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I. INTRODUCTION

Microarrays measure gene expression levels and provide data samples that are sparse compared to the number of

the interacting genes that are to be modeled [1]. In addition to that, due to insufficient resolution, image corruption,

robotic methods and dust on slides in the microarray some values in the gene expression data are missing [2].

Unfortunately, many algorithms (hierarchical clustering, K-means clustering,· · · ) for gene expression analysis require

complete matrix of gene array values as inputs. The effectiveness of such algorithms degrade rapidly even with few

missing values [2]. Due to the sparsity of data, the algorithms for estimating missing values in the DNA microarrays

will not be, in many cases, reliable and will lead to poor estimation results.

Our main work in this project is to exploit the similarity between genes across different organisms to overcome the

data sparsity problem and obtain more accurate missing value estimates. Therefore, we try to use mutual information

between data sets, corresponding to different organisms, to enhance learning the structure and properties in each

data set individually, and consequently reach a better missing data estimation. We will try to approach this problem

in two directions: (1) using a Bayesian-based method and (2) enhancing existing estimation methods. In the first

approach, we use Bayesian networks to model the interactions between genes, apply multi-task learning algorithms

on similar gene data sets to learn the Bayesian structure accurately [3], and then make use of the learned relations

to estimate the missing data. In the second approach, we use similarity between the data sets to enhance the existing

single-set estimation algorithms by imposing new constraints and/or modifying the estimation process. The rest of

the report is organized as follows: Section II gives the biological background for the similarity between genes of

different organisms. Section III presents some known effective missing-value-estimation algorithms and discusses

the options for exploiting multi-organism data-sets in the context of the K-nearest-neighbor based algorithms.

Section IV discusses the Bayesian-based method, and Section V concludes the report.

II. BIOLOGY BACKGROUND

Recent studies have revealed highly conserved proteins that exhibit similar expression patterns in different

organisms, and play a role in gene regulation. Therefore, this evolutionary information can be used to refine
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regulatory relationships among genes, which are estimated from gene expression data and bias the learning process.

In this project, we will try to use this fact to improve missing value estimators for microarray data.

In genetics, sequence homology implies that the given sequences share a common ancestor. Orthology is a type

of sequence homology that results from a speciation event; i.e. a parent species diverging into two new species.

Orthologous genes usually preserve protein expression and regulation functions and can be used to quantify the

evolutionary information between two organisms [4], [5]. The idea of utilizing evolutionary information to build

gene networks using a multiorganism approach was used in [5], where two organisms A and B were considered,

with DA and DB representing their gene expression data.

We have researched available datasets for orthologous genes and found two good candidates for this work at

http://genome-www.stanford.edu/cellcycle/ [6] for yeast genes and genome-www.stanford.edu/Human-CellCycle/Hela/ [7]

for human genes. It is interesting to note that even yeast and humans have some genetic pathways common. This

highlights the importance of this approach in exploiting this type of dependencies between organisms to improve

performance and accuracy.

III. SINGLE-SET ESTIMATION: OVERVIEW AND POSSIBLE IMPROVEMENTS

Several single set estimation have been suggested in the literature for missing value estimation in microarray data,

including K-nearest-neighbor (KNN) imputation, Singular Value Decomposition Imputation, least square imputation,

Bayesian PCA, and Collateral missing value imputation (CMVE). All these techniques try to exploit correlation

between data to reduce prediction errors, and thus their efficiency is directly related to the underlying, highly

unknown relations between genes. The way in which similarity between different data sets can be exploited is thus

related to how every technique makes use of the data of the different genes to estimate a missing value.

We will work on SVDimpute, KNNimpute, and CMVE algorithms. In this report, we take HM×N to be the matrix

containing the microarray data for M genes at N instances.

KNNimpute: If the gene A has a missing value in experiment 1, this method would find K-other genes, which

have a value present in experiment 1, with expression most similar to A in experiments 2-N . A weighted average

of values in experiment 1 from the K-closest genes is then used as an estimate for the missing value in gene A.

