from MAy. Our correctness dia-
gram restricts the initial and the final states to be flushed, i.e., there are no partially
executed instructions in MAy and MA-step(MAg,n). Therefore, we do not have to
define a skewed abstraction function that maps unflushed pipeline states to ISA
states.

Our correctness criterion is more general than Burch and Dill’s pipeline flush-
ing diagram, in the sense that every pipelined machine satisfying the flushing dia-

gram satisfies our correctness criterion. This is shown by the following theorem:

Theorem 1 Let MAy be a flushed MA state. Suppose for every i such that 0 < i <

n}
proj(flush(MA-step(MA;))) = ISA-stepn(proj(flush(MA4;)), k;) (6.1)

where k; is the number of instructions fetched during the machine cycle from MA; to
MA; ;1. Given that MA-stepn(MAg, n) is also a flushed state, the following equation
holds:

n—1
proj(MA-stepn(MAy, n)) = ISA-stepn(proj(MAo), > _ ki). (6.2)
=0

Equation (6.1) represents the flushing diagram, and (6.2) implies our criterion with
a witness function that returns Z?;()l k; as its value. The proof of Theorem 1 can
be found in Appendix A.1. Conversely, we can prove the flushing diagram from
our correctness criterion with a slight modification. The theorem and its proof are
provided in Appendix A.2.

As we discussed in the previous section, Burch and Dill’s flushing diagram is
applicable to superscalar pipelined machines with out-of-order execution. Theorem 1
suggests that our criterion should be also satisfied by superscalar pipelined machines

with out-of-order execution. In fact, our criterion can be applied to a wider range

86



of pipelined designs. For instance, pipelined machines with speculative execution
should satisfy our correctness criterion. After a mispredicted branch, the MA may
speculatively execute instructions that should not be executed; however, the MA has
to abandon these speculatively executed instructions as if these incorrect instructions
have never been executed. This can be checked by comparing the behavior of the
MA with the ISA, because the ISA never speculatively executes instructions.

Our correctness criterion guarantees that the result returned by the pipelined
MA is always the same as specified by its ISA. This is a safety property: incorrect
states are not reached by the MA implementation. It does not, however, imply all the
properties that the pipelined machine should satisfy. For instance, our correctness
criterion does not imply liveness. Qur correctness diagram is vacuous if flushed
pipelined states are not reachable. In order to show that the verified criterion is not
vacuous, we should prove that the processor reaches a flushed state eventually, or at
least we should exhibit an instance of execution that reaches a flushed state. These
additional properties can be verified separately.

We have seen that the correctness criterion for pipelined MA designs is differ-
ent from the correctness criterion for MA designs that sequentially execute instruc-
tions. Our criterion for pipelined designs compares only the initial and the final
MA states with the corresponding ISA states. The intermediate machine states
with partially executed instructions are not compared with the ISA states. For MA
designs that sequentially execute instructions, the commutative diagram in Fig. 6.2
compares the MA and the ISA states every time an instruction is completed.

Because our correctness criterion does not check intermediate machine states,
there is a question whether our correctness criterion assures the same level of con-
fidence for the verified pipelined design as the commutative diagram does for the
design that executes instructions sequentially. Qur correctness criterion is based

on the observation that commercial RISC processors do not guarantee correct I/O

87



STORE RO, <addr> STORE RO, <addr> STORE RO, <addr>

| O_REQUEST NOP SYNC
NOP | O REQUEST
| O REQUEST
@ (b) (©

Figure 6.7: Solutions for memory access serialization.

operations unless explicit synchronization is performed. In the rest of this section,
we will show how the memory synchronization is performed in such pipelined pro-
Cessors.

Let us consider an example pseudo code shown in Fig. 6.7. Code (a) stores
the value of register R0 in the memory at address <addr>, and requests an I/O
operation. A pipelined machine may not execute this code correctly, because the
I/O request can be issued before the STORE instruction completes. As a result,
I/O operation may be performed with an incorrect memory value. Code (b) shows
an alternative approach for the problem. It issues a few NOP instructions which
do nothing but consume clock cycles between the STORE instruction and the I/O
operation. We can reduce the chance of incorrect behavior by inserting more NOP
instructions. However, this solution depends on the implementation of the pipelined
machine. This approach may not work correctly with pipelined machines that ex-
ecute instructions out of program order, or machines that do not consume many
clock cycles for NOP instructions.

The code (c) shows another approach. We introduce instruction SYNC that
flushes the pipelined machine. This ensures that all the instructions that precede
SYNC will complete their execution before the execution of the subsequent instruc-
tions. In this code, the I/O request will not be issued until the STORE instruction
writes its value into the memory, thus the I/O operation is correctly performed.

Many commercial RISC processors implement instructions with similar effects, such

88



as the MB instruction in Alpha architecture [AAC98] or the sync instruction for
PowerPC [MSSW94]. They are sometimes called memory barrier instructions.

Our correctness criterion compares the states of the MA design with the ISA
states only when the pipeline is flushed and synchronized. Qur criterion is based on
the observation that commercial pipelined processors guarantee the correct values
only at the explicit synchronization point. Our correctness criterion assures that we
can observe correct machine states through I/O operations only after the machine

is explicitly synchronized.

6.4 Exceptions and Correctness Criterion

Exceptions complicate the problem of microprocessor verification. In pipelined ma-
chines, multiple instructions may cause exceptions simultaneously, or speculatively
executed instructions may cause exceptions that should not occur. Additionally,
microprocessors have to provide mechanisms to restart program execution from the
point where it is interrupted. This section discusses the verification criterion used
for verifying processors with exceptions.

In order to allow the process to be restarted from the point where execution is
interrupted, the processor must implement precise exceptions. The two conditions
for precise exceptions are given in Subsection 5.3.8. When a pipelined machine
encounters an internal exception, the processor flushes the pipeline, stores necessary
values into registers, and sets the program counter to the beginning of an exception
handler. All preceding instructions are completed, and subsequent instructions are
abandoned. This process may take many clock cycles. If multiple exceptions are
detected simultaneously, the processor handles only the exception caused by the
instruction earliest in program order. A pipelined machine should also ignore a
false exception raised by a speculatively executed instruction.

We specified the effects of an internal exception with the ISA next-state

89



function ISA-step; it takes as argument the ISA state before executing the exception-
causing instruction and returns the state right before the execution of the first
instruction in the exception handler.

Verifying Criterion 1 can demonstrate that the MA correctly implements
precise exceptions for all internal exceptions. Since the ISA model executes instruc-
tions one-by-one, it captures the conditions for precise exceptions. Our criterion also
implies that the MA correctly handles multiple exceptions that are simultaneously
detected in the pipeline because the ISA processes exceptions in program order.
We can further check that the MA does not have any side effect from falsely raised
exceptions during speculative execution because the ISA never executes instructions
speculatively and raises false exceptions. We do not verify whether each exception
is correctly processed after the FM9801 vectors to the exception handling routine
because this is a software verification issue [SB90].

Let us consider external interrupts. The ISA-step(ISA, intr) defined in Chap-
ter b takes the current state, ISA, and input signal, intr, and returns the next
ISA state after executing a single instruction or interrupting an instruction, de-
pending on whether external interrupt signal ¢ntr is 0 or 1. On the other hand,
MA-step(MA, sigs) returns the state after executing the MA for one machine cycle
with external signals sigs. This MA-step function may not interrupt an instruction
immediately even if the external interrupt signal is 1 in sigs. It typically takes a
number of clock cycles before an instruction is actually interrupted.

Unlike the case for internal exceptions, Criterion 1 does not apply to external
interrupts. The diagram in Fig. 6.8 illustrates the execution with external interrupts.
The ISA with external interrupts may result in different final states if different
instructions are interrupted. For example, the ISA execution starting from ISAg

may end up with different final ISA states such as ISA,,, ISA] , and ISA! by

m

interrupting different instructions. On the other hand, the MA design interrupts an

90



proj ~ proj ‘Eproj

4\ MA/

n

Figure 6.8: Correspondence between the ISA and the MA with exceptions.

instruction in the middle of the pipeline. It is the designer’s choice to decide which
instruction is interrupted. There is no single correct implementation. It is possible
that one MA implementation results in the state corresponding to ISA,,, but another
implementation results in another state corresponding to ISA}, . However, if the ISA
and the MA execute and interrupt the same instructions, the resulting states must
correspond to each other.

What we prove is that, for an arbitrary MA execution from a flushed state
MA, to another flushed state MA,,, there is a corresponding ISA execution path such
as ISAg to ISA,,, and that it satisfies proj(MAg) = ISAy and proj(MA,) = ISA,.
Trivially, different MA execution paths corresponds to different ISA execution paths.
For example, the execution path from MAy to MA!, may correspond to the ISA
execution from ISAg to ISA],. There should be a corresponding ISA execution path
for each MA execution path. On the contrary, there may not be any corresponding
MA execution path for ISA execution paths such as the execution path from ISAg
to ISA}.

Summarizing the argument so far, we need to prove that, for any MA exe-
cution path, there exists a corresponding ISA execution path and our commutative
diagram holds. We show the existence of the corresponding ISA execution path for
each MA execution path by defining witness functions. Criterion 1 required the

existence of a witness function Wy returning the number of instructions executed

91



by the MA. Here, we use an additional witness function Wsig(MAo, sig-list) to con-
struct a list of ISA external signals that interrupts the same instructions as the MA

does.

Criterion 2 (Correctness Criterion with External Interrupts) There exist witness

functions Wy and W, such that

ig
(flushed-p(MAg) A flushed-p(MA-stepn(MAy, sig-list,n)))
— ( proj(MA-stepn(MAy, sig-list,n))

= ISA-stepn(proj(MAy), ngg(MAo, sig-list,n), Wn(MAy, sig-list,n)))

holds for any MA state MAy, sequence of external signals sig-list, and natural num-

ber n.

The witness function Wy here returns the number of instructions executed plus the
number of externally interrupted instructions.

This criterion suggests that the MA handles external interrupts precisely as
specified by the ISA. However, it does not show other properties about external
interrupts. For instance, it does not guarantee that external interrupt signals are
eventually processed. Actually, if external interrupt signals are raised too often, the
FM9801 cannot process them fast enough, and it will drop some of the interrupt
requests. The criterion does not suggest how many cycles it takes before an excep-
tion handler is started, either. These properties could be verified independently if

necessary.

6.5 Self-Modifying Code in Pipelined Machines

Self-modifying code is an interesting issue in the verification of pipelined machines.
All processors, in some sense, must permit the execution of self~-modifying programs;

just the act of loading a program is one such modification of the program memory.

92



During the execution of a program by the MA, there are a number of instruction in
the pipeline. We call this set of instructions an ezecution cloud. Consider instruction
19 that modifies the instruction word of 7;. The ISA executes instructions one at a
time; ¢ immediately modifies i1, and when ¢; is executed next time, the processor
reads the modified instruction word for ¢;. On the other hand, the MA may execute
19 and 71 in the same execution cloud. The MA executes iy over a number of clock
cycles, and i; may be fetched before the completion of ig. As a result, the processor
may fetch an unmodified instruction word, and the pipelined MA may execute self-
modifying program differently from the ISA.

There are a couple of solutions for the problem of self-modifying code. One
approach is dividing the memory into two parts: the program memory and the data
memory. This completely eliminates the possibility of self-modifying code. Since
this model cannot load a program and execute it, it is not an accurate model of a
real processor. However, this approach is a practical compromise between the reality
and the abstracted model. This approach has been used to verify several processor
models[BD94, SHI7].

Another approach to the problem is making the hardware be responsible
for detecting self-modifying code. If a self-modifying code is detected, the hardware
must stall the execution of the program, so that modifying and modified instructions
are not executed in the same execution cloud. Intel’s Pentium Processor provides
such a hardware mechanism[AA93, Min97]. For this type of processors, we can use
the same correctness criterion discussed in the previous sections.

Typical RISC pipelined microprocessors do not have such a detection mech-
anism of self-modifying code. They require the programmer to explicitly serialize
the program execution. Such processors implements instructions to synchronize the
program execution similar to the one discussed in Section 6.3.

For instance, we can safely load a program by first loading the code into the

93



memory, executing the SYNC instruction that causes the pipeline to flush, and then
jumping to the loaded program. We assume that no instruction modifies another
instruction in a program segment between two consecutive flushed states, thus each
segment of the program is executed correctly. We can append multiple segments
of such MA execution, and preserve the execution correctness. What the hardware
must guarantee is the result of each program fragment is correct as long as no
self-modification occurs in the segment

We modify Criterion 2 to cover pipelined machines that may execute self-
modifying code without a hardware detection mechanism. First we introduce the
predicate ISA-self-modify-p(ISAg, intr-list,n), which checks whether the ISA exe-
cution corresponding to ISA-stepn(ISAy, intr-list,n) runs a self-modifying program.

With this predicate, our correctness criterion is defined as follows:

Criterion 3 (Correctness Criterion with Possible Self-modifying Code) There exist

witness functions Wy and W, and

19’
( flushed-p(MAy)
A flushed-p(MA-stepn(MAy, sig-list,n))
A = ISA-self-modify-p(proj(MAy), ngg(MAo, sig-list,n), Wn(MAy, sig-list,n))))
— ( proj(MA-stepn(MAy, sig-list,n))

= ISA-stepn(proj(MAy), Wsig(MAO’ sig-list,n), Wy (MAy, sig-list,n)))
for any MA state MAy, sequence of external signals sig-list, and natural number n.

Intuitively speaking, we assume that the ISA executes no self-modifying program
between the initial and the final ISA states, and show the commutative diagram
holds in the same way as Criterion 2. This criterion is what we verify for the

FM9801.

In this chapter, we have discussed a variety of correctness criteria. No single

correctness criterion implies the complete correctness of a verified processor. For

94



instance, our correctness criteria do not address the liveness issue. The verified
criterion may be vacuous unless we show that there exists an MA execution to reach
a flushed final state. They do not address other issues like performance verification,
the verification of prompt responses for interrupt signals, and correct behaviors in
a multi-processor environment.

However, verifying our correctness criteria guarantees that the result gen-
erated by the pipelined MA is always the result specified by the ISA. This would
not be the case if the MA design causes pipeline hazards, incorrectly implements
speculative execution, or incorrectly processes exceptions. Verifying our correctness
criteria can reveal subtle designs faults in the pipelined machines, and the verifica-
tion requires a profound analysis of the behavior of pipelined architecture. In the

following chapters, we will discuss the verification of our criterion for the FM9801.

95



Chapter 7

Intermediate Abstraction

7.1 Purpose of an Intermediate Abstraction

Our intermediate abstraction, which we call Microarchitectural Ezecution Trace Ta-
ble or simply MAETT, is an auxiliary variable. Technically, it is called a history
variable which records the past behavior of the MA machine [AL91]. Auxiliary vari-
ables are often used to ease the definitions of invariants and refinement mappings.
Typical pipelined machine implementations are optimized for performance, and not
all the information useful for the verification is recorded in the machine state. For
instance, the original instruction word is dropped as soon as the instruction is de-
coded, even though it would be useful to know the original instruction word for
verifying the behavior of the machine. We can record such useful information in an
auxiliary variable. We are particularly interested in an auxiliary variable which en-
ables us to directly reason about the instructions, because various properties about
pipelined execution can be represented as properties of executed instructions.

A MAETT representation mimics a reservation table of pipelined machines.
Figure 7.1 shows an example reservation table for the FM9801. This table shows

the stages of instructions 79,71, ¢2 and 73 at each machine state. Stages are shown as

96



MA, MA; MA, MA; MA,

i0 (1FY i(DQO) i(lURSO)i(cor’rplete)i
'y (I'FY) (DQ 0) §(|UR31)§
'2 ? ?  (Fy | (DQO)
1 T T R 1LY

Figure 7.1: A reservation table for the FM9801. The MAETT corresponds to a
column of a reservation table.

(IFU), (DQ 0) and (DQ 1). For instance, instruction ig is at the stage (IFU) in the
machine state MA; and it advances to the stage (DQ 0) in state MA;. The MAETT
resembles a column of the reservation station. A MAETT records the stages and
other related information of the executed instructions.

In the ACL2 definition of the MAETT, a column of the reservation table
is represented with an ACL2 list. This list records instructions in program order,
where each instruction is represented using an ACL2 structure named INST.

This list representation enables us to define recursive predicates to specify
properties on the executed instructions. We will define and verify various invariant
properties that are defined as predicates of a MAETT, and use the MAETT as a
stepping-stone in the proof of the correctness criterion.

In the rest of the chapter, we will discuss the MAETT abstraction in de-
tail. We discuss the definition of MAETT states for reachable machine states in
Section 7.2. In Section 7.3, we look closely into the representation of instructions
in the MAETT. Then, we define and prove basic properties of instructions recorded
in the MAETT. In Section 7.4, we discuss the program order of instructions. In
Section 7.5, we introduce functions that return the instruction at a particular stage.
In Section 7.6, functions are defined to specify instructions that generate operand

values.

97



7.2 Data-Structure and Functions for MAETT

We define the MAET'T for all reachable MA states. First, we recursively define that

an MA state is reachable by n-steps as follows:

1. State MA is reachable by O-step if it is a flushed state, that is, flushed-p(MA)

is true. In this case, MA is an initial state.

2. State MA' is reachable by (n + 1)-steps if there exists a state MA which is
reachable by n-steps and MA’' = MA-step(MA, sigs) with some external input

signals sigs.

We say that MA is a reachable state iff M A is reachable by n-steps for some natural
number n. It is easy to prove by induction that MA,, is a reachable state iff MA,
can be represented as MA-stepn(MA,, sig-list,n) with some flushed MA state MA,,
a list of external signals sig-list, and a natural number n.

Now, we recursively define the MAETT state for a reachable MA state with
two functions MT-init(MA) and MT-step(MT, MA, sigs) as follows:

1. If MA is an initial state satisfying flushed-p(MA), then MT-init(MA) is the
MAETT of MA.

2. If state MA' is reachable by (n + 1)-steps, then there exists a state MA that is
reachable by n-steps and MA' = MA-step(MA, sigs). Let MT be the MAETT
of MA. Then, MT-step(MT, MA, sigs) is the MAETT of MA'.

The existence of the MAETT states for all reachable states can be proven by induc-
tion.

As we have defined an n-step function for MA models, we can define an n-step
function for the MAETT abstraction. Suppose MAj is a flushed initial MA state,
and MTy = MT-init(MAp). The following function MT-stepn(MT o, MAy, sig-list, n)
defines the MAETT for the reachable state MA-stepn(MAy, sig-list,n).

98



DEFINITION:
MT-stepn (MT, MA, sig-list, n)
def

if n ~0 then MT
elseif endp (sig-list) then MT
else MT-stepn (MT-step (MT, MA, car (sig-list)),
MA-step (MA, car (sig-list)),
cdr (sig-list),
n—1)
fi

Figure 7.2 shows the data-structures used to define a MAETT state. A
MAETT is represented with structure types defined with the ACL2 macro defstruc-
ture. The structure INST is used to represent the current status of an individual
instruction. We will discuss the details of the instruction representation in the fol-
lowing section. The structure MAETT defines the data type for an entire MAETT
state. The trace field of the MAETT structure stores the true list of retired and
in-flight instructions represented using the INST structure. This list records the in-
structions in program order. The true list of INST structures, INST-listp, is defined
using the ACL2 macro deflist.

For instance, three instructions iy, i; and is are fetched and being executed
in the MA state MA3 in Fig. 7.1. Let MT3 be the MAETT representing the state
MAj3. The trace field of a MAETT MTj stores a list (i9 i1 i2), where 4, i1 and i2
are represented using the INST structures. If we use the dot notation introduced in
Chapter 3, MT .trace = (ig i1 i2)-

Additionally, the structure used to define a MAETT records other parameters
useful in the definition of pipelined machine properties. The fields DQ-len and
WB-len record the number of instructions stored in the dispatch queue and the
write buffer, respectively. The fields ROB-head, ROB-tail, and ROB-flg are the
head pointer, the tail pointer, and the wrap-around flag for the reorder buffer. The
field new-ID is used to store the new ID for the newly fetched instruction. The

purpose of the ID is discussed in the next section.

99



Defstructure INST {

naturalp ID ; // Identification Number

bitp modified? ; // Modified by Self-Modifying Code?
bitp first-modified? ; // First Modified Instruction

bitp specultv? ; // Speculatively Executed?

bitp br-predict? ;  // Branch Prediction Result

bitp exintr? ; // Externally Interrupted

stage-p stg ; // Current Stage

ROB-index-p tag ; // Tag used in Tomasulo’s Algorithm
ISA-state-p pre-ISA ; // Pre-ISA state

ISA-state-p post-ISA ; // Post-ISA state

}

Deflist INST-listp as List of INST-p

Defstructure MAETT {

ISA-state-p init-ISA ; // Initial ISA state

naturalp new-ID ; // ID for Newly Fetched Instruction
naturalp DQ-len ; // # of Instructions in Dispatch Queue
naturalp WB-len ; // # of Instructions in Write Buffer
bitp ROB-lg ; // Circular State Flag of Reorder buffer
ROB-index-p ROB-head ; // Head of Reorder Buffer
ROB-index-p ROB-tail ; // Tail of Reorder Buffer

INST-listp trace ; // List of Executed Instructions

}

Figure 7.2: Definition of MAETT data-type.

100



Finally, the init-ISA field of a MAETT stores the initial ISA state. As
mentioned earlier, a reachable MA state is represented as MA-stepn(MAy, sig-list, n)
and its MAETT is defined as MT-stepn(MT-init(MAy), M Ay, sig-list,n). The state
MAy is the initial flushed MA state from which program execution starts. We define
the ISA projection of MAy, proj(MAy), to be the initial ISA state from which the
comparable ISA execution starts, and we store it in the init-ISA field of the MAETT.

This completes the description of the fields of the MAETT structure. The
MAETT initial function MT-init and next-state function MT-step should maintain
correct values in these fields. Keeping track of all fetched and executed instructions
is a tricky but an essential part of the MAETT abstraction. While maintaining
the list of instructions in program order, we also have to update individual INST
structures in the list, so that each INST structure represents the current status
of the instruction. In the rest of the section, we discuss how the MAETT defining
functions MT-init and MT-step maintain the list of retired and in-flight instructions.

The initial MAETT function MT-init(MA) simply sets the trace field of an
MAETT to an empty list nil.

MT-init(MA,).trace = nil

This means no instructions have been fetched and executed in the initial state MA.

In order to define the MAETT next-state function MT-step, we introduce
three functions fetched-INST, exintr-INST, and step-INST, which define the states
of individual INST structures in the MAETT. The function fetched-INST defines the
INST structure representing a newly fetched instruction. The function exintr-INST
defines the INST structure representing an externally interrupted instruction. And
the function step-INST defines the updated status of an instruction in the next state.
More precisely speaking, if INST structure ¢ represents the status of an instruction
in the current state MA, step-INST(i, MT, MA, sigs) defines the status of the same
instruction in the next MA state MA-step(MA, sigs).

