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1 Introduction

Analytics are becoming increasingly important for business competition. Many of the
top brands today employ analytics to improve efficiency and sales while at the same
time maintaining increased customer satisfaction and loyalty. From a consumer’s
point of view, these analytical systems are often manifested in the form of recom-
mender systems, which use accrued user data to predict the items that would be
of the most interest to the user. As larger selections are made available to users,
often through the power of e-commerce, recommender systems are an increasingly
important part of the user experience, and if they are executed well, such systems
can increase sales and generate strong user loyalty.

With so much emphasis being placed on these analytic tools, increased performance,
both in terms of accuracy and computational efficiency, is required. In our course
project, we focus on the strategy known as collaborative filtering. Collaborative
filtering recommender systems often utilize unsupervised learning algorithms, and
since the data often naturally occurs in the form of co-occurrence tables, a popular,
classic method is one-way clustering, in which one dimension of the table, such as the
rows, is grouped at a time according to similarity in the second dimension, such as
the columns. Recently, though, inquiry into co-clustering algorithms, in which both
rows and columns in the matrix are clustered simultaneously, has shown that better
results can often be obtained [5].

In this progress report, we summarize the our experiments that we have done so far
for our project in Section 3. Before that, we will briefly describe the Netflix Prize
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problem and introduce some related background knowledge in Section 2. Finally in
Section 4, we will discuss potential directions for future work.

2 The Netflix Problem and Related Background

In this paper, we consider co-clustering as applied to the Netflix data set. The Netflix
dataset is a challenging dataset consisting of over 100 million movie ratings by over
480,000 users [3]. Since collaborative filtering can also be thought of as missing value
estimation [2], our goal is to predict the missing values, movies which the user has
not rated, from the known ratings of movies from all users. In this paper, we explore
co-clustering as a method for estimating these missing values.

Let the data of m users and n movies be represented by an m × n matrix Z. Each
cell zij ∈ [0, 5] corresponds to user i’s rating of movie j. We seek to partition the m
users into k disjoint or hard clusters and the n movies into l disjoint or hard clusters,
thus creating a smaller k × l matrix of co-clusters, which approximates Z.

In [1], the author proposed a Bregman co-clustering algorithm, which can also be
considered as a generalized matrix approximation method.

The objective of Bregman co-clustering is to find a partition of m rows and n columns
of a data matrix into k row clusters and l column clusters such that the distance
between the original matrix and the reconstructed matrix is minimized. The distance
measure can be formulated as follows:

E(dφ(Z, Ẑ)) =
m∑
u

n∑
v

wuvdφ(zuv, ẑuv) = dφw(Z, Ẑ)

where Ẑ is an approximation of Z that depends only upon a given co-clustering, wuv

is the probability of an entry in Ẑ taking on a particular value zuv and Dφ is the
Bregman distance with respect to some real-valued convex function φ.

As stated in Banerjee’s paper, in constructing the approximation matrix Ẑ using
different co-clustering summary statistics, there are totally 6 different ways (bases).
In addition, the I-divergence and squared Euclidean distance instantiated from the
general Bregman divergence will lead to a closed form solution for co-clustering.
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3 Experiments

In this section, we report the experiments we have done in our course project. First we
describe how we pre-process the Netflix data set. Then we discuss our implementation
and report some preliminary experimental results.

3.1 Pre-processing

The Netflix datasets come as a collection of multiple files namely the qualifying
datasets, the prediction dataset and the probe dataset. The qualifying dataset con-
tains a collection of movies whose ratings by a set of users is withheld. The task is
to predict these ratings. The training dataset is a collection of 17770 files, one for
each movie in the Netflix system. Each file consists of a Movie ID in the first line
followed by a list of tuples of Customer IDs, Ratings (Integral values from 1 to 5)
and Dates.CustomerIDs range from 1 to 2649429, with gaps. There are 480189 users
totally.

The probe set is similar to the qualifying dataset, it contains a collection of movies
each of which has a list of users who have rated them. Unlike the qualifying dataset,
the ratings for these movies by the users is available in the training dataset. To test
the performance of our algorithm, we can compare the RMSE results obtained by our
algorithm on the probe set, against the Netflix’s Cinematch system.

It is natural to formulate the ratings between user and movie as a 2-D matrix. We
implemented in perl scripts for combining the individual movie files into sparse matrix
CCS format. The final data set saved in this format is about 1.5GB. Considering we
have only limited storage space for the whole Netflix data, we further convert the
data in text format into binary format, which reduced the storage space to less than
500MB.

3.2 Implementation and Experiments

We simultaneously developed the code for Bregman co-clustering algorithm both in
C++ and Matlab. Due to the time constraints (considering the the time spent on
debugging C++ code) the C++ code is still under progress.

On the other hand, the Matlab code is ready and we tested it on the lhug machine,
which took around 2 hours to run on the whole netflix data set. However, at this
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Table 1: RMSE on probe set using Bregman co-clustering (Euclidean distance).
Basis R1/C1 R2/C2 R4/C4 R10/C10 R20/C20 R50/C50

1 1.12962 1.12962 1.12962 1.12962 N/A N/A
2 1.12962 1.12962 1.12962 0.98376 N/A N/A
3 1.06879 1.06879 1.06879 1.06879 N/A N/A
4 1.05282 1.05282 1.05282 1.05282 N/A N/A
5 0.996456 0.996456 0.99409 0.995524 0.99708 0.97577
6 0.996456 1.05404 1.05902 N/A N/A N/A

time, the experiments are still running. We couldn’t report complete experimental
results here.

We also tested the existing code developed by the author/collaborator in [1]. The
preliminary result of RMSE on probe set of Bregman co-clustering using squared
Euclidean distance is listed in Table 3.2, which is based on different number of
row/column clusters on all bases.

We also tested the part of the existing code using I-divergence. However, we ob-
served that the objective value is increasing instead of decreasing for basis 5 with
20 row/column clusters! We suspect the implementation of the existing code using
I-divergence is not correct and will not report any RMSE result here.

4 Discussion and Future Work

We encountered some difficulties in handling the huge Netflix data set on the UTCS
machine. Fortunately, we have struggled to save the storage space as much as we can
and implemented the runnable MATLAB code for the limited time constraints.

In our future work, we are planning to do the following:

• Completely test our MATLAB code on Netflix Data using both squared Eu-
clidean distance and I-divergence.

• Although we have not observed the occurrence of empty cluster problem in the
batch update of our MATLAB code, we would like to explore “local search” or
“incremental iterative update” to further improve the performance.

• As one of the major part in our project, we would explore hierarchical co-
clustering based on our MATLAB code and will try the Kalman filter on the
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resulting tree structure to improve the performance.
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