CS395T Data Mining: A Statistical Learning Perspective

Term Project Report I

Team members: Hui Wu, Qi Li

Topic: (2) The Netflix Prize---Co-clustering and Local Regression

1 Background

Recommender systems are a computer-based intelligent technique to deal with the problem of information and product overload. They analyze patterns of user interest in items and products to provide personalized services which match user’s interest in most business domains, benefiting both the user and the merchant [4].
Content-based approach and Collaborative Filtering (CF) are the two dominant strategies for recommender systems[1]. While content based strategies require gathering large amounts of external information that might not be available or easy to collect, collaborative filtering, which relied only on past user behavior on previous items ratings, becomes preferred for researchers.

Many collaborative filtering techniques in the literature are based on correlation criteria [7,8], and matrix factorization[9,10]. The correlation-based techniques adopt similarity measures, such as Pearson correlation [7], and cosine similarity [8], to determine a neighborhood of similar users for each user and predict the user’s rating for an item by using a weighted average of ratings of the neighbors. These techniques have much reduced coverage for they can’t detect item synonymy [1].

The matrix factorization approaches are SVD [9] and NNMF-based [10] filtering techniques that predict the unknown ratings based on a low rank approximation of the original ratings matrix. These techniques treat the users and items symmetrically and handle item synonymy and sparsity [1] and the computation of these techniques is intensive.

1.1 Netflix problem
Netflix, which is the largest online DVD rental service, has held a contest named ‘Netflix Prize’ to improve their movie recommendation system. Basically, the recommendation problem in this recommendation system is the problem of estimating ratings for the items that have not been seen by a user.
There are 2 gigs of csv files containing 100 million ratings, which were made by 480K (anonymous) users on a library of almost 18K movies. The goal is to make sense of the data and spit out a 20 mb file of results for a set of ratings not contained in the sample, which are compared against the users' actual ratings to test the performance of the estimation.
Many talented researchers have been attracted to attack this problem for its great challenges: while 100 million ratings may sound like a lot, there would actually be 8.5 billion ratings if every user rated every movie, which means only over 1% of a complete sample is provided and we have to make good predictions on the user’s ratings with such spare dataset.

2 Co-clustering and local regression

In this project, we employ a collaborative filtering approach based on weighted Bregman co-clustering algorithm [3], which involves simultaneous clustering of users and items.
Co-clustering is a problem of simultaneously clustering rows and columns of a data matrix. Not just like general clustering which seeks similar rows or columns, co-clustering seeks “blocks” (or “co-clusters”) of rows and columns that are inter-related [3].
Co-clustering is desirable over traditional “single-sided” clustering from a number of Perspectives [3]:
1. “Simultaneous clustering of row and column clusters is informative and digestible. Co-clustering provides compressed representations that are easily interpretable while preserving most of the information contained in the original data, which makes it valuable to a large class of statistical data analysis applications”. [3]
2 “A row (or column) clustering can be thought of as dimensionality reduction along the rows (or columns). Simultaneous clustering along rows and columns reduces dimensionality along both axes, thus leading to a statistical problem with dramatically smaller number of parameters and hence, a much more compact representation for subsequent analysis”. [3]
3 “As the size of data matrices increases, so does the need for scalable clustering algorithms. Single-sided, geometric clustering algorithms such as k-means and its variants have computation time proportional to m*n*k per iteration, where m is the number of rows, n is the number of columns and k is the number of row clusters. Co-clustering algorithms based on a similar iterative process involve optimizing over a smaller number of parameters, and can relax this dependence to (m*k*l + n*k*l) where m, n and k are the number of rows, the number of columns , the number of row clusters and l is the number of column clusters. Since the number of row and column clusters is usually much lower than the original number of rows and columns, co-clustering can lead to substantial reduction in the running time”. [3]
3 Problem definition[1]

[image: image1.wmf]1

{}

m

ii

Uu

=

=

 is the set of users and |U|=m.
[image: image2.wmf]1

{}

n

jj

Pp

=

=

is the set of items and |P|=n. A is m x n ratings matrix and
[image: image3.wmf]ij

A

is the rating of the user
[image: image4.wmf]i

u

 for the item
[image: image5.wmf]j

p

. W is m x n matrix corresponding to the confidence of the ratings in A. Also, we assume
[image: image6.wmf]1

ij

W

=

when the rating is known and 0 otherwise.
[image: image7.wmf]:{1,....,}{1,....,}

mk

r

®

and
[image: image8.wmf]:{1,....,}{1,....,}

nl

g

®

 denote the user and item clustering , where k and l are number of user and item clusters.
[image: image9.wmf]ˆ