101



Let us consider the current state MA and its MAETT MT. Let MA' be the
next MA state MA-step(MA, sigs) and MT' be its MAETT MT-step(MT, MA, sigs).
Suppose MT.trace = (ip ... ip—1). In other words, ip,...,i,_1 represent the
instructions that have been retired or are in-flight. The MAETT next-state function
MT-step(MT, MA, sigs) adds and deletes elements in the ¢race field and returns an
MT' that satisfies:

ih oL If ¢, flushes subsequent instructions,
0 k
MT' trace — | (4 ... t_q tiner)  if instruction ¢y is externally interrupted,
(4 --- By_q fetch) if @ new instruction ifecp is fetched, and
(2 --- 1) otherwise.

In this definition, 7secs is the INST structure defined with the function fetched-INST
and represents a newly fetched instruction. The INST structure ;s is defined
with exintr-INST and represents an externally interrupted instruction. The INST
structure 4), represents the same instruction as iy, but it records the status of the
instruction in the next state MA’ while ij, represents the status in MA. Formally,
i), = step-INST(iy,, MT, MA, sigs).

There are four cases in the above definition of MT’.trace. The first case is
when the instruction represented by ¢ flushes the subsequent instructions. If an
instruction is a mispredicted branch, an exception-raising instruction, or a context-
synchronizing instruction, the subsequent instructions should not be completed
but must be abandoned. Mimicking this behavior of the processor, the function
MT-step(MT, MA, sigs) removes the INST elements ig.1,... ,i, representing the
subsequent instructions, and updates i, ... , iy with 4g,... ).

In the second case, the instruction represented by iy is externally interrupted.
In this case, the subsequent instructions are similarly abandoned, and iy, is replaced

with iintr-

102



In the third case, no instructions are abandoned and a new instruction is
fetched. A new instruction represented as ifen is added at the end of the list.
Since the FM9801 fetches instructions in order, adding ., at the end of the list
maintains the program order of the instructions.

Finally, if no instructions are fetched nor abandoned, MT-step simply up-

dates all INST structures i, ... ,ip—1 with g,... i ;.

Since the retired instruc-
tions are not removed from the list, it keeps all retired instructions as well as in-flight
instructions.

As the reader may have realized, the definitions of the MAETT data-structure
and the next-state functions are directly related to the MA design; a different MA
design will have a different MAETT representation. However, maintaining a list
of instructions in program order is one of the key ideas for the definition of the
MAETT abstraction. This will allow many properties to be defined as recursive
predicates as we will see later.

One problem with the MAETT abstraction is that the complex definitions
of the MAETT defining functions, MT-init and MT-step, may not be correct. The
definition of these functions becomes complex as the original machine design be-
comes complicated. An answer to this problem is that the MAETT definition will
be proven to satisfy various invariant properties that relate it to the original machine
state. In the next chapter, we define and verify these invariant properties on the
MAETT. If the MAETT defining functions do not correctly emulate the behavior
of the MA design, the verification of invariant properties fails and the bugs in the
MAETT defining functions are exposed. We iteratively fixed the definition of the
MAETT defining functions until we completed the verification.

In the next section, we will see in more detail the representation of the

instructions in the MAETT. This will clarify what we record in the MAETT ab-

straction of an MA state.

103



7.3 Representation of Instructions

The representation of instructions is a key issue in the MAETT abstraction. We
represent the status of each instruction with the structure INST. This structure
stores the information about an instruction that may not be kept by the MA design
but may be useful in the analysis of the instruction. In defining the structure, we paid
attention to two issues: the conciseness of the representation and its expressibility.
A simple representation eases the definition of the MAETT abstraction. At the same
time, we must be able to define numerous values and check various conditions of
the instructions using the INST representation. We will examine this by discussing
each field of the INST structure. The definition of the INST structure was given in
Fig. 7.2.

In subsection 7.3.1, we define the pipeline stages for instructions. Formally
defining pipeline stages with a fine granularity will allow us to precisely reason about
the internal latches. Also the stages of the instructions must be known when defining
various invariant conditions. In Subsection 7.3.2, we study the ISA states related
to each instruction. In Subsection 7.3.3, we discuss how we record speculatively
executed instructions, and in Subsection 7.3.4, we describe how self-modifying in-
structions are recorded. In Subsection 7.3.5, we cover additional issues concerning
our instruction representation. From now on, the INST structure ¢ is simply called

“instruction 2”, as long as its implication is clear.

7.3.1 Stages of Instructions

The field stg of the INST structure records the pipeline stage of the represented
instruction. Formally, we defined 26 pipeline stages for the FM9801. These pipeline
stages specify the pipeline latches in which the intermediate results of instructions
are located. For instance, instructions in different reservation station entries are

considered to be at different stages. In this sense, our pipeline stages have finer

104



granularity than those typically used in the discussion of pipelined designs.

In the ACL2 logic, we defined these 26 pipeline stages as an ACL2 list con-
stant. The different stages and the paths between stages are shown in Fig. 7.3. For
instance, the instruction fetch stage is defined with the constant ’ (IFU), and the
stage for an instruction at dispatch queue entry 0 is > (DQ 0). Directed edges in the
figure indicate possible transitions of an instruction from a stage to another stage.
For example, an instruction at the > (IFU) stage can move to stages ’(DQ 0), > (DQ
1), >(DQ 2), and ’(DQ 3). Self-pointing edges corresponding to instruction stalls
are not shown here, as a stall can occur in any stage. Every instruction starts at the
instruction fetch stage, ’> (IFU), and reaches the retire stage, ’ (retire), unless it
is abandoned due to speculative execution. For example, an ADD instruction may

pass through the following stages:
> (IFU) — ’(DQ1) — ’(DQO) — > (IU RSO) — ’(complete) — ’(retire).

We divide the pipeline stages into several major groups by defining predicates
of stages. Figure 7.3 shows rounded boxes surrounding stages, indicating they are
grouped together. The label on the boxes shows the predicate to test whether a stage
belongs to that group. For example, DQ-stg-p('(DQ0)) is true and DQ-stg-p('(IFU))
is not.

Particularly, committed-p(i) is true if ¢ is a committed instruction, and
dispatched-p(i) is true if ¢ is a dispatched instruction. As discussed in Chapter 5, the
FM9801 dispatches and commits instructions in order, and this property is critical

for the correct operation of the machine.

7.3.2 ISA States and Interrupt Signals

The field pre-ISA of INST structure i stores the ideal ISA state before executing the
instruction represented by i. We call it the pre-ISA state of i. The field post-ISA

stores the ideal ISA state after the execution, and we call it the post-ISA state of i.

105



d-payoredsip

d-peniwwos

d-bis-elp|dwoo

d-B1s-211181 (04 1101)

N

(Tyngm 3 wwod) —— (04nNgw 3 LWOD)

e

(Tingwm 818 |duod)—— (0 Jngw 8198 |duod) (819 |duo2)
- S d-Bis-e1nexe
(Ua | Tngm) (Ua 1 oynom) (Ua | yngi)
H (2ua 1 M)
(TIngm) ——  (0Jngm) (ynqu1) %
(TUa2 I M)

/

=]

TN

(Tsd ns1)  (0sd Ns1) (Tsd M) (osd M) | | (Tsd ng)(osd ng) | ((Tsd Ni)(osd N i)
\ \ N VA P
d-b615-NS1 d-bs-NIN d-bs-ng d-Bis-N|

d-615-0a ? 0a)— (2 0a)—= (100)—= (0 8@

Figure 7.3: Stages of Instructions in the FM9801. Boxes surround the stages satis-
106

fying the labeling predicates.



In principle, the pre-ISA state and post-ISA states for a particular instruction
can be calculated if we know the initial ISA states and all instructions that have
been executed. We also need to know which instructions are interrupted by external
signals, because the behavior of the ISA machine changes depending on interrupts.

The field ezintr? of the INST structure is used to record which instructions
are actually interrupted. Like a typical microprocessor design, an external signal of
FM9801 may interrupt instructions in the middle of the pipeline, not the instruction
that is fetched in the current cycle. As a result, the relation between the timing
of an external interrupt signal and the choice of the interrupted instruction is not
simple. Our MAETT records which instructions are actually interrupted by setting
the ezintr? field of the INST structure. The MAETT next-state function MT-step
sets the field of the interrupted instruction if the instruction is interrupted in the
MA execution.

The pre-ISA and post-ISA states of each instruction recorded in a MAETT
MT can be defined recursively. Let us represent the k’th instruction recorded in

MAETT MT as if.

MT.init-ISA  ifk=0
ig—1.post-ISA if kK #A0
i.post-ISA = ISA-step(ig.pre-ISA, i .exintr?)

ig-pre-ISA =

For example, if MT.trace = (ig9 %1 -+ %m—1), the initial ISA state of the
program is recorded as MT'.init-ISA. This state is the pre-ISA state of i; and we
name it ISAy. The post-ISA state of g is defined with the ISA next-state function
as ISA-step(ISAy,i.exintr?), using the information stored in the exintr? field to
determine whether instruction 7 is interrupted. This post-ISA state is the result of
executing instruction 79, and we name this ISA state ISA;. It is the state from which
the next instruction i; is executed. Thus ISA; is the pre-ISA state of ¢;. Similarly,

the post-ISA state, ISAs, of i1 can be calculated from ISA;. In this way, the ISA

107



state sequence ISAg, ISA1,... ,ISA,, can be defined. This ISA execution sequence
is what the MA is trying to mimic.

The pre-ISA state is particularly useful for defining various values related to
the instruction. Following are some of the functions that calculate related values of

an instruction from its INST representation i:

INST-pc(z) o i.pre-ISA.pc

INST-RF()) % ipreISARF

INST-mem(7) i i.pre-ISA.mem

INST-word(¢) 1o read-mem(INST-pc(¢), INST-mem(7))
INST-opcode(?) df opcode(INST-word(7))

INST-ra(i) % ra(INST-word(i))

INST-rb(4) X b(INST-word(s))

INST-rc(i) % rc(INST-word(4))

INST-im(7) % im(INST-word(s))

INST-pc(i) defines the program counter value for ¢, i.e., the address of the instruction
word for i. INST-RF(7) and INST-mem(:) define the ideal register file and the mem-
ory state before the execution of instruction i. INST-word(¢) defines the instruction
word of ¢, which is the value of the memory addressed by the program counter.
INST-opcode(z) defines the opcode of i. INST-ra(z), INST-rb(¢), INST-rc(z), and
INST-im(z) define the ra, rb, rc and im field values in the instruction, as shown in
Fig. 5.2.

Similarly we can define more related values for instructions, such as the
memory access address or the result of execution. In the FM9801 verification project,
we defined 58 such functions, which are listed in Appendix C. Table 7.1 lists some
of the functions that will be used later. These functions are particularly useful in

defining lemmas and invariant properties for instructions, as we will discuss later.

108



Function Name Description

INST-excpt?(i) 1 iff ¢ causes an internal exception.
INST-wrong-branch?(i) | 1 iff branch prediction is incorrect.
INST-context-sw? (%) 1 iff ¢ is a context synchronizing instruction.
INST-store?(7) 1 iff ¢ is a memory store instruction.
INST-store-addr(z) Memory store address of ¢ if 4 is a store instruction.
INST-dest-reg(t) Destination register of ¢.

INST-dest-val(7) Destination register value for .
INST-fetch-error?(7) 1 iff fetching ¢ causes a fetch error exception.

Table 7.1: Some functions that calculate values for an instruction represented by <.

7.3.3 Speculatively Executed Instructions

The field specultv? of the INST structure is a one-bit flag to indicate whether the
represented instruction is being speculatively executed. We say that an instruction is
speculatively executed iff the MA model fetches and partially executes the instruction
but the ISA model does not. For example, instructions following a mispredicted
branch are speculatively executed. The ISA model does not fetch these instructions,
because branch instructions are completely executed before the next instruction is
fetched. However, an MA design with a deep pipeline may fetch and execute many
instructions before the branch is known to be taken.

We also consider instructions speculatively executed if they follow an in-
struction causing an internal exception. The MA of the FM9801 operates under the
assumption that an instruction does not raise an exception, and “speculatively” exe-
cutes the subsequent instructions until an exception is detected. The MA abandons
instructions following an exception-raising instruction before they are committed,
in a way similar to those following a mispredicted branch. The ISA never executes
such instructions because exceptions are processed immediately.

The context-synchronizing instruction discussed in Section 5.3.8 also starts

a speculative execution in the same sense as the other two types of instructions. A

109



context-synchronizing instruction flushes the pipeline and may change the proces-
sor’s privilege mode. When a context switching instruction commits, the processor
abandons all subsequent instructions and restarts execution, in a way similar to
mispredicted branch instructions.

By our definition, instructions following a correctly predicted conditional
branch instruction are not speculatively executed, because both the ISA and the
MA execute them. Instructions following an externally interrupted instruction are
not considered to be speculatively executed either, because those instructions would
be executed both in the ISA and the MA if the external interrupt did not occur.

We define a function INST-start-specultv?(:) that takes an instruction 7 in
the INST representation and returns 1 if i starts speculative execution. We use a few
functions found in Appendix C. Functions INST-excpt?(¢), INST-wrong-branch?(i)
and INST-context-sw?(z) return 1 when i causes an internal exception, 7 is a mispre-
dicted branch, and i is a context synchronizing instruction, respectively. ! Function
INST-start-specultv?(i) returns 1 if ¢ falls into one of these instruction types and
i is not committed yet. The condition of —committed-p(z) is necessary, because
the processor does not speculatively execute instructions after the commitment of
branch instructions, exceptions, or context switching instructions. For example, the
processor will have determined the correct outcome of branch instructions by the
time the branch instruction is committed, and it fetches instructions from correct
target addresses after the branch is committed.

DEFINITION:

INST-start-specultv? (%)

def

if committed-p (i) then 0

else bs-ior (INST-excpt? (i),

INST-context-sync? (i),
INST-wrong-branch? (4))

fi

' ACL2 macro bs-ior(by, b2, bs,...) takes the bit inclusive-OR of all arguments. If any of bits
b1,b2,bs,... are 1, it returns 1.

110



The processor speculatively executes all subsequent instructions of an in-
struction whose INST representation i satisfies INST-start-specultv?(i) = 1. Field
specultv? of an INST is set to 1 if the represented instruction is speculatively
executed. Suppose a MAETT MT records instructions ig,... ,imy; MT.trace =
(o ... im). Since the list in the trace field records instructions in program or-
der, INST-start-specultv?(is) = 1 implies that ig.specultv? = 1 for all k& such that

h<k<m.

7.3.4 Modified Instructions

Self-modification of the program can be a problem in pipelined machine ver-
ification. As discussed in Chapter 6, execution of self-modifying code may have
different effects on the ISA model and the MA model because a pipelined machine
may fetch instructions before the instruction modification is completed. We keep
track of which instructions are modified by the program, and verify that unmodified
instructions are executed correctly.

We say that an instruction is directly modified if its instruction word in the
memory is modified by a preceding instruction. We say that all subsequent instruc-
tions of a directly modified instruction are modified. A modified instruction may
be influenced by a preceding directly modified instruction and may not be executed
correctly. For example, a self-modifying program may change the course of execu-
tion by modifying a branch instruction. In such a case, all subsequent instructions
are executed differently from the ISA model.

We can define a predicate INST-modify-p(, j) which is true iff instruction 4

modifies another instruction j.

DEFINITION:
INST-modify-p (4, j)
def
(INST-store? (i) = 1)
A (INST-store-addr (¢) = ((j.pre-ISA).pc))

111



A (INST-excpt? (i) # 1)
A ((i.exintr?) # 1)
A ((j.exintr?) # 1)

This predicate checks whether ¢ is a memory-store instruction that writes the mem-
ory at the address of the instruction j. It also checks exceptions and external
interrupts do not occur because the memory store operation is not executed if an
exception is detected or an external interrupt may cancel the execution of a modified
instruction.

If a MAETT records a list of instructions MT.trace = (g %1 ... i) and
INST-modify-p(ij, ix), then instruction ¢; modifies i}, and i), satisfies iy.modified? =
1. The MAETT next-state function MT-step scans the list of instructions in the
MAETT and properly sets the value of the field modified? when a fetched instruction
happens to be modified by a previous instruction.

The first-modified? field is set to 1 iff the instruction is the first instruction
that is modified in the program recorded in the MAETT. Even though it may
be executed incorrectly, the first modified instruction holds the correct program
counter value, and we need to distinguish it to prove the correctness of program

counter values.

7.3.5 Other INST Fields

This section describes the remaining fields that were not discussed in the previous
subsections.

Field br-predict?: Prediction Result

The br-predict? field of INST structure records the branch prediction result for a
conditional branch. Since our machine predicts the result of a branch instruction at
the > (IFU) stage, the field br-predict? of INST structure 7 is set to the output from
the branch predictor when i.stg = > (IFU).

Field tag: Tag of the instruction

112



The field tag of the INST structure records the tag which is used to identify the
instruction for Tomasulo’s algorithm. The value in this field is the index to the
reorder buffer entry allocated for the instruction, since the FM9801 uses it as the
tag. The value stored in this field is used in the verification of Tomasulo’s algorithm,
which dynamically resolves the data-dependencies between instructions.

Field ID: Identity Number

This field is used to store the identifier of the instruction. By assigning distinct
ID numbers, we can make the list in the trace field of a MAETT contain distinct
elements with respect to the ACL2 function equal. In other words, two instructions
i and j recorded in the MAETT MT satisfies (equal ¢ j) iff they represent the

same instruction.

This completes the description of our instruction representation. The INST
structure stores the stages of the represented instruction, and this helps us to define
properties for instructions. The pre-ISA and post-ISA states are also useful. The
fact that instructions are recorded in program order is important in defining prop-
erties involving program order. Additionally, the MAETT records the information
for speculative execution, branch prediction, internal exceptions and external inter-
rupts. In the following sections, we define various functions and predicates that are

defined using the MAETT intermediate abstraction.

7.4 Instruction Order

A MAETT records instructions in a list in the trace field. Formula i ey MT
denotes the fact that instruction 7 is one of the instructions recorded by MT. We
define the relation ¢ €y MT as shown below. This functional definition tests

whether 7 is a member of the list in M T .trace.

113



DEFINITION:

i Emt MT dzefi € (MT trace)

If instruction 7 precedes another instruction j in program order, we write
i precedes j in MT. The predicate member-in-order(elm1, elm?2, Ist) in the fol-
lowing definition is true iff element elmI appears earlier than elm2 in the list Ist.
This can be easily seen because ACL2 function (member-equal elm list), which is
printed here as elm € list, returns the tail of list beginning with the first occurrence

of elm if elm is a member of list.

DEFINITION:

def

member-in-order (elm?1, elm2, Ilst) elm2 € cdr (elml? € Ist)

DEFINITION:

d
i1 precedes i2 in MT def member-in-order (i1, i2, MT .trace)

From the definition of INST-in-order-p(¢, j, MT'), we can prove that the rela-

tion between ¢ and j are anti-reflexive, anti-symmetric, transitive, and total. These

theorems?

can be proven by induction.
THEOREM: INST-in-order-p-identity

(inv (MT, MA) A MAETT-p (MT) A MA-state-p (MA) A (i Emr MT) A INST-p (3))
— (— (i precedes i in MT))

THEOREM: INST-in-order-antisymmetry
(inv (MT, MA) A MAETT-p (MT) A MA-state-p (MA) A (i precedes j in MT))
— (= (j precedes i in MT))

THEOREM: INST-in-order-transitivity
( inv(MT, MA)
A MAETT-p (MT)
A MA-state-p (MA)
A (i precedes j in MT)
A (j precedes k in MT))
— (¢ precedes k in MT)

2Several theorems proven in this chapter use predicate inv(MT, MA) as hypothesis. This pred-
icate is our invariant condition that will be defined in the next chapter. In this chapter, consider
inv(MT, MA) as the well-formedness predicate for the MAETT MT.

114



THEOREM: INST-in-order-p-total
((¢ emT MT) A (j €EmT MT) A (— (j precedes i in MT)) A (i # j))
— (i precedes j in MT)

The theorems shown in this section are some of the most basic proper-
ties that can be proven about instructions. The relations ¢ €yt MT and
i precedes j in MT are used in the definition of many predicates and theorems.
We will see these relations be used in the definition of our invariant in the next

chapter.

7.5 Specifying Instructions by Stages

The functions introduced in this section allow us to designate instructions with their
stages or tags. For example, INST-at-stg(s, MT) designates the instruction at stage
s, and INST-of-tag(tg, MT) designates the instruction with tag tg.

The function INST-at-stg(s, MT') returns the instruction at stage s recorded
in MT. If more than one instruction is at stage s, it returns the first instruction in

program order. If there is no instruction at stage s, it returns nil.

DEFINITION:
INST-at-stg-in-trace (s, trace)
def

if endp (trace) then nil

elseif s = (car (trace).stg) then car (trace)
else INST-at-stg-in-trace (s, cdr (trace))

fi

DEFINITION:

d
INST-at-stg (s, MT) def INST-at-stg-in-trace (s, MT .trace)

The following predicates test whether any instructions are at a particular
stage. The predicate no-INST-at-stg(s, MT) is true iff no instruction is at the stage
s. The predicate uniq-INST-at-stg(stg, MT) is true iff there is exactly one at the

stage s.

115



DEFINITION:

no-INST-at-stg-in-trace (s, trace)
def

if endp (¢race) then t

elseif (car (trace).stg) = s then nil

else no-INST-at-stg-in-trace (s, cdr (trace))
fi

DEFINITION:
unig-INST-at-stg-in-trace (s, trace)
def

if endp (trace) then nil

elseif (car (trace).stg) = s then no-INST-at-stg-in-trace (s, cdr (trace))
else uniq-INST-at-stg-in-trace (s, cdr (trace))

fi

DEFINITION:

no-INST-at-stg (s, MT) def no-INST-at-stg-in-trace (s, M T .trace)

DEFINITION:

d
uniq-INST-at-stg (s, MT) def unig-INST-at-stg-in-trace (s, M T .trace)

We prove the basic properties of the functions and predicates defined above.
THEOREM INST-stg-INST-at-stg proves that the stage of instruction defined as
INST-at-stg(s, MT) is s, and THEOREM INST-at-stg-INST-stg shows that i is the

only instruction at stage i.stg if unig-INST-at-stg(i.stg, MT) is true

THEOREM: INST-stg-INST-at-stg
unig-INST-at-stg (s, MT) — ((INST-at-stg(s, MT).stg) = s)

THEOREM: INST-at-stg-INST-stg
((¢ émT MT) A unig-INST-at-stg (¢.stg, MT))
— (INST-at-stg (i.stg, MT) = i)

We define similar functions and predicates that take a list of stages as an
argument. The function INST-at-stgs(s-list, MT) returns the first instruction in
program order whose stage is a member of a list of stages s-list. The predicate
uniq-INST-at-stgs(s-list, MT) is true iff exactly one instruction is at one of the stages

in s-list, and no-INST-at-stgs(s-list, MT) is true iff there is no such instruction.