The best candidate metric for gene similarity in this context was shown to be the Euclidean distance, obtained after

log-transforming the data (and thus reducing the effect of the outliers). [2]

CMVE: Similar to the KNNimpute, the CMVE selects K-nearest-neighbors to each gene according to the

covariance metric between two gene expressions
∑N

k=1(Hjk−E(Hj)(Hik−E(Hi)) where E(Hi) is the average

of ith row. Then, three parallel estimations of gene missing expression Hij are done by using the K-nearest-gene

values as an input. The first estimate uses the least-square-error linear regression method, while the other two use

the non-negative least-square (NNLS) algorithm. A weighted average of the three estimates is then taken to reach

the final prediction. [8]
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SVDimpute: In this method singular value decomposition is employed to obtain a set of mutually orthogonal

expression patterns that can be linearly combined to approximate the expression of all genes in the data set. In the

SVD H = UΣVT, the gene expression pattern of each gene (i.e. row of H) is a linear combination of the columns

of V, called eigengenes, where the contribution of each eigengene to the expression pattern in (i.e.rowofH is

quantified by the corresponding singular value in Σ (being multiplied by it). Therefore, the k eigengenes with the

highest singular values are selected, and each gene A is regressed against them and the coefficients are used to

reconstruct missing values A from a linear combination of the k-eigengenes. [2]

A. Exploiting similarity across data sets

The similarity between different data sets can be used to overcome the data sparsity problem, therefore, the

performance of multi-organism approach on each of the techniques mentioned above is upper bounded by the

performance of the technique on a data set with a size that equals the sum of the different data-set sizes, i.e. 100%

similarity. The techniques presented above have two major stages: first, the k nearest-neighbor genes or principal

pattern components for a gene expression are found and then a regression is applied to predict the relation between

the ”k” components and the gene. Mutual information across data sets enhance the selection process performance,

while more care is needed regarding the regression stage, since it is more sensitive to differences between organisms.

These differences may turn to an additional source of noise in the regression stage. The details are shown below.

In the search for K-nearest-neighbors of gene A, we try to deduce a similarity measure 0 ≤ fP,R ≤ 1 between

each pair P and R of datasets, and then do one (or more) of the following: Denote KR as the set of genes that is

K-nearest to the gene A in the data set R, and let D be the number of the different data sets.

1. Find KR under the ∀1 6 R 6 D, such that |KP ∩KR| > F (fP,R,K).K ∀1 6 P 6 D, where F (fP,R,K)

is an increasing function of fP,R. If the K-nearest-genes are weighted, the condition can be slightly modified

according to the details of the algorithm, for example W (KP ∩KR) > F (fP,R,K) where W (.) is the sum

of the weights of the elements of the set and W (KR) = 1.

2. Compute the final distance between 2 genes A and B in a data set R, as a weighted average of the distance

dAB,P ∀1 6 P 6 D.

In the case of SVDimpute, work on how to exploit mutual information between data sets is yet to be done. Using

across-set information in the regression stage may cause noisy observations to happen since it is highly probable

that the underlying functions have evolved with time and changed, quantitatively, their interaction style. It is left to

simulations to show whether the learned functions will change drastically across different organisms. However, in

the choice of computational model (e.g. basis functions, degree,· · · )for the regression, a very intuitive requirement

is to minimize the sum of error values across all considered organisms.

A major part any multi-organism approach is to estimate and quantify the similarity of data sets. The choice of

how to quantify the similarity depends on the context in which it is used. The resulting estimate is a result of ”lab”
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verified information and also by using learning techniques (for example use SVD to test similarity and then apply

KNN) and applying other measure (the Kullback-Leibler distance for example).

IV. BAYESIAN-BASED METHOD

The methods described in the previous section assume no specific structure for genes relations, and thus, they

make no use of the verified fact that genes interactions involve control/regulation mechanisms and that, consequently,

some genes control the expression levels of others. To reflect these regulation mechanisms, gene interactions are

modeled as Bayesian networks, described below. In the context of our problem, we use multiple data sets to learn

the structure of the underlying network and then predict the gene missing values accordingly.