A

 is approximation matrix for A.
Two definitions of approximation matrix
[image: image10.wmf]ˆ

A

:
1.
[image: image11.wmf]ˆ

COC

gh

A

=A

2.
[image: image12.wmf]ˆ

A

:
[image: image13.wmf]ˆ

()()

COCRRCCCC

ijghigjh

A=A+A-A+A-A

Definition 1 is the simplest but intuitive approximation matrix for A, while definition 2 incorporates the biases of the individual users and items by including the terms (user average - user cluster average) and (item average - item cluster average) in addition to the co-cluster average. When
[image: image14.wmf]()

ig

r

=

and
[image: image15.wmf]()

jh

g

=

,
[image: image16.wmf]R

i

A

,
[image: image17.wmf]C

j

A

 are average ratings of user
[image: image18.wmf]i

u

and item
[image: image19.wmf]j

p

 and
[image: image20.wmf],

COC

gh

A

[image: image21.wmf]RC

g

A

 EMBED Equation.DSMT4 [image: image22.wmf],

CC

h

A

are the average ratings of the corresponding co-cluster, user-cluster and item-cluster respectively[1]:

[image: image23.wmf]'|(')'|()''

'|(')'|()''

iigjjhij

COC

gh

iigjjhij

A

W

rg

rg

==

==

SS

A=

SS

 ,
[image: image24.wmf]'|(')'1''

'|(')'1''

n

iigjij

RC

g

n

iigjij

A

W

r

r

==

==

SS

A=

SS

 ,
[image: image25.wmf]'1'|()''

'1'|()''

m

ijjhij

CC

h

m

ijjhij

A

W

g

g

==

==

SS

A=

SS

[image: image26.wmf]'1'

'1'

n

jij

R

i

n

jij

A

W

=

=

S

A=

S

 ,
[image: image27.wmf]'1'

'1'

m

iij

C

j

m

iij

A

W

=

=

S

A=

S

Using
[image: image28.wmf]ˆ

A

, we can treat the prediction of unknown ratings as a co-clustering problem where we seek to find the optimal user and item clustering
[image: image29.wmf](,)

rg

 such that minimize the sum-squared residue[1]

[image: image30.wmf]2

(,)11

ˆ

min()

mn

ijijij

ij

W

rg

==

SSA-A

4 Algorithm Design
In this project, we mainly base our algorithm on the following papers: [1] [2] [3] [4]

4.1 Batch iteration
Algorithm 1: batch iteration using
[image: image31.wmf]ˆ

COC

ijgh

A=A

Algorithm 3: batch iteration using
[image: image32.wmf]ˆ

()()

COCRRCCCC

ijghigjh

A=A+A-A+A-A

· The algorithms operate in a batch fashion in the sense that at each iteration the column clustering ρ is updated only after determining the nearest column cluster for every column of A(likewise for rows).

· The algorithm iterates till the decrease in objective function becomes small as governed by the tolerance factor τ.

4.2 Incremental algorithms

Algorithm 2: Incremental algorithms using
[image: image33.wmf]ˆ

COC

ijgh

A=A

Algorithm 4: Incremental algorithms using
[image: image34.wmf]ˆ

()()

COCRRCCCC

ijghigjh

A=A+A-A+A-A

· Incrementally move columns (rows) between column (row) clusters if such a move leads to decrease in the objective function. Each invocation of the incremental procedures tries to perform such a move for each row and column of the data matrix.

· Effectively escape from poor local minima and avoiding empty clusters.
A ping-pong approach is used to invocate the batch and incremental algorithms, where the incremental local search algorithm refines the clustering produced by the batch algorithms and triggers further runs of the batch algorithms. The whole process will continue until the objective function converges.
Algorithm 1

Input: Rating matrix A, Non-zeros matrix W, # row clusters l, #col. clusters k.

Output: Co-Clustering (ρ, γ)
Initialize ρ and γ

Compute ACOC
objval ← [image: image36.png]| €O
ij-Asn©)?