116



Similar functions and predicates are defined for the tags of instructions. The
FM9801 uses tags to identify instructions that produce operands. In fact, a tag
designates an instructions uniquely. The function INST-of-tag(tg, MT) returns the
instruction to which the tag tg is assigned. Predicates no-INST-of-tag(tg, MT) is
true iff no instruction has the tag tg, while unig-INST-of-tag(tg, MT) is true iff
exactly one instruction recorded in MT has the tag tg. We show the definition of
INST-of-tag(tg, MT') below.

DEFINITION:
INST-of-tag-in-trace (tg, trace)
def
if endp (trace) then nil
elseif  ((car (trace).tag) = tg)
A dispatched-p (car (trace))
A (- committed-p (car (trace))) then car (trace)
else INST-of-tag-in-trace (tg, cdr (trace))
fi

DEFINITION:

INST-of-tag (tg, MT) def INST-of-tag-in-trace (tg, MT .trace)

We can prove theorems similar to those proven for INST-at-stg. THEOREM
INST-tag-inst-of-tag shows that INST-of-tag(tg, MT) returns the instruction whose

tag is tg, and THEOREM INST-of-tag-INST-tag indicates that i is the only instruc-

tion whose tag is i.tag.

THEOREM: INST-tag-INST-of-tag
(MAETT-p (MT) A ROB-index-p (tg)) A unig-INST-of-tag (tg, MT))
— ((INST-of-tag (tg, MT).tag) = tg)

THEOREM: INST-of-tag-INST-tag
( (inv(MT, MA) A MAETT-p (MT) A MA-state-p (MA))
A (INST-p (¢) A (¢ EmT MT))
A dispatched-p (i)
A (= committed-p ()))
— (INST-of-tag (i.tag, MT) = i)

117



7.6 Last Register Modifiers

The FM9801 uses Tomasulo’s algorithm to forward the results of instructions to
the instructions waiting for operand values in the reservation stations. An operand
value is produced by the instruction that writes to the operand register immediately
before the instruction that reads it. We define this operand-producing instruction
as the last register modifier and use it in the verification of Tomasulo’s algorithm.

We call an instruction that writes to register r as an r-register modifier. The
last r-register modifier before instruction ¢ is the last of all r-register modifiers that
precedes ¢ in program order. The last r-register modifier in the reorder buffer is
the last of all r-register modifiers which are in the FIFO queue implemented by the
reorder buffer. Since all dispatched and uncommitted instructions have an allocated
entry in the reorder buffer, the last r-register modifier in the reorder buffer can be
defined as the last dispatched but uncommitted r-register modifier.

For instance, in the following code fragment, ¢y and i are R3-register mod-
ifiers, and 5 is the last R3-register modifier before i3. If instructions g, 71, and 7o
are dispatched and not committed, and if 3 is not dispatched, then ¢; is the last

R2-register modifier in the reorder buffer.

io: R3 := ADD(R1,R5)
i1: R2 := MUL(R1,R4)
io: R3 := ADD(R2,R6)
ig: R2 := MUL(R3,R4)

The last register modifiers can be formalized using the MAETT abstraction.
The predicate reg-modifier-p(r,¢) holds when ¢ is an r-register modifier, where r
designates a general-purpose register. The function LRM-before(i, 7, MT) defines
the last r-register modifier before i. The predicate exist-LRM-before(i,r, MT) is

true iff there exists the last r-register modifier before instruction ¢. The function

118



LRM-before(i, 7, MT) returns nil if the last r-register modifier before i does not

exist.

DEFINITION:

trace-exist-LRM-before-p (i, r, trace)
def

if endp (trace) then nil

elseif car (trace) = i then nil

elseif reg-modifier-p (7, car (trace)) then t
else trace-exist-LRM-before-p (¢, r, cdr (trace))
fi

DEFINITION:
exist-LRM-before-p (¢, r, MT)
def

trace-exist-LRM-before-p (i, r, MT .trace)

DEFINITION:
trace-LRM-before (¢, r, trace)
def

if endp (trace) then nil
elseif car (trace) = i then nil
elseif  reg-modifier-p (r, car (trace))
A (— trace-exist-LRM-before-p (4, r, cdr (trace))) then car (trace)
else trace-LRM-before (%, r, cdr (trace))
fi

DEFINITION:

d
LRM-before (i, r, MT) def trace-LRM-before (i, r, M T .trace)

The following three theorems show that LRM-before(i, , MT') in fact defines
the last r-register modifier before ;. THEOREM reg-modifier-p-LRM-before states
that LRM-before(z, 7, MT) is an r-register modifier. THEOREM INST-in-order-LRM-
before shows that the instruction defined by LRM-before(i,r, MT) precedes ¢ in
program order. THEOREM LRM-is-last implies that LRM-before(i,r, MT') is the

last of all such r-register modifiers; if an r-register modifier j precedes instruction

119



i, either j precedes LRM-before(i,r, MT) or j itself is the last r-register modifier

before 1.

THEOREM: reg-modifier-p-LRM-before
exist-LRM-before-p (i, 7, MT) — reg-modifier-p (r, LRM-before (i, r, MT))

THEOREM: INST-in-order-LRM-before
((¢+ emT MT) A exist-LRM-before-p (¢, r, MT))
— (LRM-before (i, r, MT) precedes i in MT)

THEOREM: LRM-is-last
( (inv(MT, MA) A MAETT-p (MT) A MA-state-p (MA))
A ((i €mr MT) A INST-p (i)
A (( €mr MT) A INST-p (j))
A reg-modifier-p (7, j)
A (j precedes i in MT)
A (LRM-before (i, r, MT) # 7))
— (j precedes LRM-before (¢, r, MT) in MT)

Additionally, we can prove that the last r-register modifier before i produces
the correct source operand value for instruction 7. As introduced in Section 7.3.2, the
function INST-dest-val(j) defines the result produced by instruction j. The ideal
value of i’s source operand register r is represented as read-reg(r,:.pre-ISA.RF),
because instruction ¢ reads the value of register r in the pre-ISA state of 7 in the
corresponding ISA execution. The following theorem shows that the last r-register
modifier before ¢ produces this ideal source operand value for i, if the last r-register
modifier before i exists and if ¢ is neither speculatively executed nor modified by

self-modifying code.

THEOREM: INST-dest-val-LRM-before
( (inv(MT, MA) A MAETT-p (MT) A MA-state-p (MA) A rname-p (r))
A (INST-p(é) A (2 Eémt MT) A ((i.specultv?) # 1) A ((¢.modified?) # 1))
A exist-LRM-before-p (¢, r, MT)
A (— committed-p (LRM-before (i, r, MT))))

— (INST-dest-val (LRM-before (i, r, MT)) = read-reg (r, (i.pre-ISA).RF))

We define similar predicates and functions for the last register modifier in the

reorder buffer. The last r-register modifier in the reorder buffer is defined by the

120



function LRM-in-ROB(r, MT). The predicate exist-LRM-in-ROB-p(r, MT) tests
the existence of the last r-register modifier in the reorder buffer.

The theory presented so far is about the instructions that modify general-
purpose registers. We can develop an almost identical theory for special registers.
For instance, we define the function LSRM-before(i, sr, MT) which defines the last
sr-register modifier before i, where sr designates a special register. The predicate

exist-LSRM-before-p(i, sr, MT) is true iff the last sr-register modifier exists.

In the next chapter, we discuss the invariant properties defined using our
MAETT abstraction just introduced. For example, we use the INST representation
to define the conditions that each instruction should satisfy at particular pipeline
stages. Another example is the properties related to data-dependencies, which can
be represented as recursive functions because instructions are recorded in a MAETT

in program order.

121



Chapter 8

Definition and Verification of

Invariant Properties

A number of properties hold invariantly during the MA execution of the FM9801. In
this section, we discuss the definition and verification of such invariant properties.
Defining and proving the invariant properties are the basis of the proof for our
correctness criterion in the next chapter. First, we discuss the definition of invariant

properties in Subsection 8.1. Then, we briefly discuss their verification in Section 8.2.

8.1 Definition of the Invariant Condition

8.1.1 Overview

Currently, specifications of large hardware designs, such as microprocessor models,
cannot be automatically verified. We need to break down the large verification
problem into a number of subproblems, each of which is small enough to handle
with verification tools.

We are particularly interested in writing an invariant condition in such a way

that it can help us to decompose the verification problem of an entire microprocessor

122



into the verification of a number of simpler machine properties, which can be verified
independently. Using the MAETT intermediate abstraction that represents the
executed instructions with the INST data-structure, we define various properties
that should hold during the correct operation of our microprocessor. We define an
invariant condition as the conjunction of such properties defined on the MAETT. We
verify individual properties independently of each other to reduce the problem size.
The correctness criterion is deduced from the validity of the invariant conditions as
we will discuss in the next chapter.

As discussed in Chapter 6, self-modifying code may cause a pipelined MA to
behave differently from its ISA specification. Thus our invariant condition may not
hold if self-modifying code is completely executed. However, our invariant condition
holds during the speculative execution of modified instructions, because specula-
tively executed instructions should not have any side-effects on the programmer
visible states as they will be abandoned later.

We define the predicate MT-CMI-p(MT), which implies that some commit-
ted instruction recorded in MAETT MT are modified by self-modifying code. The
actual definition of MT-CMI-p(MT) can be found in Appendix D.

Lemma 1 (Committed Modified Instruction)
MT-CMI-p(MT) — 3i emt MT {i.modified? = 1 A committed-p(¢)}
From the definition of MT-step and MT-CMI-p, we can prove the following lemma:

Lemma 2 Suppose MA is a microarchitectural state and MT is its MAETT ab-
straction state. Let MT' be the next MAETT state, MT-step(MT, MA, sigs), after

one step of MA execution with input signals sigs. Then,
MT-CMI-p(MT) — MT-CMI-p(MT") .

In other words, commitment of modified instruction cannot be undone.

We define our invariant inv(MT, MA) as follows:

123



Definition 1 Let II be the set of properties shown in Table 8.1.
inv(MT, MA) ¥ N\ P(MT, MA)
Pell

The predicate inv(MT, MA) satisfies the following two lemmas.

Theorem 2
flushed-p(MA) — inv(MT-init(MA), MA)

Theorem 3 Let MA' be the next MA state MA-step(MA, sigs) and MT' be the
next MAETT state MT-step(MT, MA, sigs). Then,

inv(MT, MA) — inv(MT', MA') v MT-CMI-p(MT')

Theorem 2 states that the initial flushed state MA and its MAETT abstraction
MT-init(MA) satisfy our invariant. Theorem 3 states that our invariant condition
inv(MT, MA) is an invariant under the constraint -MT-CMI-p(MT') [LL90]; that is,
inv(MT, MA) is invariantly true as long as no modified instructions are committed.!
Intuitively speaking, if our invariant is true for the current state MA and its MAETT
abstraction MT, then our invariant will be true for the next states MA' and MT’
or some modified instruction will have been committed.

From Lemma 2, Theorems 2 and 3, we can prove the following theorem by

induction.
Theorem 4 Suppose MAgy to be an initial MA state. Let

MT, = MT—il’lit(MAo)
MA, = MA-stepn(MAy, sig-list,n)
MT, = MT-stepn(MTy, MAy, sig-list,n)

!According to Lamport and Lynch, P(s) is an invariant under the constraint under C(s) iff
P(s) AC(s) = P(s') V=C(s'), where s and s’ is the current and next state of the system. This is
equivalent to P(s) — P(s') V =C(s") if =C(s) — =C(s'), which is true for the ~-MT-CMI-p(MT).

124



Sec. Property Name Brief Description

8.1.2  weak-inv: A well-formedness predicate for a MAETT.

8.1.3  in-order-dispatch-commit-p: Instructions are dispatched and committed
in sequential execution order.

8.1.4 in-order-DQ-p: The dispatch queue is a FIFO queue.

8.1.5  in-order-ROB-p: The reorder buffer is a FIFO queue.

8.1.6  in-order-LSU-inst-p: Certain instruction orders are preserved for
memory access instructions in the load-store
unit.

8.1.7 no-stage-conflict: No structural conflict at pipeline stages.

8.1.8 no-tag-conflict: No structural conflict in the reorder buffer.

8.1.9  correct-speculation-p: Instructions are speculatively executed if

they follow a mispredicted branch, excep-
tion, or context switching instruction.

8.1.10 no-specultv-commit-p: No speculatively executed instruction com-
mits.

8.1.11 correct-exintr-p: An externally interrupted instruction retires
immediately.

8.1.12 MT-INST-inv: Valid intermediate data values in the
pipeline.

8.1.13 consistent-RS-p: Reservation stations keep track of the tag of
the operand-producing instructions.

8.1.14 consistent-reg-tbl-p: The register reference table keeps track of
the last general register modifying instruc-
tion.

8.1.14 consistent-sreg-tbl-p: The register reference table keeps track of
the last special register modifying instruc-
tion.

8.1.15 pc-match-p: Correct state of the program counter.

8.1.15 SRF-match-p: Correct state of the special register file.

8.1.15 RF-match-p: Correct state of the general register file.

8.1.15 mem-match-p: Correct state of the memory.

8.1.16 consistent-MA-p: Some properties for an MA state.

8.1.16 misc-inv: The conjunction of miscellaneous invariants.

Table 8.1: List of properties that should hold during the normal execution of the
FM9801. We define IT to be the set of all properties listed here. This table also
shows the subsection in which each property is discussed.

125



Then,
flushed-p(MAg) — inv(MT,,, MA,) V MT-CMI-p(MT,,)

This theorem states that any MA state reachable from a flushed state satisfies our
invariant condition unless some modified instructions are committed.

In the following subsections, we will discuss the definition of properties listed
in Table 8.1. The table shows the number of the subsection in which each property
is discussed. The verification of the invariant condition is discussed in the second

half of this chapter.

8.1.2 Weak Invariants

A predicate weak-inv(MT) is a well-formedness predicate for a MAETT. Its def-
inition is given below. Conditions used in the definition of weak-inv(MT) check
whether consistent values are in the fields ID, modified?, first-modified?, pre-ISA and
post-ISA of the INST representations of the recorded instructions. It also checks no
two INST representations in MAETT MT are identical.

DEFINITION:
weak-INV (MT)
def

MT-new-ID-distinct-p (MT')
MT-distinct-IDs-p (MT)
MT-distinct-inst-p (MT')
ISA-step-chain-p (MT')
correct-modified-flgs-p (MT)
correct-modified-first (M T)

> > > > >

Since inv(MT, MA) is an invariant under constraint -MT-CMI-p(MT), it is
guaranteed to hold only when a self-modifying program is not executed. However,
the condition weak-INV(MT) is an invariant condition without any constraints.

Thus, the following theorem is provable.

126



THEOREM: weak-INV-step
( MAETT-p (MT)
A MA-state-p (MA)
A MA-input-p (sigs)
A weak-INV (MT))
— weak-INV (MT-step (MT, MA, sigs))

8.1.3 Order of Instruction Fetch, Dispatch and Commit

The FM9801 fetches, dispatches and commits instructions in order. Since the
MAETT records instructions in program order, we can define a simple predicate
of a MAETT that tests this property.

Suppose the trace of a MAETT MT is MT .trace = (ig i1+ ip—1). Since
instructions g --- i1 are in program order, the following three conditions must

hold:
1. 4,1 is the only instruction that can be at the IFU stage.
2. If 4; is dispatched and iy is not dispatched, then j < k.
3. If 4; is committed and ¢y is not committed, then j < k.

The first condition must hold because instructions are fetched in order and the IFU
stage is the first stage for every instruction. The second and the third conditions
hold because instructions are dispatched and committed in order.

The predicate in-order-dispatch-commit-p(MT) is true iff the MAETT MT
satisfies these three conditions. The definition uses two predicates in order to rep-
resent the conditions 2 and 3. The predicates no-dispatched-INST-p(trace) and
no-committed-INST-p(trace) are true iff list trace contains no element representing

a dispatched or committed instruction, respectively.

DEFINITION:
no-dispatched-INST-p (trace)
def

if endp (trace) then t

127



else (— dispatched-p (car (trace))) A no-dispatched-INST-p (cdr (¢race))
fi

DEFINITION:
no-commit-INST-p (trace)
def

if endp (trace) then t

else (- committed-p (car (¢race))) A no-commit-INST-p (cdr (trace))
fi

DEFINITION:

in-order-trace-p (trace)

def

if endp (trace) then t

else  if IFU-stg-p (car (trace).stg) then endp (cdr (trace))
elseif - dispatched-p (car (trace)) then no-dispatched-INST-p (cdr (trace))
elseif -~ committed-p (car (trace)) then no-commit-INST-p (cdr (trace))

else t
fi
A in-order-trace-p (cdr (trace))
fi
DEFINITION:

d
in-order-dispatch-commit-p (MT') fef in-order-trace-p (M T .trace)

From the definition of the property in-order-dispatch-commit-p, we can de-

rive the following theorems. THEOREM INST-in-order-dispatch-undispatch states

that instruction ¢ precedes instruction j in program order if ¢ is dispatched and j is

not. Similarly, THEOREM INST-in-order-commit-uncommit states that ¢ precedes j

in program order if ¢ is committed and j is not. These theorems are proven using the

fact that the invariant condition inv(MT, MA) implies all properties in Table 8.1.

THEOREM: INST-in-order-dispatched-undispatched
( (inv(MT, MA) A MAETT-p (MT) A MA-state-p (MA))
A ((4 émT MT) A (j €Emt MT))
A dispatched-p (i)
A (— dispatched-p (5)))
— (i precedes j in MT)

THEOREM: INST-in-order-commit-uncommit

( (inv(MT, MA) A MAETT-p (MT) A MA-state-p (MA))
A ((4 émT MT) A (j €EmT MT))

128



A committed-p ()
A (— committed-p (5)))
— (i precedes j in MT)

8.1.4 Order of Instructions in the Dispatch Queue

The dispatch queue implements a FIFO buffer with four entries. The instructions
in the dispatch queue are the stages ’>(DQ 0), >(DQ 1), ’>(DQ 2), and ’(DQ 3).
The instruction at stage ’> (DQ 0) is the first in program order, and the instruc-
tions at stages > (DQ 1), >(DQ 2), and ’> (DQ 3) follow in that order. The predicate
in-order-DQ-p(MT) in Table 8.1 tests whether this order is observed by the instruc-
tions in the dispatch queue. Like the definition of in-order-dispatch-commit-p(MT),
the definition of in-order-DQ-p(MT) relies on the fact that MAETT records instruc-
tions in program order.

The following theorem shows the idea behind the definition of in-order-DQ-p.
In the theorem, the function DQ-stg-idx(s) returns the index to the dispatch queue
entry, given that s is one of the dispatch queue stages shown above. For instance,
DQ-stg-idx(’ (DQ 1)) = 1. Thus, the theorem states that, if instructions ¢ and j are
both in the dispatch queue and ¢ precedes j in program order, the instruction ¢ is
ahead of j in the dispatch queue. The theorem is directly derived from the definition
of in-order-DQ-p.

THEOREM: DQ-stg-index-monotonic
( inv(MT, MA)
MAETT-p (MT)
MA-state-p (MA)
DQ-stg-p (i.stg)
DQ-stg-p (j stg)
(i precedes j in MT))
— (DQ-stg-idx (7.stg) < DQ-stg-idx (j.stg))

> > > > >

129



8.1.5 Order of Instructions in the Reorder Buffer

The FM9801 implements out-of-order completion of instructions. After the execu-
tion is completed, the instructions are reordered in the reorder buffer and committed
in order. The predicate in-order-ROB-p(MT) tests whether reorder buffer correctly
records the order of all dispatched but uncommitted instructions so that it can
recover the original program order.

Unlike the dispatch queue, the reorder buffer implements a circular buffer
using two indices and a flag. Figure 8.1 shows the relation between the indices and
the flag. The index head points to the oldest instruction in the reorder buffer, and
the index tail points to the entry following the newest instruction. The shaded part
of the buffer contains valid instructions. Whenever an instruction is added to and
removed from the buffer, the indices tail and head are incremented, respectively.
When either index reaches the bottom of the buffer, it is reset to the top of the
buffer and the wrap-around flag, flg, is toggled. Initially when the buffer is empty,
flg=0 and head = tail.

We define a relation rizl <gag 7422 in M T, which holds when the instruction
at entry rixl is ahead of another instruction at entry riz2 in the FIFO queue
implemented by the reorder buffer. In the ACL2 logic, this relation between the
indices is defined with the predicate (tag-in-order riz! riz2 MT), whose name
is derived from the fact that the FM9801 uses the reorder buffer indices as the tags for
Tomasulo’s algorithm. The reorder buffer store the current values of flg, head, and
tail in its fields. The MAETT abstraction records these values in its fields ROB-flg,
ROB-head, and ROB-tail, respectively. Thus, the relation rizl <tag riz2 in MT is
defined as follows.

DEFINITION:

rizl <tag rix2 in MT

def

if (MT .ROB-fig) = 1

then (((MT.ROB-head) < riz1) A (riz2 < (MT.ROB-tail)))

130



(A) MT-ROB-flg=0 (B) MT-ROB-flg=1

head —= tail 7

rixl, ———=
rix2 ———

T R

7

(C) MT-ROB-lg=1 (D) MT-ROB-flg=1
2

i J— % %

Figure 8.1: Order of Instructions in the Reorder Buffer

V (((MT.ROB-head) < rizl) A (rizl < riz2))
vV ((rizl < riz2) A (riz2 < (MT.ROB-tail)))
else rizl < riz2
fi

This definition first checks the value of flg recorded in MT.ROB-flg. If it is
not equal to 1, the relation between the pointers is as shown in (A) in Fig. 8.1 and
rizl < riz2 implies rixl <yt riz2 in MT. If MT .ROB-flg = 1, pointers should
satisfy one of the three relations shown in (B), (C), and (D)

Predicate in-order-ROB-p(MT) in Table 8.1 determines whether the reorder
buffer records instructions in program order. The following theorem intuitively
shows the idea behind the definition of in-order-ROB-p. As mentioned earlier, i.tag
designates the index of the reorder buffer entry which is assigned to instruction 3.
According to the theorem, for any dispatched but uncommitted instructions 7 and

j, © precedes j in program order if i.tag <y j.tag in MT.

131



THEOREM: INST-in-order-INST-of-tag-if-tag-in-order
( (inv(MT, MA) A MAETT-p (MT) A MA-state-p (MA))
A (INST-p (é) A (2 Emt MT) A (- committed-p (i)) A dispatched-p (7))
A (INST-p(j) A (j EmT MT) A (- committed-p (7)) A dispatched-p (5))
A ((i.tag) <tag (j.tag) in MT))

— (i precedes j in MT)

8.1.6 Orders of Load and Store Instructions

The order of instructions is critical for the correct implementation of memory op-
erations. Out-of-order execution of load and store instructions can cause hazardous
results, which may violate the condition of precise exceptions. Moreover, the order
of instructions must be known to implement load-bypassing and load-forwarding,
which were explained in Subsection 5.3.9.