A. Bayesian networks

A Bayesian network is a graphical model for representing conditional independencies between a set of random

variables. This representation consists of two components, G and Theta. G is a directed acyclic graph (DAG)

whose n nodes (genes) correspond to the random variables X1, X2, ..., Xn. Θ, describes the conditional probability

distribution of each node, given its parents 1 Pa(Xi), i.e. P (Xi|Pa(Xi)), Xi ∈ G. A basic assumption in Bayesian

networks is that it must respect the Markov assumption: Each variable Xi is independent of its non-descendants,

given its parents in G. This property allows the joint probability distribution P (X1, X2, ..., Xn) to be decomposed

into the product form

P (X1, ..., Xn) =
n∏

i=1

P (Xi|Pa(Xi)) (1)

Modeling a gene network as a Bayesian network is motivated by the fact that causal relations between genes

can be described qualitatively through the presence of edges and quantitatively through the conditional probability

distributions. Biological hidden factors and the imperfect modeling (i.e. gene interactions may be more complex than

Bayesian networks) prohibit the prediction of deterministic relations between the genes and act as a noise source

that results in the probabilistic nature of the relations between the genes. Bayesian gene networks can be extended

to incorporate temporal order to account for a direct causal effect of one gene on anther through different time stages.

The algorithms developed to learn the Beyesian network structure from the data can be classified into two

categories: search and score algorithms and information theoretic algorithms. Search and score algorithms are more

robust under data sparsity conditions, and thus are used to learn gene networks (specifically the K2 algorithm).

Several multi-organism approaches have been suggested to enhance the learning structure by making use of similar

data sets. We try here to follow similar approach to enhance the missing values estimation.

1all nodes that have an edge directed towards Xi in G
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B. Bayesian-based estimation

Based on the Bayesian model assumption, we will try the following estimation methodology:

1. Discretize the observed gene expression levels as a preprocessing step. The number of possible discrete levels

is kept low due to the saprsity of data. A relatively high number of the discrete levels would lead to poor

performance of the structure and parameter learning algorithms.

2. Apply multi-task/multi-organism learning algorithms to build a gene network of each organism.

3. For every gene network:

For each gene A , Apply one of two approaches:

a. Apply linear regression to find the expression of A as a function of the expression levels of its parents,

using the microarray data as training data. A major subtlety in this approach is the probabilistic nature

of the relation between the A and its parents, which makes same parent-value yield different child values

according to some probability distribution distribution. This probabilistic relation can be attributed to

hidden unknown factors in the controlling mechanism. To account for this hidden factor, we add a new

node λA to the list of parents of A. Our regression problem is then slightly changed into: Find the

coefficients of the basis functions w and the pattern expression vector (i.e. the row of values of λA

that should have appeared in H had λA not been hidden) of λA that minimizes the error function(least

square error for example). To predict a missing value of A, we first sample λA using the distribution

of its estimated pattern expression vector.

b. Apply Bayesian standard parameter learning using data from all gene networks that have (nearly)identical

parent set of A. To predict the value of A, we sample from the learned probability distribution given

the values of the parents of A. The predicted value v is discrete, and is replaced with the average of

the expression levels of A that were discretized to v in step 1.

If the controlling function by which the parents regulate the child’s expression is continuous in nature, the first

approach would be more compatible. If the control mechanism is digital, i.e. changes in the input values produce

little change in the output, then the problem is close to a classification problem, and the second approach is more

useful. The latter assumption can be justified by the fact that digital controlling mechanism is immune to noise and

is thus prevents the propagation of possible errors during the functioning of the genes in the cells.

V. CONCLUSION

In conclusion, the multiorganism approach shows promise in terms of improving the accuracy of the estimates for

the missing data problem. We have explored possible approaches of taking advantage of the multiorganism similarity.

In addition to that, we identified possible datasets to be used in our simulations. We will be using BNT Matlab

toolbox developed by Murphy to perform our simulations. The remaining work to be done can be summarized

by modifying the mentioned algorithms to take advantage of the similarity and perform various simulations on

synthetic data and real datasets in order to verify the validity and usefulness of this approach.
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