∆ ← 1; τ ← 10-2||A||2
While ∆ > τ

 Foreach 1 ≤ j ≤ n

[image: image37.wmf]2

1()

1

()argmin()

mCOC

iijijih

hl

jW

r

g

=

££

=SA-A

 Update ACOC

 Foreach 1 ≤ i ≤ m

[image: image38.wmf]2

1()

1

()argmin()

nCOC

jijijgj

gk

iW

g

r

=

££

=SA-A

Update ACOC

Oldobj ← objval; objval ← [image: image40.png]Nty Niey Wij(Ai-Ayj)3

∆ ← |oldobj - objval|
Algorithm 2 Incremental algorithm (for column)
Input: A, W, l and γ
Output: column clustering γ

τ ← 10-5 ||A||2 {* Adjustable parameters}
 Foreach 1 ≤ j ≤ n

For g = 1 to l, g ≠ γ(j) = g0

For g= 1 to k

[image: image41.wmf]0

0

0

0

22

22

()()()

()()

COCCOC

jijijijijgh

gh

igigjh

jh

COCCOC

ijijijijgh

gh

igigjh

jh

gWW

WW

d

ÎÎÎ

Î

ÎÎÎ

Î

=SSA-A-SSA-A

+SSA-A-SSA-A

%

%

%

%

 *
{find the best column to move along with best cluster}

(j*,c*)←
[image: image42.wmf](,)

argmax()

j

jg

g

d

If
[image: image43.wmf]*

(*)

j

g

d

³

 τ then γ (j*) ← c*

Update ACOC
Algorithm 3

Input: Rating matrix A, Non-zeros matrix W, # row clusters l, #col. clusters k.

Output: Co-Clustering (ρ, γ)

Initialize ρ and γ

Compute ACOC, ARC, ACC, AR and AC
objval ← [image: image45.png]Nty Niey Wij(Ai-Ayj)3

∆ ← 1; τ ← 10-2 ||A||2 {* Adjustable parameters}
While ∆ > τ

 Foreach 1 ≤ j ≤ n

[image: image46.wmf]2

1()()

1

()argmin()

mCOCRRCCCC

iijijihiijh

hl

jW

rr

g

=

££

=SA-A-A+A-A+A

 Update ACOC, ACC

 Foreach 1 ≤ i ≤ m

[image: image47.wmf]2

1()()

1

()argmin()

nCOCRRCCCC

jijijgjigjj

gk

iW

gg

r

=

££

=SA-A-A+A-A+A

Update ACOC, ARC

Oldobj ← objval; objval ← [image: image49.png]Nty Niey Wij(Ai-Ayj)3

∆ ← |oldobj ← objval|

Algorithm 4 Incremental algorithm (for column)

Input: A, W, l and γ
Output: column clustering γ

τ ← 10-5 ||A||2 {* Adjustable parameters}
 Foreach 1 ≤ j ≤ n

For g = 1 to l, g ≠ γ(j) = g0

[image: image50.wmf]0

0

22

00

22

ˆ

()((,))((,))

ˆ

((,))((,))

jijijijijijij

igigjh

jh

ijijijijijij

igigjh

jh

gWghWgh

WghWgh

d

ÎÎÎ

Î

ÎÎÎ

Î

=SSA-A-SSA-A

+SSA-A-SSA-A

%

%

%

%

%

%

{Find the best column to move along with best cluster}

(j*,c*)←
[image: image51.wmf](,)

argmax()

j

jg

g

d

If
[image: image52.wmf]*

(*)

j

g

d

³

 τ then γ (j*) ← c*

Update ACOC, ACC
4.3 Simplifying the computation in these algorithms

Algorithm 1: Computational time is O((nl+mk) Wgh) . Wgh is the number of non zeros in Agh
Algorithm 3 can be implemented efficiently by pre-computing the invariant parts of the update cost functions [1].

Let
[image: image53.wmf]1

tempRC

ijijij

AAAA

=--

,
[image: image54.wmf]1

'

'|(')

2

'|(')

temp

ij

jjh

tempCC

ihh

ij

jjh

A

AA

W

g

g

=

=

=+

å

å

,
[image: image55.wmf]1

'

'|(')

3

'|(')

temp

ij

iig

tempRC

ihg

ij

iig

A

AA

W

r

r

=

=

=+

å

å

Minimizing the row update cost function is equivalent to minimizing

[image: image56.wmf]2

()()

1

()

n

tempCOCRC

ijgjg

j

AAA

gg

=

-+

å

Minimizing the column update cost function is equivalent to minimizing

[image: image57.wmf]3

()()

1

()

m

tempCOCCC

ijihh

i

AAA

rr

=

-+

å

Each iteration in algorithm 2 can be speeded up by performing the computations in a different Manner. We use column reassignment to show how to do simplification in incremental algorithm 2.