The predicate in-order-LSU-inst-p(MT, MA) determines whether the follow-

ing five conditions are met for the load and store instructions:
1. The reservation station holds instructions in program order.
2. Instructions are issued from the reservation station in order.
3. The write buffer holds instructions in program order.
4. The write buffer releases store instructions in order.

5. The order between the store instructions in the write buffer and the load

instruction in the read buffer are correctly recorded.

In the following definition of in-order-LSU-INST-p(M T, MA), each condition
is represented as a conjunct. The predicates used in this definition are defined

similarly to the predicates discussed in the last few sections.

DEFINITION:
in-order-LSU-INST-p (MT, MA)
def

in-order-LSU-RS-p (M T .trace, MA)

132



in-order-LSU-issue-p (M T .trace)
in-order-WB-trace-p (M T .trace)
in-order-WB-retire-p (M T .trace)
in-order-load-store-p (MT, MA)

> > > >

8.1.7 Absence of Stage Conflicts

The following two subsections describe methods for checking structural conflicts in
the pipelined machines. Typically, structural conflicts occur when multiple instruc-
tions need the same structural resource. Stage conflicts are one kind of structural
conflicts that might occur at pipeline latches. In the FM9801, pipeline latches are
state holding devices such as the IFU, the dispatch queue entries and the reservation
stations. Each latch can contain at most one instruction. If multiple instructions
try to occupy the same pipeline latch, a structural conflict occurs. The predicate

no-stage-conflict(MT, MA) tests whether stage conflicts exist in state MA.

DEFINITION:
no-stage-conflict (MT, MA)
def

no-IFU-stg-conflict (M T, MA)
no-DQ-stg-conflict (M T, MA)
no-1U-stg-conflict (M T, MA)
no-MU-stg-conflict (M T, MA)
no-LSU-stg-conflict (MT, MA)
no-BU-stg-conflict (M T, MA)

> > > > >

In this definition, the six predicates check whether multiple instructions oc-
cupy a single latch in the IFU, the dispatch queue, the integer unit, the multiply
unit, the load-store unit, and the branch unit, respectively. For example, the defini-
tion of no-IFU-stg-conflict(MT, MA) is given below. When the busy flag of the IFU
unit, (MA.IFU).valid?, is set to 1, there should be exactly one instruction at the
> (IFU) stage. If the flag is set to 0, no instruction should be at the ’> (IFU) stage.

Similarly, we can define the conflict-free property of other pipeline stages.

133



DEFINITION:
no-IFU-stg-conflict (M T, MA)
def

if ((MA.IFU).valid?) =1 then unig-INST-at-stg (’ (IFU), MT)
else no-INST-at-stg (> (IFU), MT)
fi

8.1.8 Absence of Conflicts in the Reorder Buffer

The reorder buffer also satisfies a conflict-free property; no more than one instruc-
tion can occupy the same reorder buffer entry. The definition of the predicate

no-tag-conflict(MT, MA), which tests this property, is given below.

DEFINITION:
no-tag-conflict-at (idz, MT, MA)
def

if (nth-robe (idz, MA.ROB).valid?) =1 then uniqg-INST-of-tag (idz, MT)
else no-INST-of-tag (idz, MT)
fi

DEFINITION:
no-tag-conflict-under (idz, MT, MA)
def

if ide ~ 0 thent
else  no-tag-conflict-at (idz — 1, MT, MA)

A no-tag-conflict-under (idz — 1, MT, MA)
fi

DEFINITION:

d
no-tag-conflict (MT, MA) def no-tag-conflict-under (8, MT, MA)

The predicate no-tag-conflict-at(idz, MT, MA) implies that no conflict occurs
at the reorder buffer entry indexed by idx. The function nth-robe(idz, MA.ROB)
returns the state of the ¢dx’th entry of reorder buffer in state MA. If its busy flag,
nth-robe(idz, MA.ROB).valid?, is set to 1, exactly one instruction is stored in the
reorder buffer entry. The predicate no-tag-conflict(MT, MA) is true if and only if
no-tag-conflict-at (idz, MA.ROB) holds for all eight reorder buffer entries.

134



As mentioned earlier, the FM9801 uses the index to the allocated reorder
buffer entry as the tag for an instruction. Thus, the conflict-free property in the
reorder buffer implies the uniqueness of the tags. The following theorem implies
that different tags are assigned to each dispatched but uncommitted instruction.

The proof uses the definition of the predicate no-tag-conflict.

THEOREM: tag-identity

( (nv(MT, MA) A MAETT-p (MT) A MA-state-p (MA))
(INST-p(z) A (¢ EmT MT) A dispatched-p (i) A (- committed-p (¢)))
(INST-p(j) A (j EmT MT) A dispatched-p (j) A (= committed-p (5))))
— (((i-tag) = (j-tag)) < (i = 7))

A
A

8.1.9 Speculatively Executed Instructions

The predicate correct-speculation-p(MT) tests whether the MAETT MT correctly
records which instructions are speculatively executed. In Subsection 7.3.3, we gen-
eralized the concept of the speculative execution; the FM9801 starts speculative ex-
ecution from an uncommitted instruction that causes either a mispredicted branch,
an exception, or context synchronization. If instruction ¢ causes speculative exe-
cution in this sense, i satisfies INST-start-specultv?(i, MT) = 1. All subsequent
instructions of ¢ are speculatively executed. This relation is illustrated with the

following theorem.

THEOREM: INST-in-order-p-INST-start-specultv
( inv(MT, MA)
A MAETT-p (MT)
A MA-state-p (MA)
A (INST-start-specultv? (i) = 1)
A (i precedes j in MT))
— ((j.specultv?) = 1)

According to this theorem, if 7 is an uncommitted instruction that starts spec-
ulative execution, a subsequent instruction j is speculatively executed. The INST
representation has a field specultv? which is set to 1 when the represented instruc-

tion is speculatively executed. Thus, i.specultv? = 1 implies that ¢ is speculatively

135



executed. The predicate correct-speculation-p(MT) tests whether the MAETT MT

correctly records the instructions which are speculatively executed in this sense.

8.1.10 Abandoning Speculatively Executed Instructions

According to our definition of speculative execution, all speculatively executed in-
structions must be abandoned before they are committed. This property is repre-
sented by the predicate no-specultv-commit-p(MT'), which is true if no speculatively
executed instruction recorded in MT is committed. The following theorem can be
proven from the definition of no-specultv-commit-p(MT). If instruction ¢ is com-

mitted, it should not be executed speculatively.

THEOREM: not-INST-specultv-INST-in-if-committed
( (nv(MT, MA) A MAETT-p (MT) A MA-state-p (MA))
A (INST-p (i) A (i EmT MT))
A committed-p (7))

— ((i-specultv?) = 0)

8.1.11 Stage of Interrupted Instructions

The predicate correct-exintr-p(MT') tests whether all externally interrupted instruc-
tions are retired. As discussed in Section 5.3.8, the FM9801 goes through a synchro-
nization process to handle an external interrupt. When an external interrupt signal
is received, the processor halts further dispatch of instructions, completes the exe-
cution of dispatched instructions, interrupts the first undispatched instruction, and
abandons the subsequent instructions. In our MAETT modeling, the interrupted
instruction goes to the ’> (retire) stage at the end of the synchronization process.
It is also at this time the exintr? field of the INST representation of the interrupted
instruction is set to 1. Thus, any interrupted instruction ¢ satisfying i.exintr? = 1
is at the ’ (retire) stage. The following theorem, proven from the definition of

correct-exintr-p(MT'), shows this relation.

136



THEOREM: INST-exintr-INST-in-if-not-retired
( (inv(MT, MA) A MAETT-p (MT) A MA-state-p (MA))
A (INST-p (¢) A (¢ EmT MT))
A (— retire-stg-p (i.stg)))

— ((i.exintr?) = 0)

8.1.12 Correctness of Intermediate Values

In this subsection, we define the correctness of the pipeline intermediate values with
the predicate MT-INST-inv(MT, MA). In the FM9801, a single instruction can go
through as many as 11 stages before it is retired. The intermediate results of an
instruction are stored in pipeline latches. As an instruction advances to the next
stage, the intermediate results for the next latch are generated from the intermediate
results stored in the previous latch. Eventually, the instruction produces the final
result, which is stored into the register file or the memory. The correctness of the
final results depends on the correctness of the intermediate values.

The definition of MT-INST-inv(MT, MA) determines whether every instruc-
tion i recorded in the MAETT MT satisfies the predicate INST-inv(i, MA). Intu-
itively speaking, INST-inv(z, MA) is true iff the intermediate results of ¢ are correctly
stored in the corresponding latch in state MA.

DEFINITION:
trace-INST-inv (¢trace, MA)
def

if endp (trace) then t
else INST-inv (car (trace), MA) A trace-INST-inv (cdr (trace), MA)
fi

DEFINITION:

MT-INST-inv (M T, MA) def trace-INST-inv (M T .trace, MA)

The predicate INST-inv(i, MA) is defined by case analysis on the stage of
instruction i. For example, IFU-INST-inv(i, MA) defines the correct intermediate
values of the instruction ¢ at the ’(IFU) stage. Other predicates represent the

correct intermediate values for multiple stages; for example, DQ-INST-inv(i, MA)

137



defines the correct intermediate values at stages > (DQ 0), >(DQ 1), >(DQ 2), and
>(DQ 3).

DEFINITION:

INST-inv (i, MA)

def

if IFU-stg-p (i.stg) then IFU-INST-inv (i, MA)

elseif DQ-stg-p (i.stg) then DQ-INST-inv (i, MA)

elseif execute-stg-p (i.stg) then execute-INST-inv (i, MA)
elseif complete-stg-p (i.stg) then complete-INST-inv (i, MA)
elseif commit-stg-p (i.stg) then commit-INST-inv (i, MA)
else t

fi

In order to illustrate the idea of how we define the intermediate values for
each stage, the definition of IFU-inst-inv is presented below. In this definition, we
assume that 7 is an instruction at the ’> (IFU) stage. As shown in Figure 5.4, the
IFU has four fields walid?, pc, excpt, and word. The predicate IFU-inst-inv tests

that these fields contain the ideal intermediate values.

DEFINITION:
IFU-INST-inv (1, MA)
def

(((MA.IFU).valid?) = 1)

A ( (((i.specultv?) # 1) A (((¢.modified?) # 1) V ((7.first-modified?) = 1)))
— (((MA.IFU).pc) = ((i.pre-ISA).pc)))
A ( (((i.specultv?) # 1) A ((:.modified?) # 1))
— (((MA.IFU).excpt) = INST-excpt-flags (¢)))
A ( (((i.specultv?) # 1) A ((i.modified?) # 1) A (= INST-fetch-error-detected-p (7)))
— (((MA.IFU).word) = INST-word (¢)))
A ( (((i.specultv?) # 1) A ((i.modified?) # 1) A INST-fetch-error-detected-p ())
— (((MA.IFU).word) = 0))

The busy flag valid? of the IFU should be set to 1, because the IFU is occupied
by the instruction ¢. The field pc should contain the address of the stored instruction
i. The address of the instruction 7 is expressed as i.pre-ISA.pc, which is the program

counter value in the pre-ISA state of i. This is the address from which the ISA

138



fetches i for the corresponding execution. The pc field value in the IFU should be
equal to this ideal address of instruction %, if ¢ is not speculatively executed and it
is not modified by self-modifying code. If the instruction ¢ is executed speculatively,
the processor may be executing the instruction differently from the way the ISA
executes the same instruction. Thus, the actual intermediate values may not be
equal to the ideal values defined in terms of the ISA execution. Similarly, modified
instructions may not be executed correctly with respect to the ISA execution.

The predicate IFU-inst-inv also tests the intermediate values at the field
excpt and word. The ideal exception status which should be recorded in the excpt
field is defined by the function INST-excpt-flags(z), and the ideal value of the word
field is defined by INST-word(¢). Functions INST-excpt-flags(i) and INST-word(z)
were introduced in Subsection 7.3.2

Correctness of intermediate values at other stages are similarly defined. The
entire definition of INST-inv(é, MA) includes 161 equalities, each of which relates
the actual value in the microarchitectural state MA and the ideal intermediate
value for instruction i. The predicate MT-INST-inv has the largest definition of
all the properties shown in Table 8.1. This makes its verification challenging. In

Subsection 8.2.2, we will revisit this property and discuss its verification.

8.1.13 Correct Tags in Reservation Stations

In the FM9801 execution core, the results of instruction execution are forwarded
through the CDB to the reservation stations where instructions wait for their source
operands, as described in Section 5.3. Tags are used to identify the instructions
that produce the source operand values. The correctness of the tags stored in the
reservation stations is critical for the verification of forwarded data values. The
predicate consistent-RS-p(MT, MA) tests whether tags stored in the reservation

stations are correct.

139



In Section 7.6, we defined the last r-register modifier before i as the in-
struction that writes to general-purpose register r before the instruction ¢. If an
instruction ¢ uses register r as its source operand, the last r-register modifier before
¢ is the instruction that produces the source operand value. We proved this with
THEOREM INST-dest-val-LRM-before in Section 7.6. Therefore, the reservation sta-
tions must keep the tags of the last register modifiers if the source operands are not
ready.

The predicate consistent-RS-p(MT, MA) in Table 8.1 tests whether all four
reservation stations in the FM9801 keep the correct tag of the last register modifiers.
As an example, we discuss the correct tag values in the reservation station attached
to the multiply unit. A multiply instruction needs the values of two source operand
registers which are specified by the instruction fields ra and rb. As described in
Subsection 5.3.4, the fields of the reservation station entry, ready!?, records whether
the ra register value is ready, and if it is not, the field src! stores the tag of the
instruction that will produce the new value of the ra register. Suppose instruction %
is at reservation station entry 0, then the correctness of the tag value is given by the
theorem shown below. The value of its src! field is expressed as MA.MU.RS0.srcl.
The ideal tag value is the tag of the last r-register modifier before ¢, where r the
operand register specified by the ra instruction field. Using the function introduced
in Subsection 7.3.2, r is represented as INST-ra(7). In the following theorem, the
actual tag value in the src1 field of the reservation station is proven to be equal to this
ideal tag value if the ready1? flag is not set, and i is neither speculatively executed

nor modified. This is one of the properties tested by consistent-RS-p(MT, MA).

THEOREM: MU-RS0-srcl-INST-tag-LRM
( inv(MT, MA)

((.stg) = (MU RSO))

((((MA.MU).RS0).ready1?) # 1)

((i.specultv?) # 1)

((¢.modified?) # 1)

MAETT-p (MT)

> > > > >

140



A MA-state-p (MA)
A INST-p (i)
A (i EmT MT))
— ((((MA.MU).RS0).srcl) = (LRM-before (i, INST-ra (i), MT).tag))

8.1.14 Tags in Register Reference Table

Register reference tables keep track of the instructions that will produce the newest
value of the registers. The predicate consistent-reg-tbl-p(MT, MA) in Table 8.1 tests
whether the register reference table for the general-purpose register file is working
correctly. Separately, we define a predicate consistent-sreg-tbl-p(MT, MA) which
tests the register reference table for the special register file. Since the definition of
consistent-sreg-tbl-p(MT, MA) is very similar to consistent-reg-tbl-p(MT, MA), we
only discuss the latter.

The register reference table keeps the tag of the most recently dispatched
instruction that will modify a specific register. This instruction can be characterized
as the last r-register modifier in the reorder buffer, which is defined in Section 7.6,

The predicate consistent-reg-tbl-p(MT, MA) tests whether every register r
satisfies consistent-reg-ref-p(r, MT, MA), which defines the correct values of the wait
and tag fields in the corresponding register reference table entry. The wait field for
register r is set to 1 iff the last r-register modifier in the reorder buffer exists, because
the register r contains an old value and is waiting for the new value produced by
the last register modifier. In such a case, the tag field should contain the tag of the

last r-register modifier in the reorder buffer.

DEFINITION:
consistent-reg-ref-p (r, MT, MA)
def

if (MT-specultv-at-dispatch? (MT) = 1) V (MT-modified-at-dispatch? (MT) = 1)
then t
elseif (reg-tbl-nth (r, (MA.DQ).reg-tbl).wait?) = 1
then  exist-LRM-in-ROB-p (r, MT)

A ((LRM-in-ROB (r, MT).tag) = (reg-tbl-nth (r, (MA.DQ).reg-tbl).tag))
else - exist-LRM-in-ROB-p (r, MT)

141



fi

DEFINITION:
consistent-reg-tbl-under (r, MT, MA)
def
if r~0 thent
else  consistent-reg-ref-p (r — 1, MT, MA)
A consistent-reg-tbl-under (r — 1, MT, MA)
fi

DEFINITION:

consistent-reg-tbl-p (M T, MA) def consistent-reg-tbl-under (8, MT, MA)

The tags in the register reference table are used to identify the instructions
producing the source operand values for dispatched instructions. The MA copies
the tag in the register reference table to a reservation station when an instruction
is dispatched. The following theorem shows that the last r-register modifier in the
reorder buffer is the last r-register modifier before i when ¢ is at the head of the
dispatch queue entry. This implies that the tag stored in the register reference table
correctly specifies the last register modifier before the dispatched instruction, which
produces the source operand value.

THEOREM: INST-dest-val-LRM-in-ROB
( inv(MT, MA)
((i.stg) = *(DQ 0))
exist-LRM-in-ROB-p (rname, MT)
MAETT-p (MT)
MA-state-p (MA)
INST-p (i)
(i emT MT))
— (LRM-in-ROB (rname, MT) = LRM-before (i, rname, MT))

> > > > > >

8.1.15 Correct States of Programmer Visible Components

Predicates pc-match-p(MT, MA), RF-match-p(MT, MA), SRF-match-p(MT, MA),
and mem-match-p(MT, MA), listed in Table 8.1, check whether the program counter,
the general-purpose register file, the special register file, and the memory, respec-

tively, are in the correct states. What is common in these predicates is that they

142



(retl re) (corrmt wbuf 0) (1U RSO) (1 FU) (not fetched)

r

=regs!
mem\\ ’y‘ ///:pc
oo
] ¢ — MA| = e .

Figure 8.2: Relation between the states of the programmer visible components in
the ISA and the MA.

define the ideal component states using the MAETT abstraction and compare them
with the actual component states. Since the definition of the RF-match-p and
SRF-match-p are almost identical, we skip the discussion on SRF-match-p and ex-
plain the remaining three conditions in this subsection.

An example relation between the programmer-visible component states in
the ISA and the MA is shown in Fig. 8.2. Let us assume that we have been exe-
cuting instructions g, 1, 2,13, .... Let ISAy be ig.pre-ISA, which is also equal to
ig_1-post-ISA if £ > 0. Suppose that, in the MA state MA;, stages of instructions
i0,11,%2, and i3 are ’ (retire), > (commit wbuf0), > (IU RS0), and ’ (IFU), respec-
tively, and instructions after i4 have not been fetched. Also, we assume that none
of the instructions are speculatively executed nor modified by self-modifying code.
As we describe below, dashed-arrows show the correspondence between the states of
the program counter, the general-purpose register file, and the memory in the ISA
and the MA.

The program counter in MA; should hold the address of the instruction

14 because it is the next instruction to be fetched. In the ISA execution, this

143



address is held by the program counter in the state ISA4, from which the ISA
fetches instruction i4. In general, the program counter in the post-ISA state of the
most recently fetched instruction has the address of the instruction to be fetched
next.

Results of instructions are written back to the register file when the instruc-
tions are committed. Since instructions iy and 71 are committed but iy and i3 are
not, the register file in MA; records the results of iy and 41, just like the ISA state
ISA5 does. That means that the register file state ISAz is the ideal state of the reg-
ister file in MA;. In general, the ideal register file state in the MA is defined as that
of the post-ISA state of the most recently committed instruction, since instructions
are committed in order.

The memory is updated when a store instruction is released from the write
buffer and retired. Since iy is retired but ¢; is not, the memory state in the MA; is
as if it were in the ISA state immediately after executing 9. Therefore the memory
states in the MA; and ISA; should be equal. The ideal memory state for an MA
state is the pre-ISA state of the first instruction that has not been retired.

As illustrated in the example above, the ideal component states can be found
in the pre-ISA and post-ISA states of instructions. Since the MAETT records such
pre-ISA and post-ISA states, we can define the ideal component states as functions

that take a MAETT as the sole argument.

DEFINITION:

trace-pc (trace, pre-pc)
def

if endp (trace) then pre-pc
else trace-pc (cdr (trace), (car (trace).post-ISA).pc)
fi

DEFINITION:

d
MT-pc (MT) def trace-pc (M T .trace, (M T .Init-ISA).pc)

DEFINITION:
pc-match-p (MT, MA)

144



def

(b-nor (MT-in-specultv? (MT), MT-self-modify? (MT)) = 1)
— (MT-pc (MT) = (MA.pc))

The function MT-pc(MT) defines the ideal program counter value for the
current MA state. The function MT-pc(MT') returns the program counter value in
the post-ISA state of the last instruction recorded the MAETT MT, because it is the
most recently fetched instruction. If no instructions are recorded in the MAETT, it
simply returns the program counter value of the initial ISA state, M T.init-ISA.

When the MA is speculatively executing instructions, it may be fetching
instructions from a wrong address and the program counter may not be correct with
respect to the ISA execution. Similarly, if modified instructions are executed by the
MA, the program counter may be incorrect. The predicate pc-match-p(MT, MA)
checks the equivalence between the ideal program counter value MT-pc(MT) and
the actual program counter value in state MA except these cases.

Similarly, the RF-match-p and mem-match-p check whether the register file

and the memory are in the ideal states.

DEFINITION:

trace-RF (trace, RF)

def

if endp (trace) then RF

elseif - committed-p (car (trace)) then RF

else trace-RF (cdr (trace), (car (trace).post-ISA).RF)
fi

DEFINITION:

MT-RF (MT) %/ trace-RF (MT trace, (MT Init-ISA) RF)

DEFINITION:

RF-match-p (MT, MA) “ MT-RF (MT) = (MA.RF)

DEFINITION:

trace-mem (trace, mem)
def

if endp (trace) then mem

145



elseif — retire-stg-p (car (trace).stg) then mem
else trace-mem (cdr (¢race), (car (trace).post-ISA).mem)
fi

DEFINITION:

MT-mem (MT) def trace-mem (M T .trace, (M T .Init-ISA).mem)

DEFINITION:

mem-match-p (MT, MA) def MT-mem (MT) = (MA.mem)

The function MT-RF(MT) defines the ideal register file state as the post-ISA state
of the last committed instruction. The function MT-mem(MT) defines the ideal
memory state similarly. Unlike the predicate pc-match-p(MT, MA), the predi-
cates RF-match-p(MT, MA) and mem-match-p(MT, MA) do not check whether
instructions are speculatively executed or modified by self-modifying code. This
is because the register file and the memory are always in the correct state, since
speculatively executed instructions are never committed. The register file and the
memory are not contaminated by self-modifying code either, because the constraint
~MT-CMI-p(MT) of our invariant inv(MT, MA) implies that no modified instruc-

tions are committed.