Assume column
[image: image58.wmf]c

j

 is assigned to
[image: image59.wmf]0

h

originally (
[image: image60.wmf]0

()

c

jh

g

=

), it is reassigned to
[image: image61.wmf]h

%

 during incremental algorithms (
[image: image62.wmf]()

c

jh

g

=

%

), then
[image: image63.wmf]00

hh

®

%

,
[image: image64.wmf]hh

®

%

 are all the change that has contribution to ||[image: image66.png]

||. (Column clusters in the current clustering are denoted by h, h0, and column clusters in the new clustering are represented by
[image: image67.wmf]h

%

,
[image: image68.wmf]0

h

%

. Define
[image: image69.wmf]()

igig

r

=ÛÎ

).

For co-cluster
[image: image70.wmf]()

ig

r

=

,

[image: image71.wmf]00

hh

®

%

:

[image: image72.wmf]0

0

0

0

00

0

0

00

0

0

22

222

22

()()

[()()]()

()[]()()

cc

cc

COCCOC

ijijijijgh

gh

igigjh

jh

COCCOCCOC

ijijijghijijgh

gh

igig

jh

COCCOCCOC

ijghijijgh

gh

igig

jh

WW

WW

WWbyproving

ÎÎÎ

Î

ÎÎ

Î

ÎÎ

Î

SSA-A-SSA-A

=SSA-A-A-A-SA-A

=-SSA-A-SA-A

%

%

%

%

%

%

[image: image73.wmf]hh

®

%

:

[image: image74.wmf]22

22

()()

()[]()

cc

COCCOC

ijijijijgh

gh

igigjh

jh

COCCOCCOC

ijghijij

ghgh

igjhig

WW

WW

ÎÎÎ

Î

ÎÎÎ

SSA-A-SSA-A

=SSA-A+SA-A

%

%

%%

Since

[image: image75.wmf]000

0

0

00

0

,

c

c

ij

ijijij

ig

jhigjhigigjh

COCCOC

gh

gh

ijijijij

igigjhigigjh

jh

A

AAA

WWWW

Î

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

Î

SS

SS-SSS

A==A=

SSSS-SSS

%

%

%

,

[image: image76.wmf]0

0

00

()()

cc

COCCOC

ijghijijij

gh

igjhigjhigig

WWWA

ÎÎÎÎÎÎ

SSA-SS-SA=S

%

(1)
 Similarly,
[image: image77.wmf]()()

cc

COCCOC

ijijijghij

gh

igjhigigjhig

WWWA

ÎÎÎÎÎÎ

SS+SA-SSA=S

%

(2)
Thus, if we store
[image: image78.wmf]COC

gh

A

, A and W in the main memory, then we can compute
[image: image79.wmf]0

COC

gh

A

%

and
[image: image80.wmf]COC

gh

A

%

 in a faster manner. Also, the computational time of step * in algorithm 2 the O(lk Wgh) .Wgh is the number of non zeros in Agh. Since the Netflix rating matrix A is a sparse matrix, it is possible to speed up algorithm 2 in this manner.

Iteration in algorithm 4 can be speeded up in a similar manner. We still use column reassignment to show how to do simplification in incremental algorithm 4.

For co-cluster
[image: image81.wmf]()

ig

r

=

,

[image: image82.wmf]00

hh

®

%

:

[image: image83.wmf]00

0

00

0

0000

0000

0

0

0

2

2

()

()

(22)()()

(

c

c

c

COCRRCCCC

ijijigj

ghh

ig

jh

COCRRCCCC

ijijghigjh

igjh

RCCCOCCCCOCCCCOCCOCCCCC

gjghhghhij

ghhghh

igjh

COC

gh

gh

W

W

AW

Î

Î

ÎÎ

ÎÎ

SSA-A-A+A-A+A

-SSA-A-A+A-A+A

=A-A-A+A-A+AA-A+A-SS

+A-A

%%

%

%%%%

%

00

0

00

0

0

2

)[2()2]

()

ccc

COCCCCCCOCR

hghijiij

h

igjhigjh

COCRRCCCC

ijijghigj

h

ig

WW

W

ÎÎÎÎ

Î

+A-AASS-SAS

-SA-A-A+A-A+A

%

%

[image: image84.wmf]hh

®

%

:

[image: image85.wmf]2

2

()

()

(22)()()

()[2

c

c

c

COCRRCCCC

ijijigj

ghh

ig

jh

COCRRCCCC

ijijghigjh

igjh

RCCCOCCCCOCCCCOCCOCCCCC

gjghhghhij

ghhghh

igjh

COCCOCCCCC

ghh

ghh

W

W

AW

Î

Î

ÎÎ

ÎÎ

SSA-A-A+A-A+A

-SSA-A-A+A-A+A

=A-A-A+A-A+AA-A+A-SS

+A-A+A-A

%%

%

%%%%

%%

2

()2]