8.1.16 Other Invariant Conditions

In addition to the properties discussed so far, we needed several more properties to
complete the FM9801 verification. We defined these remaining properties with two
predicates consistent-MA-p and misc-inv in Table 8.1.

The predicate consistent-MA-p(MA) collects properties that can be easily
defined on the MA state without its MAETT abstraction. In the definition given
below, consistent-MA-p(MA) checks whether the dispatch queue, the reorder buffer,
and the load-store unit satisfies certain conditions. For instance, the control vector
in the dispatch queue should satisfy the constraints that guarantee each instruction

is dispatched to only one reservation station.

146



DEFINITION:
consistent-MA-p (MA)
def

consistent-DQ-cntlv-p (MA.DQ)
A consistent-ROB-p (MA.ROB)
A consistent-LSU-p (MA.LSU)

The predicate misc-inv(MT, MA) checks other relations between an MA state
and its MAETT. For instance, misc-inv checks whether ROB-flg, ROB-head, and
ROB-tail of the MAETT MT correctly record the actual wrap-around flag, the
head and tail pointers in the reorder buffer. It also checks if the DQ-len field of the

MAETT records the correct number of instructions in the dispatch queue.

DEFINITION:
misc-inv (MT, MA)
def

(((MAROB) fig) = (MT.ROB-flg))
(((MA.ROB).head) = (MT.ROB-head))
(((MA.ROB).tail) = (MT.ROB-tail))

((MT.DQ-len) < 4)

A
A
A
A correct-entries-in-DQ-p (MT, MA)

This completes the description of each property used in the definition of our
invariant condition. In each subsection, we have discussed one or more properties
listed in Table 8.1. In the next section, we discuss the verification of the invariant

condition defined in this section.

8.2 Verification of the Invariant Condition

8.2.1 Overview

We defined our invariant as a conjunction of all the properties in Table 8.1. Our
invariant condition inv(MT, MA) can be represented as Apcy P(MT, MA) where

IT is the set of predicates shown in Table 8.1. The proof of Theorem 2 is a rather

147



straightforward base case proof. In order to prove Theorem 3, it suffices to show

the following formula for every P € II:
inv(MT, MA) A -MT-CMI-p(MT') — P(MT', MA"), (8.1)

where MA' = MA-step(MA, sigs) and MT' = MT-step(MT, MA, sigs). In other
words, we need to prove every property P in II for the next state pair MA' and
MT', assuming that inv(MT, MA) holds for the current state pair MA and MT and
that no modified instructions commit in this step.

The verification of Formula (8.1) for the individual properties can be done
independently. When we verify a property P, we can concentrate our computational
resource and human effort on the microarchitectural components related to the
property P, neglecting the rest of the machine design. For instance, when we verify
the property in-order-DQ-p which states that the dispatch queue implements a FIFO
queue, we can concentrate our effort on the microarchitectural components related
to the dispatch queue. When we verify the property in-order-ROB-p, which checks
whether the reorder buffer implements a FIFO queue, we switch our attention to
the microarchitectural components related to the reorder buffer, and disregard the
rest of the design.

The following theorem proves Formula (8.1) for the case where P(MT, MA)
is RF-match-p(MT, MA). Additional assumptions are type predicates.

THEOREM: RF-match-p-preserved
( (MAETT-p(MT) A MA-state-p (MA) A MA-input-p (sigs))
A inv(MT, MA)
A (= MT-CMI-p (MT-step (MT, MA, sigs))))
— RF-match-p (MT-step (MT, MA, sigs), MA-step (MA, sigs))
Using the ACL2 theorem prover, we proved similar theorems corresponding to For-
mula (8.1) for all properties in Table 8.1. Theorem 2 and 3 are then proved in the
following theorems.
THEOREM: inv-initial-MT

(MA-state-p (MA) A (MA-flushed? (MA) = 1)) — inv (init-MT (MA), MA)

148



THEOREM: inv-step
( (MAETT-p(MT) A MA-state-p (MA) A MA-input-p (sigs))
A inv(MT, MA)
A (= MT-CMI-p (MT-step (MT, MA, sigs))))

— inv (MT-step (MT, MA, sigs), MA-step (MA, sigs))

In the following subsection, we will look closely into a few verification prob-
lems encountered during the proof of these theorems. We discuss the verification
of intermediate values in Subsection 8.2.2, the verification of forwarded data in
Tomasulo’s algorithm in Subsection 8.2.3, and the verification of memory access

operations in Subsection 8.2.4.

8.2.2 Verification of Intermediate Values

As discussed in Subsection 8.1.12, the property MT-INST-inv defines the correct
intermediate values in the pipeline. Formula (8.1) for MI-INST-inv is proven in the
theorem shown below. This theorem implies that all intermediate values in the next

machine state MA-step(MA, sigs) are correct.

THEOREM: MT-INST-inv-preserved
( (MAETT-p(MT) A MA-state-p (MA) A MA-input-p (sigs))
A inv(MT, MA)
A (= MT-CMI-p (MT-step (MT, MA, sigs))))

— MT-INST-inv (MT-step (MT, MA, sigs), MA-step (MA, sigs))

The proof by induction decomposes the theorem into subgoals which imply
the correctness of intermediate values for individual instructions. The following the-
orem shows that the intermediate values for instruction ¢ is correct in the next MA
state MA-step(MA, sigs), given that the invariant condition inv(MT, MA) holds for
the current state. The hypothesis MT-no-jmp-exintr-before(i, MT, MA, sigs) im-
plies that instruction ¢ is not abandoned due to speculative execution or an external
interrupt. The hypothesis INST-exintr-now?(, MA, sigs) # 1 implies that 7 itself is

not externally interrupted.

149



THEOREM: INST-inv-step-INST
( (MAETT-p(MT) A MA-state-p (MA) A MA-input-p (sigs))
A (INST-p (¢) A (¢ EmT MT))
A inv (MT, MA)
A (= MT-CMI-p (MT-step (MT, MA, sigs)))
A MT-no-jmp-exintr-before (i, MT, MA, sigs)
A (INST-exintr-now? (i, MA, sigs) # 1))
— INST-inv (step-INST (i, MT, MA, sigs), MA-step (MA, sigs))

The proof of this theorem is carried out by case analysis on the stages of
the instruction 4 in the current machine state MA and next machine state MA'. If
the instruction is at the pipeline stage S in the current machine state MA and it
moves to the stage S’ in the next machine state MA’, we assume the correctness of
the intermediate values at stage S in MA and show the validity of the intermediate
values at stage S’ in MA'.

However, manually constructing proofs for individual cases is time consum-
ing, because the definition of MI-INST-inv(i, MT) contains 161 equalities between
the actual values in the MA machine state and the ideal intermediate values. We
automated some of the proofs of these equalities.

The key to improve the proof efficiency is the use of ACL2 rewriting rules.
Each rewriting rule is defined in such a way that ACL2 terms representing interme-
diate values in the MA state are rewritten to irreducible terms involving the INST
representation of instructions.

For example, we can prove the following theorem

THEOREM: IFU-word-INST-word
( inv(MT, MA)
A MAETT-p (MT)
A MA-state-p (MA)
A (i EmT MT)
A IFU-stg-p (i.stg)
A ((i.specultv?) # 1)
A ((i.modified?) # 1))
— (((MA.IFU).word) = INST-word (¢))

150



This theorem states that the intermediate value stored in the word field of the IFU is
equal to INST-word(¢), which represents the ideal instruction word of i. The ACL2
theorem prover uses this theorem as a rewriting rule that converts (MA.IFU).word
to INST-word(z).

We define similar rewriting rules for each field in all the pipeline latches.
These rewriting rules rewrite expressions representing the actual intermediate values
in the machine state to the expressions representing the ideal values defined on the
INST representation of instructions. Most of the ideal values are defined with the
functions introduced in the Subsection 7.3.2.

With these rewriting rules, the ACL2 theorem prover can automatically prove
the validity of many intermediate values while proving Theorem INST-inv-step-
INST. Of all the equalities appearing in the definition of MT-INST-inv, only those
that cannot be verified automatically are attacked with human interaction. This
lowered the cost of verifying the validity of intermediate values, allowing us to com-

pletely verify THEOREM MT-INST-inv-preserved.

8.2.3 Correctness of Forwarded Data Values

In this subsection, we consider how to verify the correctness of the data-forwarding in
the pipeline. As discussed in Chapter 5, Tomasulo’s algorithm is used to forward the
results from the execution units through the CDB to the reservation stations, where
instructions wait for their operands. Proving the correctness of these forwarded
values is one of the most challenging problems in the verification of the FM9801.
As discussed in Section 7.6, if instruction ¢ is waiting for the value of the
source operand register r, the reservation station should keep the tag of the last -
register modifier before i. When the tag in the reservation station matches the tag
on the bus CDB-tag, the reservation station reads the value from the bus CDB-val

and uses it as an operand.

151



As an example, we consider verifying the data-forwarding to the reservation
station attached to the multiply unit. We need three critical theorems to prove
the correctness of the forwarded data value. First, THEOREM INST-dest-val-LRM-
before in Section 7.6 states that the result produced by the last r-register modifier
before i is the correct value of operand register r of instruction ;. Second, THEOREM
MU-RS0-src1-INST-tag-LRM in Subsection 8.1.13 states that the src! field of the
reservation station stores the correct tag of the last register modifier before ¢. Third,
THEOREM CDB-val-INST-dest-val*, which is given below, proves the following fact:
if j is the instruction whose tag is on the bus CDB-tag, and if the bus CDB-ready?
is set to 1, then the bus CDB-val carries the result of j.

THEOREM: CDB-val-INST-dest-val*
let j be INST-of-tag (CDB-tag (MA), MT)
in
( (inv(MT, MA) A MAETT-p (MT) A MA-state-p (MA))
A INST-writeback-p (j)
A ((j.specultv?) # 1)
A ((j.modified?) # 1)
A (- INST-excpt-detected-p (5))
A (CDB-ready? (MA) = 1))
— (CDB-val (MA) = INST-dest-val (5))

Using these theorems, we can prove the following theorem. The function
INST-src-vall(i) specifies the correct value of the operand register specified by the

ra instruction field.

THEOREM: CDB-val-INST-src-vall-if-CDB-ready-for-MU-RS0*
( (inv(MT, MA) A MAETT-p(MT) A MA-state-p (MA))

A (INST-p (é) A (i EmT MT))

A ((z.stg) = ’ (MU RSO))

A ((i.specultv?) # 1)

A ((¢.modified?) # 1)

A (CDB-ready? (MA) = 1)

A (CDB-tag (MA) = (((MA.MU).RS0).srcl))

A ((((MA.MU).RS0).readyl?) # 1))

— (CDB-val (MA) = INST-src-vall (%))

Sketch of Proof: Let us denote INST-ra(i) as 7 and assume the hypotheses of the

152



theorem. From THEOREM MU-RS0-srcl-INST-tag-LRM in Subsection 8.1.13 and
the hypothesis CDB-tag(MA) = MA.MU.RSO0.src, we have:

CDB-tag(MA) = LRM-before(i, r, MT).tag.

In other words, the tag on the CDB designates the last r-register modifier before ;.
Using this equality and THEOREM INST-of-tag-INST-tag in Section 7.5, instruction

j in THEOREM CDB-val-INST-dest-val* is calculated as follows:

j = INST-of-tag(CDB-val(MA), MT) {Def. of j}
= INST-of-tag(LRM-before(i, r, MT).tag, MT) {Equality shown above}
= LRM-before(i,r, MT) {INST-of-tag-INST-tag}

Using THEOREM INST-dest-val-LRM-before in Section 7.6, we can show the con-

clusion of the theorem.

CDB-val(MA)
= INST-dest-val(LRM-before(i,r, MT)) {CDB-val-INST-dest-val*}
= read-reg(r,i.pre-ISA.RF) {INST-dest-val-LRM-before}
= INST-src-vall(i) {Def. of INST-src-vall}

This theorem says that the forwarded value CDB-val(MA) is the correct
operand register value of ¢. Similarly, we can prove the correctness of data values

forwarded to other reservation stations.

8.2.4 Verification of Load-Forwarding and Load-Bypassing

The load-store unit of the FM9801 implements load-forwarding and load-bypassing
as discussed in Section 5.3.9. Load-bypassing executes load and store instructions
out of order, giving priorities to load instructions. Load-forwarding uses the value

which will be stored in the memory as the result of a future load instruction. In

153



either case, the behaviors of the load instructions depend on the preceding store
instructions.

In order to verify these techniques used in the load-store unit, we define the
last memory modifiers in the same spirit as we defined the last register modifiers.
We call the instruction that modifies the memory at address ad a memory modifier
at address ad. The last memory modifier at address ad before instruction ¢ is the last
of all memory modifiers at address ad that precede instruction ¢ in program order.
The function LMM-before(i, ad, MT) defines the last memory modifier at address ad
before 7, and the predicate exist-LMM-before-p(i, ad, MT) tests its existence. These
function and predicate are defined in the same way as we formalized the last register
modifiers. Additionally we define exist-non-retired-LMM-before-p(i, ad, MT) which
is true iff there exists a last memory modifier at address a before instruction ¢ and
it is not retired.

One important lemma, for the correctness of load-bypassing is shown below.
The function INST-src-val3(j) defines the operand value of a store instruction j that
will be written to the memory. The theorem states that the value written to the
memory by the last memory modifier at ad before 7 is the correct memory value at

address ad for the instruction i.

THEOREM: INST-src-val3-LMM-before
( (inv(MT, MA) A MAETT-p (MT) A MA-state-p (MA) A addr-p (ad))
((¢ emT MT) A INST-p (7))
((i-specultv?) # 1)
((¢.modified?) # 1)
execute-stg-p (7.stg)
exist-LMM-before-p (i, ad, MT)
(— retire-stg-p (LMM-before (¢, ad, MT).stg)))
— (INST-src-val3 (LMM-before (¢, ad, MT)) = read-mem (ad, (i.pre-ISA).mem))

> > > > > >

Using the theorem above we proved the correctness of the load-forwarding
in the following theorem. The function LSU-forward-wbuf(MA.LSU) defines the
load-forwarded value in the FM9801, and LSU-address-match?(MA.LSU) is set to 1

154



when load-forwarding is taking place. The following theorem states that the load-

forwarded value is the correct destination value of 7 if 7 is the load instruction in the
read buffer.

THEOREM: LSU-forward-wbuf-INST-dest-val
( (inv(MT, MA) A MAETT-p (MT) A MA-state-p (MA) A MA-input-p (sigs))
((¢ emT MT) A INST-p (4))
((é.specultv?) # 1)
((é.modified?) # 1)
((é.stg) = > (LSU rbuf))
(release-rbuf? (MA.LSU, MA, sigs) = 1)
(LSU-address-match? (MA.LSU) = 1))
— (LSU-forward-wbuf (MA.LSU) = INST-dest-val (7))

> > > > > >

The correctness of load-bypassing is also proved using the concept of memory
modifiers. The first theorem declares that, if the hardware line LSU-address-match?
is not set, then the last memory memory modifier before the load instruction ¢ does
not exist or it is retired. The second theorem states that the current memory state
MA.mem contains the same memory value at address ad as the memory state in the
pre-ISA state of ¢, when the last memory modifier does not exist or it is retired.

THEOREM: not-exist-non-retired-LMM-before-p-if-not-address-match
( (inv(MT, MA) A MA-state-p (MA))

(INST-p (¢) A (¢ Emr MT))

((i-specultv?) # 1)

((¢i-modified?) # 1)

((i-stg) = *(LSU rbuf))

(LSU-address-match? (MA.LSU) # 1))

exist-non-retired-LMM-before-p (i, INST-load-addr (i), MT))

1 >>>> >

= (

THEOREM: read-mem-when-no-active-mem-modifier-before
( (inv(MT, MA) A MAETT-p (MT) A MA-state-p (MA))
addr-p (ad)
(4 emT MT)
INST-p (i)
(— retire-stg-p (i.stg))
(— exist-non-retired-LMM-before-p (i, ad, MT)))
— (read-mem (ad, MA.mem) = read-mem (ad, (i.pre-ISA).mem))

> > > > >

Combining the two theorems above, we obtain the correctness of the load-

bypassing in the following theorem. It states that the memory in the current state

155



MA holds the correct value for a load instruction ¢, if no address match is detected.
Therefore, we can execute the load instruction in the current state without waiting

for the completion of preceding store instructions.

THEOREM: read-mem-INST-load-addr-INST-dest-val
( (inv(MT, MA) A MAETT-p (MT) A MA-state-p (MA))
((: émr MT) A INST-p ()
((i.specultv?) # 1)
((¢.modified?) # 1)
((i.stg) = *(LSU rbuf))
(LSU-address-match? (MA.LSU) # 1))
— (read-mem (INST-load-addr (i), MA.mem) = INST-dest-val (z))

> > > > >

8.2.5 Summary

The verification of the invariant conditions was the most time-consuming part of
the FM9801 project. In order to verify our invariant condition whose definition
involves 190 functions and predicates, we needed to prove 1878 theorem. Prior to this
proof, we build additional 1232 “shared lemmas” about the MA and the MAETT
abstraction, which were used as a basic ACL2 rule library during the verification
of the invariant. Since verifying invariant conditions requires profound analysis on
the components in the MA design, it is natural that this phase of verification takes
the largest portion of the verification effort. Furthermore, all of the designs faults
found in the original design of the FM9801 were detected during the verification
of our invariant, as discussed in Chapter 10. The next chapter discusses the proof
of the correctness correctness criterion, which puts together the various properties

discussed in this chapter.

156



Chapter 9

Proof of Correctness Criterion

In the last chapter, we looked into our invariant properties of the FM9801. By
verifying the invariant properties, we checked whether each microarchitectural com-
ponent works correctly. Our remaining verification task is combining these results
together to form the proof of our correctness criterion

A rough argument of the proof can be given with Figure 9.1. Suppose we are
trying to verify our correctness criterion for an MA state transition sequence from
the initial flushed state MAg to the final flushed state MA,,. Each MA state MAj, has
the corresponding MAETT state M T}, and the invariant condition inv(M Ty, MAyg)
holds unless a self-modifying program is executed. Each MAETT records the com-
pleted and in-flight instructions in the corresponding MA state. Particularly, the
MAETT MT, corresponding to the final state MA, records all instructions iy
through ¢,,_1 which were executed during the MA transition sequence. The MAETT
also records the pre-ISA and post-ISA states of each instruction. In other words,
the MAETT MT, records the ISA state transition sequence from ISAy to ISAn,
where ISAy is the pre-ISA state of instruction i and ISAg1 is the post-ISA state of
ix- The initial ISA state ISA is assumed to be equal to the projection, proj(MAy),

of the initial MA state MAj. In order to prove our criterion, we need to show that

157



MAETT Sequence representing MA StateTransitions

MTo— o« MT; = MTy o 4o oMT,

ISA State Transitions

=proj(MA)

el

empty

|1 trace (IFU)

(retire) | ==yi

Inv(MT,MA) @ @ @ @ oo
MA

ISA = proj(MA,)

2

#

- MA 4 —MAZ»---»MAn

flushed flushed

Micro-Architectural State Transitions

Figure 9.1: Relation between ISA, MA, and MAETT sequences.

the final ISA state ISA,, is equal to proj(MA,).

The MAETT records the current pipeline stage of each instruction. For
instance, MT; records that instruction ¢ is at the > (IFU) stage in state MA;. Since
the final state MA,, is flushed, all instructions recorded in MT,, are retired. This
implies that MA,, looks as if it had just finished the execution of all instructions
ip through i,,_1. By using a simple analysis on MT, with the invariant condition
inv(MT,, MA,), we can show that the state of all programmer visible components
in MA,, are equal to those in ISA,,. Thus, we can prove that proj(MA,) = ISA,,
and the commutative diagram holds.

In the rest of this chapter, we look into the proof more carefully. First, we
introduce several functions to be used in this section. The function MT-len(MT)
returns the length of the list in the field trace of MAETT MT. This is the number of
instructions recorded in MT. The predicate MT-all-retired-p(MT) is true when all
instructions recorded in MT are retired. The function MT-exintr-Ist(MT) extracts

the value of the exintr? field of each INST representation of instructions. For exam-

158



ple, let us consider a MAETT MT such that MT .trace = (o 41). If instructions g

and 71 satisfy ig.exintr? = 0 and ¢;.exintr? = 1, then MT-exintr-Ist(MT) = * (0 1).

DEFINITION:

MT-len (MT) def len (MT .trace)

DEFINITION:

trace-all-retired (trace)
def

if endp (trace) then t
else retire-stg-p (car (trace).stg) A trace-all-retired (cdr (trace))
fi

DEFINITION:

MT-all-retired-p (MT) def trace-all-retired (M T .trace)

DEFINITION:

trace-exintr-1st (trace)
def

if endp (trace) then nil
else cons (ISA-input (car (trace).exintr?), trace-exintr-lIst (cdr (trace)))
fi

DEFINITION:

MT-exintr-1st (MT) def trace-exintr-lst (M T .trace)

The following several lemmas are needed in the final proof of the correctness
criterion. Suppose MA is a flushed MA state and MT is its MAETT. Then no
instructions are in the pipeline in the state MA and all instructions recorded in MT

are retired.

Lemma 3 Suppose MA is a microarchitectural state and MT is its MAETT ab-

straction state. Then,
inv(MT, MA) A flushed-p(MA) — MT-all-retired-p(MT) .

When all instructions are retired, the MA is not speculatively executing any instruc-

tions. This is established in the following lemma:

159



Lemma 4 Suppose MT is a MAETT. Then,
inv(MT, MA) A MT-all-retired-p(MT) — —MT-specultv-p(MT) .

The predicate MT-self-modify-p(MT) holds iff any modified instructions are com-
mitted or currently being executed. It is possible that some modified instructions
are executed speculatively, and the predicate MT-self-modify-p(MT) is true. On
the other hand, MT-CMI-p(MT') holds only when some modified instruction have

been completely executed and committed. It is easy to show the following lemma:

Lemma 5 Suppose MT is a MAETT. Then,
MT-CMI-p(MT) — MT-self-modify-p(MT) .

Conversely, if all instructions recorded in MT are retired, and no modified instruc-

tions have been committed, then no instructions recorded in MT are modified.

Lemma 6 Suppose MT is a MAETT. Then,
MT-all-retired-p(MT) A ~“MT-CMI-p(MT) — ~MT-self-modify-p(MT) .

The last lemma about self-modifying code relates the self-modification in
the ISA model to the predicate MT-CMI-p(MT). In Figure 9.1, if the ISA exe-
cution from ISAy to ISA,, does not execute self-modifying code, no instructions
recorded in the final MAETT MT,, are modified. Thus, MT, does not satisfy

MT-CMI-p(MT,). This is formally proven in the following lemma.
Lemma 7 Suppose MT satisfies MAETT-p(MT). Then,

—ISA-self-modify-p(MT.init-ISA, MT-exintr-1st(MT), MT-len(MT))
— ~MT-CMI-p(MT) .