()

ccc

COCR

ghijiij

igjhigjh

COCRRCCCC

ijijghigj

h

ig

WW

W

ÎÎÎÎ

Î

ASS-SAS

+SA-A-A+A-A+A

%

Since

[image: image86.wmf]000

0

0

00

0

1

111

1111

,

c

c

m

mmm

iij

iijiijiij

jhjhjh

CCCC

h

mmmm

h

iijiijiijiij

jhjh

jh

A

AAA

WWWW

=

===

ÎÎÎ

====

ÎÎ

Î

SS

SS-SSS

A==A=

SSSS-SSS

%

%

%

,

[image: image87.wmf]0

0

00

1111

()()

cc

mCCmmCCm

iijhiijiijiij

h

jhjh

WWWA

====

ÎÎ

SSA-SS-SA=S

%

.

(3)
Similarly,
[image: image88.wmf]1111

()()

cc

mmCCmCCm

iijiijiijhiij

h

jhjh

WWWA

====

ÎÎ

SS+SA-SSA=S

%

(4)
We can calculate
[image: image89.wmf]0

CC

h

A

%

,
[image: image90.wmf]CC

h

A

%

,
[image: image91.wmf]0

COC

gh

A

%

 and
[image: image92.wmf]COC

gh

A

%

 in the same manner according to formula (1)(2)(3)(4).Also, since ACOC, ARC, ACC, AR and AC are stored in the main memory, the computational time of step * in algorithm 4 is O(lk Wgh) .Wgh is the number of non zeros in Agh. Since the Netflix rating matrix A is a sparse matrix, it is possible to speed up algorithm 2 in this manner.
3.5 other issues

· Spectral approximation for initialization
· Test if removing global effect before we do co-clustering is helpful
RERERENCES

[1] T. George and S. Merugu. “A Scalable Collaborative Filtering Framework based on Co-clustering.” Proceedings of the 5th IEEE Conference on Data Mining (ICDM), Nov 2005.
[2] H. Cho, I. S. Dhillon, Y. Guan, and S. Sra. Minimum Sum-Squared Residue Co-Clustering of Gene Expression Data. Proceedings of the Fourth SIAM International Conference on Data Mining, pages 114-125, April 2004.
[3] A.Banerjee, I. Dhillon, J. Ghosh, S. Merugu, and D. Modha. A generalized maximum entropy approach to bregman co-clustering and matrix approximation. In KDD, pages 509–514, 2004.

[4] R. Bell and Y. Koren. Scalable Collaborative Filtering with Jointly Derived Neighborhood Interpolation Weights.ICDM, 2007.

[5] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In UAI, pages 43–52, 1998.

[6] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Reidl. Item-based collaborative filtering recommendation algorithms. In WWW, pages 285–295, 2001.

[7] P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, and J. Riedl. GroupLens: An Open Architecture for Collaborative Filtering of Netnews. In Proc. of ACM Conf. on Computer Supported Cooperative Work, pages 175–186, 1994.

[8] U. Shardanand and P. Maes. Social information filtering: Algorithms for automating “word of mouth”. In Proc. of ACM Conf. on Human Factors in Computing Systems, volume

1, pages 210–217, 1995.

[9] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application of dimensionality reduction in recommender systems– a case study. In WebKDD Workshop., 2000.

[10] N. Srebro and T. Jaakkola. Weighted low rank approximation. In ICML, pages 720–728, 2003.
_1268423359.unknown

_1268424477.unknown

_1268424768.unknown

_1268425634.unknown

_1268425795.unknown

_1268425805.unknown

_1268425815.unknown

_1268425787.unknown

_1268425144.unknown

_1268425149.unknown

_1268425123.unknown

_1268424554.unknown

_1268424563.unknown

_1268424485.unknown

_1268423411.unknown

_1268423457.unknown

_1268424467.unknown

_1268423477.unknown

_1268423412.unknown

_1268423390.unknown

_1268423399.unknown

_1268423360.unknown

_1268423369.unknown

_1268422727.unknown

_1268422835.unknown

_1268422888.unknown

_1268423347.unknown

_1268423348.unknown

_1268423330.unknown

_1268422877.unknown

_1268422809.unknown

_1268328170.unknown

_1268422707.unknown

_1268328189.unknown

_1268422192.unknown

_1268328178.unknown

_1268328141.unknown

_1268328153.unknown

_1268326630.unknown

_1268327582.unknown