So far we have seen lemmas about speculative execution and self~-modification

of programs. Additionally, we need lemmas that relate the programmer visible states

160



in the final ISA state and the final MA state. In Subsection 8.1.15, we defined the
predicates that relate the states of programmer visible components. For instance,
the correct program counter value is tested with the predicate pc-match-p(MT, MA).
From the definition of inv(MT, MA) and pc-match-p(MT, MA), we can easily show
the following lemma.

Lemma 8

( inv(MT, MA)

A (= MT-specultv-p (MT))

A (= MT-self-modify-p (MT)))

— (MT-pc(MT) = MT.pc)

As mentioned earlier, the function MT-pc(MT) defines the correct program counter
value in state MA from its corresponding MAETT MT. This value is also the pro-
gram counter value in the final ISA state. For instance in Figure 9.1, MT-pc(MT,,)

is equal to the program counter value in ISA,,.

Lemma 9 Suppose MT,, is a well-formed MAETT satisfying weak-inv(MT,). Let
m = MT-len(MT,)
ISA,, = ISA-stepn(MT,.init-ISA, MT-exintr-1st(MT,,), m)

Then,
MT-pc(MT,) = ISAp,.pc .

This lemma can be proven from the definition of weak-inv(MT) and MT-pc(MT).
By combining Lemma 8 and 9, we can show that the program counter value in MA,,
is the same as in ISA,, in Figure 9.1.

Another invariant property RF-match-p(MT, MA) checks the correct register
file state. From the definition of RF-match-p(MT, MA), we can show the following

lemma.

Lemma 10

inv (MT, MA) — (MT-RF (MT) = MA.RF)

161



The function MT-RF(MT) defines the correct register file state in the correspond-
ing MA state. The following lemma shows that the register file state defined by
MT-RF(MT) is also the register file state for the final ISA state if all instructions

recorded in MT are retired.
Lemma 11 Suppose MT,, is a well-formed MAETT satisfying weak-inv(MT,,). Let

m = MT-len(MT,)
ISA,, = ISA-stepn(MTy.init-ISA, MT-exintr-1st(MTy), m)

Then,
MT-all-retired-p(MT,) — MT-RF(MT,) = ISA,.RF .

From these lemmas, we can show the equivalence between the register file states in
MA,, and ISA,,. Similarly, from the definition of SRF-match-p(MT, MA), we can

show two lemmas about the state of the special register file.

Lemma 12

inv (MT, MA) — (MT-SRF (MT) = (MA.SRF))
Lemma 13 Suppose MT,, is a well-formed MAETT satisfying weak-inv(MT,,). Let

m = MT-len(MT,)
ISA,, = ISA-stepn(MTy.init-ISA, MT-exintr-1st(MT},), m)

Then,
MT-all-retired(MTy) — MT-SRF(MT),) = ISA,,.SRF .

For the memory state, the function MT-mem(M7T) defines the correct mem-

ory state in the corresponding machine states.

Lemma 14

inv(MT, MA) - (MT-mem (MT) = (MA.mem))

162



Lemma 15 Suppose MT,, is a well-formed MAETT satisfying weak-inv(MT,,). Let

m = MT-len(MT,)
ISA,, = ISA-stepn(MT,.init-ISA, MT-exintr-1st(MT,,), m)

Then,
MT-all-retired(MT,) - MT-mem(MT,) = ISA,,.mem .

From the lemmas and theorems presented above, we can prove the following

correctness theorem.

Theorem 5 (Correctness Theorem) Suppose MAy, sig-list, and n are an MA

state, a list of external signals to the MA, and a natural number, respectively. Let

MT, = MT-init(MAo)

MA,, = MA-stepn(MAy, sig-list,n)

MT, = MT-stepn(MTy, MA,, sig-list,n)
intr-list = MT-exintr-Ist(MT),,)

m = MT-len(MT,) .

Then,

flushed-p(MAp) A flushed-p(MA,) A —ISA-self-modify-p(proj( MAy), intr-list, m)
_)

proj(MA-stepn(MA, intr-list,n)) = ISA-stepn(proj(MAy), intr-list, m)

Proof: Assume the hypotheses of the theorem, flushed-p(MAy), flushed-p(MA,,),

and —ISA-self-modify-p(proj(MAy), intr-list, m), and we prove the conclusion. Let

IS4, proj(MA)
ISA,, = ISA-stepn(MTy, intr-list,m) .

From the definition of MAETT, we can easily show ISAyg = MT.init-ISA.

163



From Lemma 7 and the last hypothesis, we know that -MT-CMI-p(MT,)
is true. Using Theorem 4, we conclude that invariant inv(MT,, MA,) is true.
From Lemma 3 and hypothesis flushed-p(MA,), MT-all-retired-p(MT},) holds. In
other words, all instructions recorded in MT, are retired. Thus, we can derive
~MT-specultv-p(MT,,) from Lemma 4, and we can prove “MT-self-modify-p(MT,,)
from Lemma 6.

Using Lemmas 8 and 9, we have
MA,,.pc = MT-pc(MT,,) = ISA,,.pc .

Since MT-all-retired-p(MT},) holds, we obtain MT-RF(MT,) = ISA,,.RF from
Lemma 11. With Lemma 10,

MA, RF = MT-RF(MT,,) = ISA,, RF .

Similarly, from Lemmas 12 and 13, we obtain

MA,,.SRF = MT-SRF(MT,,) = ISA,,.SRF,
and from Lemmas 14 and 15,

MA,, .mem = MT-mem(MT,) = ISA,,.mem .
From the four equalities above and the definition of proj(MA), we have

proj(MAy) = ISAm, .
From the definition of ISA,,,
proj(MA,) = ISA-stepn(proj(MAy), sig-list, m) O

The witness functions for our correctness criterion are:

Wy (MA, sig-list,n) = MT-len(MT-stepn(MT-init(MA), MA, sig-list,n))
Wsig(MAv sig-list,n) = MT-exintr-1st(MT-stepn(MT-init(MA), MA, sig-list,n)) .

164



In a nutshell, these witness functions construct the MAETT for the final flushed MA
state, and count the number of instructions recorded in the MAETT and extract
the values in the ezintr field in INST representations of instructions. The function
Wy (MA, sig-list,n) specifies the number of executed instructions during the MA

execution and W, (MA, sig-list,n) specifies which instructions are actually inter-

sig(

rupted by external signals.

165



Chapter 10

Verification Summary

Using the ACL2 theorem prover, we have completely verified our correctness cri-
terion for the FM9801 design. In this chapter, we summarize the result of the

verification project.

10.1 Cost Analysis

The verification cost is a serious practical concern for our technique. Since our
verification was carried out solely by the ACL2 theorem prover, we had to manually
write many lemmas to guide the prover. Table 10.1 shows the size of the ACL2
proof script files and the time to validate these files with a 200MHz PentiumPro
system. The entire proof scripts consist of the FM9801 machine specification, the
definition of the MAETT abstraction, the definition of invariant properties given in
Table 8.1, a set of “shared lemmas”, the proofs of the invariant properties, and the
proof of the correctness criterion.

We wrote our ISA and MA specifications in one month, but the whole ver-
ification project took about 15 months. Notice that a large portion of the ACL2

script files is for proving invariant properties and basic lemmas. Since most of the

166



Table 10.1: ACL2 script size and CPU time for different verification phases.

Type of ACL2 Script ACL2 Script Size | CPU Time to Certify
Specification of ISA and MA 140 KBytes 14 minutes
Definition of MAETT 55 KBytes 6 minutes
Definitions of Invariant Properties 89 KBytes 7 minutes
Proof of Basic Lemmas 481 KBytes 58 minutes
Proof of Invariant Properties 1034 KBytes 211 minutes
Proof of Correctness Criterion 37 KBytes 11 minutes

basic lemmas are, in fact, used for the proof of the invariant properties, we can
safely say that the verification of invariant properties required most of our effort.
This is not surprising because the verification of invariant properties is the core of
our verification process. All design faults detected by applying formal verification
techniques were found during this phase. Typically, a failed proof attempt returns
the condition under which an invariant property is violated. We use it as a clue to
identify a design fault in the microprocessor design.

Although the verification is labor intensive, our technique seems to scale
well with the size of the verified design. In Table 10.2, we compare the size of our
machine specification and verification scripts with two other proof efforts where we
employed a similar approach. The ratio of the machine design and its verification
script does not change much. We also note that the CPU time in Table 10.1 is
relatively small, considering the size and complexity of the verified system. Our
approach decomposes the verification of our correctness criterion into the verification
of a number of invariant properties, which are further decomposed into sub-cases.
This allows us to avoid possibly exponential case explosions. Typically, decomposed
subgoals are small enough to be proven by the ACL2 theorem prover in a very
short time. Of more than 6000 ACL2 theorems and commands in the FM9801 proof
scripts, only 1.3 percent of them took more than a minute to be proven or executed.

From these results, we believe that our techniques do not suffer an expo-

167



Table 10.2: Sizes of ACL2 proof scripts for different machines. The small example
machine is the three-stage pipelined machine discussed in Chapter 4.

Verified Machine Machine Spec | Total Verification
Small Example Machine 13 KBytes 169 KBytes
5-stage Pipelined Design[SH97] 78 KBytes 757 KBytes
FM9801 140 KBytes 1909 KBytes

nential cost increase as the size of the verified machine grows. However, we need
to reduce the cost of verification, especially that for the invariant properties. We
may be able to apply more automated procedures for some invariant properties that
involve a small number of hardware components. Our hope is that the best mix of
a theorem prover environment with automated algorithmic verification procedures

will reduce the overall cost of the verification.

10.2 Detected Design Faults

10.2.1 Overview

Not surprisingly, the initial design of the FM9801 contained many design flaws.
First, we eliminated these design flaws with simulation techniques. Using the exe-
cution capability of the FM9801, we ran a few programs on the early design of the
FM9801. We changed the external interrupt signals, memory responses, and branch
prediction results by supplying different external input signals to the MA design,
and tested the machine in various situations. This revealed most of the design faults
in the early design of the FM9801. All design faults detected by simulation were
fixed before we started applying formal verification techniques.

The formal verification phase started by defining the MAETT abstraction
states of the FM9801 MA design, and specifying the invariant properties. We scru-

tinized the machine design during this phase and we found a few design faults. In

168



other words, carefully studying the machine design itself can reveal design faults.
Although we do not consider these design flaws to be found by formal verification,
we do consider this as a benefit of having formal specification.

After the invariant properties were specified, we started verifying the invari-
ant properties and our correctness criterion. This verification phase detected 14
design faults which had not been detected by simulating and scrutinizing the de-
sign. Each time we detected a design flaw in the FM9801, we fixed the design and
continued the formal verification process. Eventually, we completed the proof of our

correctness criterion.

10.2.2 Details of Design Faults

In this subsection, we discuss the details of the design flaws detected by formal
verification techniques. We explain them with a serial number, its classification, a
brief description of the bug, a detailed description, and how we detected the design
fault. We classify design faults into bugs and glitches. Bugs cause the processor to
return incorrect results for some program execution. Glitches make the processor
internally behave differently from the way the designer originally thought and violate
some invariant properties. Glitches may or may not lead to an incorrect behavior
visible to a programmer. We have found 12 bugs and 2 glitches. After fixing these

14 design faults, we successfully verified the entire MA design.

Design Fault Number: 1.

Classification: Glitch

Brief Description: Incorrect dispatching of instructions after exceptions were de-
tected.

Description: This design fault caused the processor to incorrectly dispatch in-
structions with a fetch error exception or an illegal instruction exception. When

instructions have raised a fetch error exception or an illegal instruction exception,

169



the instructions should not be dispatched to any execution unit, but they should
go to the ’ (complete) stage directly. Instead, such instructions were dispatched to
the integer unit regardless of the type of the instructions.

Due to this design fault, instructions with exceptions unnecessarily occupied
the reservation station entries and consumed machine cycles in the integer unit,
possibly causing a performance degradation. However, we could not find a single
program execution which would have caused incorrect execution results. Conse-
quently, this design fault was classified as a glitch.

How we found it: We have found the bug while verifying basic lemmas about
stages of instructions. We tried to verify that instructions were dispatched to ap-
propriate execution units, and we found any instruction could be dispatched to the

integer unit if its exception status indicated that an exception had been detected.

Design Fault Number: 2.

Classification: Bug

Brief Description: The illegal instruction exception was not detected when the
MTSR and MFSR instructions attempted to access non-existing special registers.
Description: When an MTSR instruction is executed with an ra field value other
than 0 or 1, an illegal instruction exception should be detected according to the
ISA specification, because the ra field should specify a special register SR0 or SR1.
However, this illegal instruction exception was not detected in the original design of

the FM9801. The same bug occurred when an MFSR instruction was executed.

Design Fault Number: 3.

Classification: Bug

Brief Description: Incorrect values may overwrite correct operands stored in the
reservation stations.

Description: Using Tomasulo’s algorithm, the reservation station reads the value

on the CDB when a tag match is found and uses it as an operand. For example,

170



the reservation stations for the multiply unit should read the value from the CDB
to the field vall when the following conditions are met.
CDB-ready?(MA) =1

A CDB-tag(MA) = MA.MU.RSO0.srcl

A MAMU.RSO.readyl? # 1
In the original definition, the third condition was missing. Whenever the tag match
occurred, the reservation station read the value from the CDB without checking
the operand was already in the field vall. At first, we thought this was not a
design fault because the tag should uniquely identify the instruction producing the
operand. However, the tags were correct only when the corresponding operands
were not ready. As a result, this bug could overwrite the correct operand value with
an incorrect value.
How we found it: When we attempted the verification of the invariant property
MT-inst-inv(MT, MA), the prover failed to prove the correctness of the intermediate
values in the reservation stations. The condition under which the proof failed turned

out to be the case where incorrect value may be overwritten.

Design Fault Number: 4.

Classification: Bug

Brief Description: The partial result is lost in the pipelined multiplier.
Description: The F9801 implements a three-stage pipelined multiplier with two
internal latches Ich! and Ich2. If no instruction was in the latch Ichl, and the
instruction in the latch Ich2 stalled, the partial result in the Ich2 was lost.

How we found it: This bug was revealed when we tried to prove the correctness
of the intermediate values at the latch Ich2. A failed proof revealed the condition

under which the partial result of a multiply instruction is lost.

Design Fault Number: 5.

Classification: Bug

171



Brief Description: A busy flag for the write buffer was not set properly.
Description: The write buffer has two entries: wbuf0 and wbuf1. If a store instruc-
tion occupied the entry wbuf0, if the entry wbuf! was free, and if an instruction was
issued to the write buffer at the same time the instruction at wbufl was released,
the issued instruction was lost because the busy flag for the entry wbuf0 was not
set.

How we found it: We found the bug when we tried to verify the correctness of
the intermediate value at the stage ’ (execute LSU wbuf1l). The subgoal we failed

to prove exhibited the condition that caused the improper behavior.

Design Fault Number: 6.

Classification: Bug

Brief Description: Load and store instructions were not issued correctly from a
reservation station.

Description: The function issue-LSU-RS17(MA) in the MA design should return
1 when an instruction is issued from reservation station 1. There was a typo in the
definition of the function issue-LSU-RS1?(MA). As a result, the load instruction
could be sent to a write buffer or a store instruction could be sent to a read buffer.
How we found it: When we tried to verify the correctness of the intermediate
value at the stage ’> (execute LSU wbufl), we detected the case where we could not

prove the correctness.

Design Fault Number: 7.

Classification: Bug

Brief Description: Load instructions returned incorrect results because of the bug
in the load-bypassing logic.

Description: Load-bypassing allows load instructions to be executed without wait-
ing for the completion of preceding store instructions when their memory access ad-

dresses differ. If an address match is found between load and store instructions, the

172



function address-match?(MA) should return 1. However, address-match?(MA) did
not detect all address matches due to the bug. As a result, the load instruction was
executed without waiting for the completion of a preceding store instruction with the
same access address, and an incorrect value from the memory was returned as the
loaded value. Instead, the correct implementation should use the load-forwarding
technique and return the operand of the store instruction as the result of the load
instruction.

How we found the bug: This bug was found while verifying the correctness of
intermediate values for instructions at stage ’> (execute LSU 1ch). When we tried
to prove THEOREM LSU-forward-wbuf-INST-dest-val discussed in Subsection 8.2.4,
we could not prove that the forwarded value, LSU-forward-wbuf( MA.LSU), was
correct. We found that this was caused by a design fault in the definition of
address-match?(MA).

It was difficult to find the program execution that revealed this bug to the
programmer, because several load and store instructions had to be issued in a cer-
tain timing. The simplest example involved three instructions: a load instruction
i1, a store instruction ¢, and another load instruction ¢3. In order to realize the
bug, instruction ¢; had to stall in the read-buffer when instruction io was issued,
instruction ¢3 had to be issued at the same time as the instruction #; read a value
from the memory, and the memory access address of i and i3 must be equal. In this
case, the instruction i3 read the incorrect value of the memory before the completion

of iz.

Design Fault Number: 8.

Classification: Bug

Brief Description: The load-forwarding logic may forward the operand of a sub-
sequent store instruction to a preceding load instruction.

Description: The read buffer of the load-store unit has the fields wbuf0? and

173



wbuf1?, which record the instruction order between load and store instructions.
These fields might have been set incorrectly if a store instruction was released from
the write buffer and simultaneously a load instruction was issued.

How we found it: We noticed this bug when we were scrutinizing the machine
description to modify an invariant condition during the verification. In order to
realize the bug, this bug also needed at least three load and store instructions issued

and processed in a certain timing.

Design Fault Number: 9.

Classification: Bug

Brief Description: The store instruction in the write buffer may have been lost
due to speculative execution.

Description: When a mispredicted branch instruction is committed, the subse-
quent instructions must be abandoned because they were speculatively executed.
Due to the bug, this mechanism also flushed the content of the write buffers which
might contain preceding store instructions. The correct implementation should
check the instruction order and abandon only subsequent store instructions.

How we found it: When we tried to verify the intermediate values for an instruc-
tion at stage ’ (commit wbufO), we found that we could not prove that the busy

flag was set properly.

Design Fault Number: 10.

Classification: Bug

Brief Description: The processor did not detect illegal instruction exceptions
raised by executing an RFEH instruction in user mode.

Description: The RFEH instruction is a privileged instruction which should raise
an exception when executed in user mode. In the original design, the processor
failed to detect the exception and executed the instruction normally.

How we found it: While verifying invariant property SRF-match-p(MT, MA), we

174



needed to prove that the ISA and the MA modified the special register file in the
same way. However, we found that the execution of RFEH instruction could change
the special register file differently in the ISA and the MA models. It turned out

that this happened when an RFEH instruction was executed in user mode.

Design Fault Number: 11.

Classification: Bug

Brief Description: Execution of an RFEH instruction updated the program
counter incorrectly.

Description: This problem is similar to Design Fault 10. When the RFEH instruc-
tion was executed in user mode, the privileged instruction was executed without
exceptions being detected. Fixing this problem introduced a new bug that set the
program counter incorrectly when an RFEH instruction was executed in supervisor
mode.

How we found it: After fixing Design Fault 10, we failed to verify the invariant
property pc-match-p(MT, MA). Under the condition it failed, the RFEH instruction

was found to set the program counter incorrectly.

Design Fault Number: 12.

Classification: Bug

Brief Description: Incorrect instructions were executed if branch predictions were
performed more than once on a single branch instruction, and it was predicted
differently.

Description: When a BR instruction is at the ’ (IFU) stage, the branch predictor
predicts whether the conditional branch is taken. If the dispatch queue is full, this
BR instruction stalls at the > (IFU) stage. As a result, branch prediction can be
performed on a single BR instruction more than once. This could start fetching

incorrect instructions in the following scenario:

175



. The branch predictor predicts that a branch will be taken when the BR in-
struction at the ’ (IFU) stage is executed. This sets the program counter to
the branch target address of the BR instruction. The BR instruction stalls

and stays in the same stage.

. The branch prediction is performed on the same BR instruction, and this time
the branch is predicted not to be taken. This does not change the value of
the program counter. As a result, the program counter continuously holds the

branch target address.

. The branch instruction advances to the next stage and the processor starts
fetching instructions from the branch target address. However, the processor
records that the branch was predicted not to be taken, because it is the result

of the more recent branch prediction.

. The branch execution unit decides that the branch instruction was not taken.
The processor considers that it is executing correct subsequent instructions
because its record shows that the branch is predicted not to be taken. In
fact, the processor is executing instructions from the branch target address.
Consequently, incorrect instructions from the branch target address will be

completely executed.

How we found it: When we tried to verify the property pc-match-p(MT, MA),

we found that the branch target address produced by the branch predictor was not

always correct. It turns out that this occurs when a BR instruction stalled at the

> (IFU) stage.

Design Fault Number: 13.

Classification: Bug

Brief Description: Register reference table for special registers do not record the

correct tags.

176



Description: The logic of the register reference table was not working correctly.
As a result, the tags stored in the register reference table might not identify the
instructions that produce the newest value for the special registers. Consequently,
MFSR and MTSR, instructions might not be executed correctly.

How we found it: The invariant property consistent-SRF-tbl-p(MT, MA) could
not be verified. Looking further into the problem, we found that the register refer-

ence table might not keep the correct tags for the special registers.

Design Fault Number: 14.

Classification: Glitch

Brief Description: The function commit-jmp?(MA), which should return 1 only
when a branch instruction is committed, may also return 1 when an exception
causing instruction is committed.

Description: The function commit-jmp?(MA) should return 1 when a mispredicted
branch instruction is committed. Another function enter-excpt?(MA) returns 1
when the processor commits an instruction which has caused an exception. If they
are asserted simultaneously, our MA design might not operate correctly, because we
assumed in the design of the FM9801 that these functions are mutually exclusive.
It turned out that commit-jmp?(MA) did not return the correct value for certain
cases.

How we found it: When we tried to prove a lemma stating the mutual exclusion
of commit-jmp?(MA) and enter-excpt?(MA), we found it unprovable. On the other
hand, we could not find the program execution that simultaneously sets the values of
the two functions to 1, and causes the machine to operate incorrectly. Consequently,

it is classified as a glitch.

177



10.3 Summary

We found 12 bugs and 2 glitches, and some of them were difficult to find. For
instance, Design Fault 1 may not affect the visible states of the FM9801, but it
may degrade the performance by occupying resources and it may be classified as a
performance bug. Design Fault 12 may be difficult to detect with simulation, because
the bug is realized when multiple branch predictions return different results.

Each time we found a design fault and fixed the design of the FM9801 ma-
chine design, we reran ACL2 to check the entire proof. During this process, the ro-
bustness of the ACL2 proofs was found to be useful. There was a good chance that
the same proof script worked for the slightly modified hardware design, because the
proof specification does not depend on the subtle design specifics. Typically, when
we change the design of the target machine, the ACL2 proofs fails only when it
attempts to prove theorems directly related to the modified portion of the machine
design. If we fix the proof of such theorems, the rest of the theorems are usually

proven automatically.

178



Chapter 11

Conclusion

This dissertation has demonstrated that a complex pipelined microprocessor designs
with advanced features can be formally verified. We have proposed a new micro-
processor model called FM9801, and we have formally verified it using the ACL2
theorem prover. We consider that this is evidence that even complex pipelined
microprocessor designs can be formally verified.

The main achievements of this dissertation are listed below.

e We have proposed correctness criteria for microprocessors with advanced pipe-
lining techniques. Since pipelined microprocessors overlap the execution of
instructions or sometimes interchange the order of execution, the states of
pipelined microprocessors do not necessarily correspond to any sequential
states which programmers have in mind. In fact, it is only in pipeline flushed
states that we can see the direct correspondence between the sequential states

and the pipeline states.

For the correctness criteria for pipelined microprocessors, we proposed a com-
mutative diagram that involves an arbitrary pipelined execution which starts
and ends with pipeline flushed states. Compared with previously used com-

mutative diagrams, our commutative diagrams can be applied to out-of-order

179



executions, speculative executions, and interrupts, which are implemented in

the FM9801.

e We introduced an intermediate abstraction, MAETT, which helps to define
invariants of pipelined machines. This abstraction records executed instruc-
tions in an ACL2 list in program order. This makes it easier to directly define

properties about instructions.

e We have decomposed the pipeline verification by the following two steps. In
the first step, we define and verify an invariant condition. In the next step, we
prove our correctness criterion using the verified invariant as an assumption.
Our invariant condition is a conjunction of many properties of the pipelined

machine and its MAETT abstraction.

This approach reduces the verification cost in two ways. First, our approach
decomposes the verification problem over time. Instead of directly verifying
the correctness criterion, we prove our correctness criterion from the separately
verified invariant condition by induction. Qur correctness criterion contains an
arbitrary number of MA steps, but the invariant verification involves only one
machine step. Thus the cost of verification does not suffer possibly exponential
explosion with respect to the number of machine steps in the commutative

diagram.

Second, the verification of the invariant condition is decomposed spatially.
Our invariant is defined as a conjunction of many properties. We prove these
properties independently of each other. Typically, individual properties are
related to only a small part of the microprocessor design. Thus, we can con-
centrate our computation and manual effort on the related microarchitectural

components during the verification of individual properties.

o We studied self-modifying programs in the context of pipelined machine ver-

180



ification. Typically, pipelined microprocessors do not execute self-modifying
programs as specified by a sequential execution model. In order to execute
self-modifying code in pipelined microprocessors as specified by the ISA, the
programmer usually has to run the modifying instructions first, synchronize
the pipelined machine, and then execute the modified instructions. From our
verification result, we can conclude that the FM9801 correctly executes self-

modifying code when programmer explicitly synchronizes the program.

e We found a number of design faults in the FM9801. We fixed the FM9801
implementation each time a new fault was discovered, and continued the veri-
fication until it was completely finished. This demonstrates that our technique

can be used to detect design errors in microprocessors.

Summarizing the results, we have successfully verified our FM9801 microprocessor.
It is one of the most complex pipelined machines that have been completely verified,
and contains a number of features that make the verification problem challenging.

According to the measurements obtained from our verification examples, our
techniques seem to scale well with respect to the size of the machine design. We
are optimistic that our technique can be applied to more complex microprocessor
models. However, our technique currently requires a considerable amount of human
interaction and expertise. The engineer who may want to use our technique must
be knowledgeable not only about the microprocessor design, but also about the
employed theorem proving system. In order to verify the microprocessor model,
we needed 15 man-months of effort. Improving the efficiency of the verification is
necessary to make our approach more acceptable.

Our technique is currently based solely on mechanical theorem proving. We
have not yet integrated algorithmic approaches such as model checking into our
techniques. Although it is our belief that algorithmic techniques cannot directly

verify a large hardware design, such as the FM9801 microprocessor, it has the po-

181



tential to automate verification tasks required for our verification project. We have
spent a significant amount of effort on establishing that the invariant is preserved
by the FM9801 design. This often leads to tedious analyses of the local components
and individual instructions. The verification of these local properties may be auto-
mated by using algorithmic approaches, which would improve the efficiency of our
verification techniques.

Even though the FM9801 is not a toy example machine, it is far simpler than
industrial microprocessor designs. We need more research to scale up our techniques
to commercial microprocessors. At this moment, it may be more practical to apply
our techniques to a portion of a commercial microprocessor. This may require us
to reformulate the scheme of the verification. For example, our correctness criterion
cannot be directly applied to a part of a microprocessor design.

At the conclusion of the dissertation, we now know that advanced micropro-
cessor models can be formally verified. The verification cost is the largest problem
at this moment, but we want to stress that the formally verified hardware design is
invaluable from the perspective of security and mass production. We would like to
see our work become the foundation of formal verification techniques used on future

microprocessor designs.

182



Appendix A

A.1 Proof of Theorem 1

Theorem 1 proves our correctness criterion given in Criterion 1 assuming that Burch
and Dill’s flushing diagram holds. Let us note that flushing procedure applied to a
flushed state returns the flushed state itself, i.e., flushed-p(MA) — flush(MA) = MA.
Theorem 1 assumes MA-stepn(MAy,n) is a flushed state. Thus,

flush(MA-stepn(MAg,n)) = MA-stepn(MAy,n).
Using this equality, Theorem 1 follows immediately from the following lemma:

Lemma 16 Let MAy be a flushed state. Suppose for every i such that 0 < i < n,
proj(flush(MA-step(MA;))) = ISA-stepn(proj(flush(MA;)), k;) (A.1)

for some k;, where MA; = MA-stepn(MAy,:). Then following equation must hold:

n—1
proj(flush(MA-stepn(MAg, n))) = ISA-stepn(proj(MAo), Y _ ks).
i=0

Proof: By induction on n. Base case is trivial as both sides equate to proj(MAy).
Induction case. our induction hypothesis is:

n—2
proj(flush(MA-stepn(MAy,n — 1)) = ISA-stepn(proj(MAy), Z k;).
=0

183



Then, the following equations hold:

proj(flush(MA-stepn(MAgy,n)))

= proj(flush(MA-step(MA,_1))) {Def.}
— ISA-stepn(proj(flush(MA, 1)), kn 1) {A.1}
= ISA-stepn(ISA-stepn(proj(MAg), .77 ki), kn—1) {LH.}
= ISA-stepn(proj(MAg), 7=, k;) {Def.} O

A.2 Theorem of Burch and Dill’s Diagram Formation

In this section, we show Burch and Dill’s diagram from a slightly modified version
of our correctness criterion. We cannot directly show that our correctness criterion
given in Definition 1 implies Burch and Dill’s flushing diagram. The problem is that
our correctness criterion does not say anything about pipeline flushing function
flush(MA). In the proof of Theorem 6, we assume flushing procedure is a part of
the MA execution that starts and ends with flushed pipeline states.

Pipeline flushing is an execution of the MA design without fetching new
instructions. In the original paper by Burch and Dill, they define the pipelined
machine that takes an external input, which controls instructions fetching. Only
when this external signal is set to 1, the pipeline is allowed to fetch and execute new
instructions. Pipeline flushing is performed by running the pipelined MA design for
sufficiently many clock cycles with the external signal set to 0.

Let us consider a normal MA execution followed by pipelined flushing. We
assume that we run the MA design from an initial flushed state MAy for n ma-
chine cycles to reach state MA,, and then we flush the pipeline to reach flushed
state MA]. We can represent MA!, as flush(MA-stepn(MAg,n)). Since the pipeline
flushing procedure itself is an MA execution, the state transition from MAg to MA,
can be considered as an MA execution starting and ending with a flushed state.

Suppose N(MAp,n) returns the number of instructions that are fetched during the

184



normal execution from MAy to MA,. Further suppose the pipelined machine does
not fetch instructions speculatively. N(MAg, n) is the exact number of instructions
that are completely executed during the execution from MAy to MA!,, because no
instructions are fetched during the flushing process.

Our correctness criterion is satisfied when the MA execution starting and
ending with pipeline flushed states does have the same result as the ISA that executes
the same number of instructions. This implies that the execution from MAy to MA!,
have the same result as the ISA that executes N(MAg, n) instructions. This can be

represented as:
proj(flush(MA-stepn(MAy, n))) = ISA-stepn(proj(MAg), N(MAg, n)) .

Assuming this equation for an arbitrary flushed state MA and any natural number

n, we prove the flushing diagram for any MA state reachable from MAy.

Theorem 6 (Burch and Dill’s Diagram Formation) Suppose there is a function N
such that

proj(flush(MA-stepn(MAy, ¢))) = ISA-stepn(proj(MAo), N(MA i)) (A.2)

for arbitrary flushed state MAy and any natural number i. Suppose N(MA, 1) is
monotonic with respect to i, i.e., i < j — N(MA,i) < N(MA,j). Then the following

equation representing flushing diagram holds:

proj(flush(MA-step(MAy,)))
= ISA-stepn(proj(flush(MA,,)), N(MA,,n + 1) — N(MA,, n))

where MA, = MA-stepn(MAy,n).

185



m= W (MA, n) m'= W(MA, n+1)

B iy -5y
1

I I SA-stepn i

: - proj . proj

. MA, MA".,

| Proj (flushed spale) (flushedg:te)

flush flush
MA, MA, MA .,
(flushed state) MA.- stepn
MA-step

Figure A.1: Pictorial Proof of Theorem 6

Proof:

proj(flush(MA-step(MA,,)))

= proj(flush(MA-stepn(MAg,n + 1))) {Def.}
= ISA-stepn(proj(MAy), N(MAy,n + 1)) {(A.2),1=n+1}
= ISA-stepn(ISA-stepn(proj(MAo), N(MAy,n)),
N(MAy,n+1) — N(MAp,n)) {Def. of ISA-stepn}
= ISA-stepn(proj(flush(MA-stepn(MAy, n))),
N(MAy,n + 1) — N(MAg,n)) {(A.2), i =n}
= ISA-stepn(proj(flush(MA4,,)),
N(MAg,n + 1) — N(MAg, n)) {Def} O

Figure A.1 shows the relation between the states in the proof. Since equation A.2
may not hold for pipelined processors with speculative execution, this theorem is

not usually applicable to such processors.

186



Appendix B

FM9801 State Definition

B.1 Definition of Words

The THS macro, defbytetype, defines a word type. It defines the type predicate, the
type coercion function, and related lemmas for each word type. Table B.1 shows
the six word types we defined with the defbytetype macro.

The THS macro, defword, can be used to define the field layout of a word type.
For instance, the fields of the FM9801 16-bit instruction word, which are illustrated
in Fig. 5.2, are defined with defword. Table B.2 shows the fields of an instruction

word. Accessor functions take an instruction word, and return the field value. For

Type Bit Width Type Predicate Type Coercion Function
word 16 word-p(x) word(x)

addr 16 addr-p(x) addr(x)

rname 4 rname-p(x) rname(x)

immediate 8 immediate-p(x) immediate(x)

opcd 4 opcd-p(x) opcd(x)

cntlv 15 cntlv-p(x) cntlv(x)

Table B.1: Words Defined with Defbytetype Macro

187



Field Name Bit(s) Accessor Function Description
opcode 12-15  opcode(z) Opcode

rc 811  rc(x) Operand Register
ra 4-7 rb(z) Operand Register
rb 0-3 rb(z) Operand Register
im 0-7 im(z) Immediate Value

Table B.2: Instruction Word Field Layout

Field Name Bit(s) Accessor
exunit 10-14  exunit(z) The Execution Unit for the instruction.
Bit 14: No Execution unit.
Bit 13: Branch unit.
Bit 12: Load-store unit.
Bit 11: Multiply unit.
Bit 10: Integer unit.
operand 6-9 operand(z) Specify the instruction format and operands.
Bit 9: Format C, read a special register.
Bit 8: Format C, read a general-purpose register.
Bit 7: Format B.
Bit 6: Format A.

br-predict? 5 br-predict(z) The result of branch prediction.

1d-st? 4 1d-st(zx) Set to 1 for a store instruction, and 0 for a load.
wb? 3 wh(z) The instruction modifies a register.

wh-sreg? 2 whb-sreg(z) The modified register is a special register.

sync? 1 sync(z) Synchronize the pipeline.

rfeh? 0 rfeh(z) Set if the instruction is an RFEH.

Table B.3: Control Vector Field Layout for FM9801 Microarchitectural Design

instance, the opcode of an instruction word w is defined as opcode(w). Similarly,
Table B.3 shows the layout of the control vector used in the microarchitectural

design of the FM9801.

B.2 Definition of Register Files
Deflist RF as List of word of Length 16

Defstructure SRF {
bitp su ; // Privilege Mode

188



word-p sr0 ; // Special Register 0
word-p srl ; // Special Register 1

}

Constructor Function:
SRF(su,sr0,sr1)

Type Predicate:
SRF-p(SRF)

Field Accessors:
su  .sr0  .srl

Note: Access functions read-reg and read-sreg are defined differently, as the
general-purpose register file is defined as a list of words, while the special register

file is defined as a structure. The definitions of read-reg and read-sreg are as follows:

DEFINITION:

read-reg (num, RF) def nth (num, RF)

DEFINITION:

read-sreg (id, SRF)

def

if id = 0 then SRF.sr0
elseif id = 1 then SRF.srl

else 0

fi

B.3 Definition of the ISA state

Defstructure ISA-state {

addr-p pCc; // Program Counter
rf-p f ; // Register File

srf-p srf ; // Special Register File
mem-p mem ; // Memory

}

Constructor Function:
ISA-state(pe,rf,srf,mem)
Type Predicate:
ISA-state-p(ISA)
Field Accessors:
.pc xf .srf .mem

189



B.4 Definition of the MA state

Defstructure MA-input {

bitp exintr ; // External Interrupt Signal
bitp br-predict ; // Branch Prediction Result
bitp fetch ; // Instruction Memory Response
bitp data ; // Data Memory Response

}

Constructor Function:
MA-input(ezintr,br-predict,fetch,data)
Type Predicate:
MA-input-p(orel)
Field Accessors:
.exintr .br-predict .fetch .data

Deflist MA-input-listp as List of MA-input-p

Defstructure IFU {

bitp valid? ; // Busy Flag

excpt-flags-p excpt ; // Exception Flags

addr-p pC; // Program Counter Value
word-p word ; // Instruction Word

}

Constructor Function:

IFU (valid?,excpt,pe, word)
Type Predicate:

IFU-p(IFU)
Field Accessors:

.valid?  .excpt .pc .word

Defstructure dispatch-entry {

bitp valid? ; // Busy Flag

excpt-flags-p excpt ; // Exception Flags

addr-p pc; // Program Counter Value
cntlv-p cntlv ; // Control Vector
rname-p rc ; // Operand Register
rname-p ra ; // Operand Register
rname-p rb ; // Operand Register
immediate-p im ; // Immediate Value
addr-p br-target ;  // Branch Target Address
}

Constructor Function:

dispatch-entry(valid %, excpt,pe, cntlv,re,ra,rb,im,br-target)
Type Predicate:

dispatch-entry-p(de)

190



Field Accessors:
.valid?

b im .br-target

.excpt .pc .cntlv

Defstructure reg-ref {
bitp wait? ;
ROB-index-p tag ;
}
Constructor Function:
reg-ref(wait?,tag)
Type Predicate:
reg-ref-p(rr)
Field Accessors:
.wait? .tag

ra

// Register Write Pending
// Last Modifier’s Tag

Deflist reg-tbl-p as List of reg-ref-p of Length 16

Defstructure sreg-tbl {
reg-ref-p st0 ;
reg-ref-p srl ;
}

Constructor Function:
sreg-tbl(sr0,sr1)
Type Predicate:
sreg-tbl-p(srtbl)
Field Accessors:
.sr0  .srl

Defstructure DQ {
dispatch-entry-p DEOQ ;
dispatch-entry-p DE1 ;

dispatch-entry-p DE2 ;
dispatch-entry-p DE3 ;
reg-tbl-p reg-tbl ;
sreg-tbl-p sreg-tbl ;
}

Constructor Function:

// Reference for SR0O
// Reference for SR1

// Dispatch Queue Entry 0
// Dispatch Queue Entry 1
// Dispatch Queue Entry 2
// Dispatch Queue Entry 3
// Register Reference Table
// Special Register Reference Table

DQ(DEO0,DE1,DE2,DES3,reg-tbl,sreg-tbl)

Type Predicate:
DQ-p(DQ)

Field Accessors:
.DE0 .DE1 .DE2 .DE3

.reg-tbl .sreg-tbl

191



Defstructure ROB-entry {

bitp valid? ; // Busy Flag

bitp complete? ; // Instruction Complete?
excpt-flags-p excpt ; // Exception Flags

bitp wh? ; // Write Back Instruction?
bitp wb-sreg? ; // Write to a Special Register?
bitp sync? ; // Synchronize Pipeline after Commit
bitp branch? ; // Branch Instruction

bitp rfeh? ; // RFEH Instruction

bitp br-predict? ; // Branch Prediction

bitp br-actual? ; // Actual Branch Direction
addr-p pc; // Program Counter Value
word-p val ; // Instruction Result

rname-p dest ; // Destination Register

}

Constructor Function:
ROB-entry(valid?,complete ?,excpt,wb ?,wb-sreg?,sync ?,branch?,rfeh ?,br-predict?,
br-actual?,pc,val,dest)
Type Predicate:
ROB-entry-p(robe)
Field Accessors:
.valid? .complete? .excpt .wb? .wb-sreg? .sync?
.branch? .rfeh? .br-predict? .br-actual? .pc .val
.dest

Deflist ROB-entries-p as List of ROB-entry-p of Length 8

Defstructure ROB {

bitp fig ; // Busy Flag

bitp exintr? ; // External Interrupt Pending?
ROB-index-p head ; // Head of the ROB
ROB-index-p tail ; // Tail of the ROB
ROB-entries-p entries ; // ROB Entry List

}

Constructor Function:
ROB(flg,exintr?, head,tail, entries)
Type Predicate:
ROB-p(ROB)
Field Accessors:
flg .exintr? .head .tail .entries

Defstructure RS {

bitp valid? ; // Busy Flag
bitp op ; // Operation Type
ROB-index-p tag ; // Tag of the Instruction

192



bitp readyl? ; // Operand 1 Ready?

bitp ready2? ; // Operand 2 Ready?
word-p vall ; // Operand Value 1
word-p val2 ; // Operand Value 2
ROB-index-p srcl ; // Operand 1 Tag
ROB-index-p src2 ; // Operand 2 Tag

}

Constructor Function:
RS(valid?,0p,tag,readyl ?,ready2?,vall,val2,src1,src2)
Type Predicate:
RS-p(RS)
Field Accessors:
valid? .op .tag .readyl? .ready2? .vall
.val2  .srcl .src2

Defstructure integer-unit {

RS-p RSO ; // Reservation Station 1
RS-p RS1; // Reservation Station 2
}

Constructor Function:
integer-unit(RS0O,RS1)
Type Predicate:
integer-unit-p(IU)
Field Accessors:
RS0 .RS1

Defstructure MU-latchl {

bitp valid? ; // Busy Flag
ROB-index-p tag ; // Tag of the Instruction
nil data ; // Abstract Data Value
}

Constructor Function:
MU-latchl(valid?,tag,data)

Type Predicate:
MU-latchl-p(ich)

Field Accessors:
wvalid? .tag .data

Defstructure MU-latch2 {

bitp valid? ; // Busy Flag
ROB-index-p tag ; // Tag of the Instruction
nil data ; // Abstract Data Value
}

Constructor Function:

193



MU-latch2(valid?,tag,data)
Type Predicate:
MU-latch2-p(lch)
Field Accessors:
wvalid? .tag .data

Defstructure mult-unit {

RS-p RSO ; // Reservation Station 0
RS-p RS1 // Reservation Station 1
MU-latchl-p Ichl ; // Latch 1

MU-latch2-p Ich2 ; // Latch 2

}

Constructor Function:
mult-unit(RS0,RS1,lchl,lch2)

Type Predicate:
mult-unit-p(MU)

Field Accessors:

RSO .RS1 .chl .lch2

Defstructure LSU-RS {

bitp valid? ; // Busy Flag

bitp op ; // Operation Type
bitp 1d-st? ; // Load or Store?
ROB-index-p tag ; // Tag of the Instruction
bitp rdy3? ; // Operand 3 Ready?
word-p val3 ; // Operand Value 3
ROB-index-p src3 ; // Operand Tag 3
bitp rdyl? ; // Operand 1 Ready
word-p vall ; // Operand Value 1
ROB-index-p srcl ; // Operand Source 1
bitp rdy2? ; // Operand 2 Ready?
word-p val2 ; // Operand Value 2
ROB-index-p src2 ; // Operand Value 2

}

Constructor Function:
LSU-RS(valid?,op,ld-st?, tag,rdy3?,val3,src3,rdy1 ?,vall,
srel,rdy22,val2, src2)
Type Predicate:
LSU-RS-p(RS)
Field Accessors:
valid? .op .1d-st? .tag .rdy3?7 .val3
.sre3  rdyl? .vall .srcl .rdy2? .val2
.src2

194



Defstructure read-buffer {

bitp valid? ; // Busy Flag

ROB-index-p tag ; // Tag of the Instruction

addr-p addr ; // Memory Access Address

bitp wbuf0? ; // Dependency with the Write in wbuf0
bitp wbufl? ; // Dependency with the Write in wbufl
}

Constructor Function:
read-buffer(valid?,tag,addr,wbuf0?,wbufl ?)
Type Predicate:
read-buffer-p(rbuf)
Field Accessors:
wvalid? .tag .addr .wbuf0? .wbufl?

Defstructure write-buffer {

bitp valid? ; // Busy Flag

bitp complete? ; // Memory Protection Check Done?
bitp commit? ;  // Instruction Committed?
ROB-index-p tag ; // Tag of the Instruction

addr-p addr ; // Memory Access Address

word-p val ; // Write Value

}

Constructor Function:

write-buffer(valid?,complete ?,commit?,tag,addr,val)
Type Predicate:

write-buffer-p(wbuf)
Field Accessors:

.valid? .complete? .commit? .tag .addr .val

Defstructure LSU-latch {

bitp valid? ; // Busy Flag

excpt-flags-p excpt ; // Exception Flags

ROB-index-p tag ; // Tag of the Instruction

word-p val ; // Result Value from Memory Load
}

Constructor Function:
LSU-latch(valid?,excpt,tag,val)

Type Predicate:
LSU-latch-p(lch)

Field Accessors:
.valid? .excpt .tag .val

Defstructure load-store-unit {

195



bitp RS1-head? ; // Order of RSO and RS1

LSU-RS-p RSO ; // Reservation Station 0
LSU-RS-p RS1; // Reservation Station 1
read-buffer-p rbuf ; // Read Buffer
write-buffer-p wbuf0 ; // Write Buffer Entry 0
write-buffer-p wbufl ; // Write Buffer Entry 1
LSU-latch-p Ich ; // Result Latch

}

Constructor Function:
load-store-unit(RS1-head?,RS0,RS1,rbuf,wbuf0,wbuf1,lch)
Type Predicate:
load-store-unit-p(LSU)
Field Accessors:
.RS1-head? .RSO .RS1 .rbuf .wbuf0 .wbufl
Ich

Defstructure BU-RS {

bitp valid? ; // Busy Flag
ROB-index-p tag ; // Tag of the Instruction
bitp ready? ; // Operand Ready
word-p val ; // Operand Value
ROB-index-p src ; // Operand Tag

}

Constructor Function:
BU-RS(valid?,tag,ready?,val,src)
Type Predicate:
BU-RS-p(RS)
Field Accessors:
wvalid? .tag .ready? .val .src

Defstructure branch-unit {

BU-RS-p RSO ; // Reservation Station 0
BU-RS-p RS1; // Reservation Station 1
}

Constructor Function:
branch-unit(RS0,RS1)
Type Predicate:
branch-unit-p(BU)
Field Accessors:

RS0 .RS1

Defstructure MA-state {
addr-p pc; // Program Counter
RF-p RF ; // General-Purpose Register File

196



SRF-p SRF ; // Special Register File
IFU-p IFU ; // Instruction Fetch Unit
DQ-p DQ; // Dispatch Queue
ROB-p ROB ; // Re-order Buffer
integer-unit-p IU ; // Integer Unit
mult-unit-p MU ; // Multiply Unit
branch-unit-p BU; // Branch Unit
load-store-unit-p LSU ; // Load Store Unit
mem-p mem ; // Memory

}

Constructor Function:
MA-state(pe,RF,SRF,IFU,DQ,ROB,IU,MU,BU,

LSU,mem)

Type Predicate:
MA-state-p(MA)

Field Accessors:
.pc .RF SRF .IFU .DQ .ROB
JU .MU .BU .LSU .mem

B.5 Definition of the MAETT state

Defstructure INST {

naturalp ID ; // Identification Number

bitp modified? ; // Modified by Self-Modifying Code?
bitp first-modified? ; //

bitp speculative? ; // Speculatively Executed?

bitp br-predict? ; // Branch Prediction Result

bitp exintr? ; // Externally Interrupted

word-p word ; // Instruction Word

stage-p stg ; // Current Stage

ROB-index-p tag ; // Tag used in Tomasulo’s Algorithm
ISA-state-p pre-ISA ; // Pre-ISA state

ISA-state-p post-ISA ; // Post-ISA state

}

Constructor Function:
INST(ID,modified?,first-modified ?,speculative 2,br-predict ?,exintr ?,word, stg,tag,

pre-ISA,post-ISA)

Type Predicate:
INST-p(%)

Field Accessors:

JID .modified? .first-modified? .speculative? .br-predict? .exintr?

.word

.stg .tag .pre-ISA .post-ISA

197



Deflist INST-listp as List of INST-p

Defstructure MAETT {

ISA-state-p init-ISA ; //

naturalp new-1D ; // ID for Newly Fetched Instruction

naturalp DQ-len ; // Number of Instructions in Dispatch Queue
naturalp WB-len ; // Number of Instructions in Write Buffer

bitp ROBlg ; // ROB-head is less than or equal to ROB-tail.
ROB-index-p ROB-head ; // Head of Reorder Buffer

ROB-index-p ROB-tail ;  // Tail of Reorder Buffer

INST-listp trace ; // List of Executed Instructions

}

Constructor Function:

MAETT((init-ISA,new-ID,DQ-len, WB-len,ROB-flg,ROB-head, R OB-tail,trace)
Type Predicate:

MAETT-p(MT)
Field Accessors:

.Anit-ISA  .new-ID .DQ-len .WB-len .ROB-flg .ROB-head

-ROB-tail .trace

198



Appendix C

List of INST Functions

In this Appendix, we list the functions that calculate various values for instructions.
Some of these functions are introduced in Subsection 7.3.2, and used in the following

sections. The complete definitions of these functions are given in Appendix D.

Function Name

Description

INST-word(z)
INST-pc(7)

INST-RF (i)
INST-SRF (i)
INST-mem(4)
INST-su(z)
INST-opcode(7)
INST-ra(s)

INST-rb(:)

INST-re(3)
INST-im(3)
INST-fetch-error?(z)
INST-decode-error?(s)
INST-load-error?(s)
INST-store-error?(s)
INST-data-access-error?(7)
INST-excpt?(7)

Instruction word.

Program counter value, or the address of instruc-
tion word.

Register file before executing .

Special register file before executing .
Memory before executing 1.
Supervisor/User mode.

Opcode.

RA operand register.

RB operand register.

RC operand register.

Immediate value.

Causes a fetch error if 1.

Causes an illegal instruction if 1.

Causes a read memory exception if 1.
Causes a write memory exception if 1.
Causes a data access error exception if 1.
Causes an exception of any kind if 1.

199



Function Name

Description

INST-cntlv(7)
INST-load-addr(z)
INST-store-addr(4)
INST-src-vall()
INST-src-val2(7)
INST-src-val3(i)
INST-ADD-dest-val(s)
INST-MULT-dest-val(s)
INST-LD-dest-val(z)
INST-LD-im-dest-val()
INST-MFSR-dest-val(7)
INST-MTSR-dest-val(s)
INST-writeback-p(%)
INST-dest-val(z)
INST-dest-reg(i)
INST-TIU?(3)
INST-MU?(3)
INST-LSU?(4)
INST-BU?(i)
INST-no-unit(z)
INST-1d-st(z)
INST-store(z)
INST-load(7)
INST-wb(4)
INST-wb-sreg(¢)
INST-sync(7)
INST-rfeh(s)
INST-branch-dest()
INST-IU-op(i)
INST-LSU-op(7)

Control vector.

Memory load address if load instruction.
Memory store address if store instruction.
First source operand value.

Second source operand value.

Third source operand value.

Result (destination value) of ADD instruction.
Result of MUL instruction.

Result of LD instruction.

Result of LDI instruction.

Result of MFSR instruction.

Result of MTSR instruction.

Instruction write back its result to a register.
Result of an instruction

Destination register

Executed in the integer unit if 1.

Executed in the multiply unit if 1.

Executed in the load store unit if 1.
Executed in the branch unit if 1.

Not executed in any unit.

Control vector flag 1d-st.

Memory store instruction.

Memory load instruction.

Control vector flag wb.

Control vector flag wb-sreg.

Control vector flag sync.

Control vector flag rfeh.

Branch target address.

Operand type for instructions executed in IU.

Operand type for instructions executed in LSU.

200




Function Name

Description

INST-context-sync? (i)
INST-branch-taken?(7)
INST-wrong-branch?(z)
INST-start-specultv?(s)
INST-fetch-error-detected-p(%)
INST-decode-error-detected-p(i)
INST-load-accs-error-detected-p(7)
INST-store-accs-error-detected-p(7)
INST-data-accs-error-detected-p(7)
INST-excpt-detected-p(z)
INST-excpt-flags()

Context switching instruction.

Branch is taken.

Branch is mispredicted.

Instruction starts speculative execution.
A fetch error is detected.

A decode error is detected.

A load access error is detected.

A store access error is detected.

A data access error is detected.

An exception is detected by the processor.

An exception flag is raised.

201




Appendix D

ACL2 Books for the FM9801

Verification

Due to the large volume of the verification scripts, they are not included in this
compact version of the dissertation. All ACL2 proof scripts for the FM9801 are

available at:

http://www.utexas.edu/users/sawada/fm9801 or

http://www.utexas.edu/users/sawada/fm9801/1ink.html .

202



[AA93]

[AAC9S]

[AL91]

[AL95]

[BBCZ98]

[BD94]

Bibliography

D. Alpert and D. Avon. Architecture of the Pentium microprocessor.

IEEE Micro, 13(3):11-21, 1993.

The Alpha Architecture Committee. Alpha Architecture Ref-
erence Manual. Digital Press, Boston, third edition, 1998.

http://www.bh.com/digitalpress.

Martin Abadi and Leslie Lamport. The existence of refinement map-

pings. Theoretical Computer Science, 82(2):253-284, 1991.

M. Agaard and M. Lesser. Reasoning about pipelines with structural
hazards. In Theorem Provers in Circuit Design : theory, practice, and

experience, volume 901 of LNCS, pages 13-32. Springer Verlag, 1995.

Sergey Berezin, Armin Biere, Edmund Clarke, and Yunshan Zhu. Com-
bining symbolic model checking with uninterpreted functions for out-
of-order processor verification. In Formal Methods in Computer-Aided
Design (FMCAD ’98), volume 1522 of LNCS, pages 369-386. Springer
Verlag, 1998.

Jerry R. Burch and David L. Dill. Automatic verification of pipelined
microprocessor control. In Computer-Aided Verification (CAV ’94), vol-
ume 818 of LNCS, pages 68—80. Springer Verlag, 1994.

203



[BHY7]

[BHK94]

[BKMY96]

[BMSS]

[Bry86]

[BT90]

[Bur96]

Bishop Brock and Warren A. Hunt, Jr. Formally specifying and mechan-
ically verifying programs for the Motorola complex arithmetic proces-
sor DSP. In 1997 IEEE International Conference on Computer Design,
pages 31-36. IEEE Computer Society, October 1997.

Bishop C. Brock, Warren A. Hunt, Jr., and Matt Kaufmann. The
FM9001 microprocessor proof. Technical Report 86, Computational

Logic, Inc., December 1994.

Bishop Brock, Matt Kaufmann, and J Strother Moore. ACL2 theorems
about commercial microprocessors. In Mandayam Srivas and Albert
Camilleri, editors, Proceedings of Formal Methods in Computer-Aided
Design (FMCAD ’96), volume 1166 of LNCS, pages 275-293. Springer
Verlag, 1996.

Robert S. Boyer and J Strother Moore. A Computational Logic Hand-

book. Academic Press, Inc., San Diego, California, 1988.

R. K. Bryant. Graph-based algorithms for boolean function manip-
ulation. IEEE Transactions on Computers, C-35(8):677-691, August
1986.

Alexandre Bronstein and Carolyn L. Talcott. Formal verification of
pipelines based on string-functional semantics. In L. J. M. Claesen,
editor, Formal VLSI Correctness Verification, VLSI Design Methods
II, pages 349-366, 1990.

Jerry R. Burch. Techniques for verifying superscalar microprocessors. In
Design Automation Conference (DAC '96), pages 552-557, Las Vegas,
Nevada, June 1996. ACM Press.

204



[CAB+86]

[CE81]

[CES86]

[Coe94]

[Coh86]

[Coh87]

[Cra83]

[Cra96|

[Cyr93]

R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F.
Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler,
P. Panangaden, J. T. Sasaki, and S. F. Smith. Implementing Mathe-
matics with the Nuprl Proof Development System. Prentice-Hall, En-
glewood Cliffs, N.J., 1986.

E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchroniza-
tion Skeletons using Branching Time Temporal Logic. In Workshop on

Logics of Programs, volume 131. Springer Verlag, 1981.

E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic Verification of
Finite-State Concurrent Systems using Temporal Logic. ACM Trans-

actions on Programming Languages and Systems, 8(2), 1986.

Michael L. Coe. Results from verifying a pipelined microprocessor.

Master’s thesis, University of Idaho, 1994.

Richard M. Cohen. Proving Gypsy programs. Technical Report 4,
Computational Logic, Inc., May 1986.

Avra Cohn. A proof of correctness of the VIPER microprocessor: The
first level. Technical Report 104, University of Cambridge, Computer
Laboratory, January 1987.

Harvey Cragon. Executable instruction set specification. Computer

Architecture News, 11(1):25-43, March 1983.

Harvey G. Cragon. Memory Systems and Pipelined Processors. Jones

and Bartlett Publishers, Sudbury, Massachusetts, 1996.

David Cyrluk. Microprocessor verification in PVS: A methodology and
simple example. Technical Report SRI-CSL-93-12, SRI Computer Sci-

ence Laboratory, December 1993.

205



[DPY7]

[GLS90]

[GM93]

[GMW79]

[HB92]

[HGS99]

[HQROS]

W. Damm and A. Pnueli. Verifying out-of-order executions. In

D. Probst, editor, CHARME ’97. Chapman and Hall, 1997.

Jr. Guy L. Steele. Common Lisp the Language. Digital Press, second
edition, 1990.

M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL:
A Theorem Proving Environment for Higher-Order Logic. Cambridge
University Press, Cambridge, UK, 1993.

M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF: A Mech-
anized Logic of Computation, volume 78 of LNCS. Springer Verlag,
1979.

Warren A. Hunt, Jr. and Bishop Brock. A formal HDL and its use
in the FM9001 verification. In C. A. R. Hoare and M. J. C. Gordon,
editors, Mechanized Reasoning and Hardware Design, Prentice-Hall In-

ternational Series in Computer Science, pages 35—48. Prentice-Hall, En-

glewood Cliffs, N.J., 1992.

Ravi Hosabettu, Ganesh Gopalakrishnan, and Mandayam Srivas. A
proof of correctness of a processor implementing Tomasulo’s algorithm
without a reorder buffer. In Laurence Pierre and Thomas Kropf, editors,
Correct Hardware Design and Verification Methods, 10th IFIP WG10.5
Advanced Research Working Conference, (CHARME ’99), volume 1703
of LNCS, pages 8-22. Springer Verlag, 1999.

Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamani. You
assume, we guarantee: Methodology and case studies. In Alan J. Hu
and Moshe Y. Vardi, editors, Computer Aided Verification (CAV ’98),
volume 1427 of LNCS, pages 440-451. Springer Verlag, 1998.

206



[HS99]

[HSG98]

[Hun94|

[JDB95]

[Joh91]

[Kau98|

[KMO6]

[KM99]

Warren A. Hunt, Jr. and Jun Sawada. The FM9801 microprocessor
verification. IEEE Micro, 19(3):47-55, May/June 1999.

Ravi Hosabettu, Mandayam Srivas, and Ganesh Gopalakrishnan. De-
composing the proof of correctness of pipelined microprocessors. In
Alan J. Hu and Moshe Y. Vardi, editors, Computer Aided Verifica-
tion (CAV ’97), volume 1427 of LNCS, pages 122-134. Springer Verlag,
1998.

Warren A. Hunt, Jr. FM8501: A Verified Microprocessor, volume 795
of LNCS. Springer Verlag, 1994.

Robert B. Jones, David L. Dill, and Jerry R. Burch. Efficient validity
checking for processor verification. In IEEE/ACM International Con-

ference on Computer-Aided Design, pages 2—-6, 1995.

Mike Johnson. Superscalar Microprocessor Design. Prentice Hall, En-

glewood Cliffs, New Jersey, 1991.

Matt Kaufmann. ACL2 support for verification projects. In C. Kirch-
ner and H. Kirchner, editors, Proceedings 15th Int’l Conf. Automated
Deduction, volume 1421 of LNAI pages 220-238. Springer Verlag, jul
1998.

Matt Kaufmann and J Strother Moore. ACL2: An industrial strength
version of nqthm. In FEleventh Annual Conference on Computer As-
surance (COMPASS-96), pages 23-34. IEEE Computer Society Press,
June 1996.

Matt Kaufmann and J Strother Moore. ACL2: A Computational Logic
for Applicative Common Lisp, The User’s Manual. 1999. URL:http://-

www.cs.utexas.edu/users/moore/acl2/acl2-doc.html#User’s-Manual.

207



[LL90]

[McM93]

[McMOY8]

[Min97]

[MLK98]

[Mo096]

[MSSW94]

[MW97]

Leslie Lamport and Nancy Lynch. Distributed computing models and
methods. In Handbook of Theoretical Computer Science, volume B,

pages 1159-1199. The MIT Press, Cambridge, Ma., 1990.

K.L. McMillan. Symbolic Model Checking. Kluwer Academic Press,
1993.

K. L. McMillan. Verification of an implementation of Tomasulo’s algo-
rithm by compositional model checking. In Alan J. Hu and Moshe Y.
Vardi, editors, Computer Aided Verification (CAV ’98), volume 1427 of
LNCS, pages 110-121. Springer Verlag, 1998.

Mindshare, Inc., Tom Shanley. Pentium Pro Processor Sys-
tem Architecture. Addison Wesley Developers Press, 1997.

http://www.aw.com/devpress/.

J S. Moore, T. Lynch, and M. Kaufmann. A Mechanically Checked
Proof of the AMDb5 k86 Floating-Point Division Program. IEEE Trans.
Comp., 47(9):913-926, September 1998. See also URL http://-

devil.ece.utexas.edu/~lynch/divide/divide.html.

J Strother Moore. Piton A Mechanically Verified Assembly-Level Lan-
guage. Kluwer Academic Publishers, Dordrecht, 1996.

Cathy May, Ed Silha, Rick Simpson, and Hank Warren, editors. The
PowerPC™ Architecture: A Specification for a New Family of RISC
Processors. Morgan Kaufmann Publishers, Inc., San Francisco, Califor-

nia, second edition, 1994.

W. McCune and L. Wos. Otter: The CADE-13 Competition incarna-
tions. J. Automated Reasoning, 18(2):211-220, 1997.

208



[ORSvH95] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke.

[PHY6]

[QS82]

[Rus97]

[Rus98]

[Saw99]

[SBYO]

[SHY7]

Formal verification for fault-tolerant architectures: Prolegomena to the
design of PVS. IEEE Transactions on Software Engineering, 21(2):107—
125, February 1995.

David A. Patterson and John L. Hennessey. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann Publishers, Inc., San Fran-

cisco, California, second edition, 1996.

J.P. Queille and J. Sifakis. Specification and Verification of Concurrent
Systems in CESAR. In Proc. of the 5th International Symposium on
Programming, volume 137 of LNCS, 1982.

D. Russinoff. A Mechanically Checked Proof of Correctness of the
AMD5K86 Floating-Point Square Root Microcode. Formal Methods

in System Design Special Issue on Arithmetic Circuits, 1997.

D. Russinoff. A Mechanically Checked Proof of IEEE Compliance of
a Register-Transfer-Level Specification of the AMD-K7 Floating-Point
Multiplication, Division, and Square Root Instructions. London Math-
ematical Society Journal of Computation and Mathematics, 1:148-200,
December 1998.

Jun Sawada. Verification scripts for FM9801 pipelined microprocessor

design, 1999. URL:http://www.cs.utexas.edu/users/sawada/FM9801/.

Mandayam Srivas and Mark Bickford. Formal verification of a pipelined

microprocessor. IEEE Software, pages 5264, September 1990.

Jun Sawada and Warren A. Hunt, Jr. Trace table based approach for
pipelined microprocessor verification. In Computer Aided Verification

(CAV ’97), volume 1254 of LNCS, pages 364—-375. Springer Verlag, 1997.

209



[SHOS]

[SHY9]

[Sho84]

[SJDYS]

[SM95]

[SP85]

[TK94]

Jun Sawada and Warren A. Hunt, Jr. Processor verification with precise
exceptions and speculative execution. In Alan J. Hu and Moshe Y.
Vardi, editors, Computer Aided Verification (CAV ’98), volume 1427 of
LNCS, pages 135-146. Springer Verlag, 1998.

Jun Sawada and Warren A. Hunt, Jr. Results of the verification
of a complex pipelined machine model. In Laurence Pierre and
Thomas Kropf, editors, Correct Hardware Design and Verification
Methods, 10th IFIP WG10.5 Advanced Research Working Conference,
(CHARME ’99), volume 1703 of LNCS, pages 313-316. Springer Verlag,
1999.

Robert E. Shostak. Deciding combinations of theories. Journal of the
ACM, 31(1):1-12, January 1984.

Jens U. Skakkebak, Robert B. Jones, and David L. Dill. Formal verifica-
tion of out-of-order execution using incremental flushing. In Alan J. Hu
and Moshe Y. Vardi, editors, Computer Aided Verification (CAV ’98),
volume 1427 of LNCS, pages 98-109. Springer Verlag, 1998.

Mandayam K. Srivas and Steven P. Miller. Formal verification of a com-
mercial microprocessor. Technical Report SRI-CSL-95-04, SRI Com-

puter Science Laboratory, July 1995.

James E. Smith and Andrew R. Pleszkun. Implementation of precise
interrupts in pipelined processors. In 12th Annual International Sym-

posium on Computer Architecture, pages 36—44, 1985.

S. Tahar and R. Kumar. Formal verification of pipeline conflicts in

RISC processors. In European Design Automation Conference (EURO-

210



[Tom67]

[VBYS]

[VB9Y]

[WB96]

[WC95]

[WGHOS]

DACY4), pages 285-289, Grenoble, France, September 1994. IEEE

Computer Society Press.

R. M. Tomasulo. An efficient algorithm for exploiting multiple arith-
metic units. IBM Journal of Research and Development, 11(1):25-33,
January 1967.

Miroslav N. Velev and Randal E. Bryant. Bit-level abstraction in the
verification of pipelined microprocessors by correspondence checking.
In Formal Methods in Computer-Aided Design (FMCAD ’98), volume
1522 of LNCS, pages 18-35. Springer Verlag, 1998.

Miroslav N. Velev and Randal E. Bryant. Superscalar processor verifica-
tion using efficient reductions of the logic of equality with uninterpreted
functions to propositional logic. In Laurence Pierre and Thomas Kropf,
editors, Correct Hardware Design and Verification Methods, 10th IFIP
WG10.5 Advanced Research Working Conference, (CHARME ’99), vol-
ume 1703 of LNCS, pages 37-53. Springer Verlag, 1999.

Phillip J. Windley and Jerry R. Burch. Mechanically checking a lemma
used in an automatic verification tool. In Mandayam Srivas and Albert
Camilleri, editors, Formal Methods in Computer-Aided Design (FM-
CAD ’96), volume 1166 of LNCS, pages 362-376. Springer Verlag, 1996.

Phillip J. Windley and Michael L. Coe. A correctness model for
pipelined microprocessors. In Theorem Provers in Circuit Design : the-
ory, practice and experience, volume 901 of LNCS. Springer Verlag,
1995.

M. M. Wilding, D. A. Greve, and D. S. Hardin. Efficient simulation

of formal processor models. Technical report, Advanced Technology

211



Center, Rockwell Collins Avionics and Communications, Cedar Rapids,

TA 52498, 1998. http://pobox.com/users/hokie/docs/efm.ps.

[Yu90] Yuan Yu. Automated Proofs of Object Code for a Widely Used Micro-
processor. PhD thesis, University of Texas at Austin, December 1990.

212



Vita

Jun Sawada was born in Kyoto, Japan, on the 5th of March 1968, the second son of
Mitsu Sawada and Susumu Sawada. He entered Kyoto University, Japan, in 1986,
completing a B.S in Mathematics in 1990 and an M.S. in Mathematical Science in
1992. He entered the Graduate School of the University of Texas in 1993, where he
was employed as a an assistant instructor and a research assistant. He is a running

enthusiast and has completed two marathons during his stay in Austin.

Permanent Address: 6805 Wood Hollow Dr. #349, Austin TX 78731

This dissertation was typeset with IATEX 2:! by the author.

'IATRX 2¢ is an extension of WTEX. I*TEX is a collection of macros for TEX. TgX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin.

213



